The

University

yo, Of
Sheffield.

This is a repository copy of Volterra Series Truncation and Kernel Estimation of Nonlinear
Systems in the Frequency Domain.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/102491/

Version: Accepted Version

Article:

Zhang, B. orcid.org/0000-0001-7327-0923 and Billings, S.A. (2016) Volterra Series
Truncation and Kernel Estimation of Nonlinear Systems in the Frequency Domain.
Mechanical Systems and Signal Processing, 84 (A). pp. 39-57. ISSN 0888-3270

https://doi.org/10.1016/j.ymssp.2016.07.008

This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’'t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s:/leprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Volterra Series Truncation and Kernel Estimation of
Nonlinear Systems in the Frequency Domain

B. Zhang' ® ", S.A. Billings®

®Department of Automatic Control and Systems Engineering, Thetsity of Sheffield, Mappin Street, Sheffield S1 3JD, UK
PNuclear AMRC, The University of Sheffielddvanced Manufacturing Park, Brunel Way, Rotherham36G, UK
E-mail: bzhang347@gmail.com, s.billings@sheffield.ac.uk
*Corresponding author

Abstract

The Volterra series model is a direct generalisation of the linear convolution integral and is
capable of displaying the intrinsic features of a nonlinear system in a simple and easy to appl
way. Nonlinear system analysis using Volterra series is normally based on the analysis of its
frequency-domain kernels and a truncated description. But the estimation of Volterra kernels and
the truncation of Volterra series are coupled with each other. In this paper, a novel complex-
valued orthogonal least squares algoritisndeveloped. The new algorithm provides a powerful

tool to determine which terms should be included in the Volterra series expansion and to estimate
the kernels and thus solves the two problems all together. The estimated results are compared with
those determined using the analytical expressions of the kernels to validate the method. To further
evaluate the effectiveness of the method, the physical parameters of the system are also extracted
from the measured kernels. Simulation studies demonstrates that the new approach not only can
truncate the Volterra series expansion and estimate the kerreelgeakly nonlinear system, but

also can indicate the applicability of the Volterra series analysasseverely nonlinear system

case.

Keywords. orthogonal least squares; Volterra series; generalised frequency response ;function
nonlinear systems.

1 Introduction

Volterra serief[[L] have been used for the modelling and analysis of nonlinear systems in many
industries such as marih§[2], automofije[3], strucfulal[4], biolopital[5], and communication
system$[p]. The Volterra model is a dirgeneralisation of the linear convolution integral and
provides an intuitive system representation. The multidimensional Fourier transform of the
Volterra kernels is a natural extension of the linear frequency response function to the nonlinear
case and is often referred to as the Generalised Frequency Response Functions (GFRFs). The
GFRFs have received much more research interest over the time-domain Volterra kernels. This is
because important nonlinear phenomena such as harmonics, intermodulation and gai
expansion/depression can easily be explained by the interactions between different frequency
components and orders of these GHRFs[7].

The GFRFs of nonlinear systems can be determined by either a parametric-model-based
method or a nonparametric-model-based mod[8]. In the parametric approach, a nonlinear
parametric model is first identified from the inpatitput data. The GFRFs are then obtained by
mapping the resultant model into the frequency domain using the probing @thod[g]. The
nonparametric approach is often referred to as frequency-domain Volterra system identification
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and is based on the observation that the Volterra model of nonlinear systems is linear in terms of
the unknown Volterra kernels, which, in the frequency domain, corresponds to a linear relation
between the output frequency response and linear, quadratic, and higher order GFRFs. This linear
relationship allows the use of a least squares (LS) approach to solve for the GFRFs. Several
researchels[10-12] have used this method to estimate the GFRFs. But they usually made the
assumption that it is known a priori that the system under study can be represented by just two or
three terms. However, such information is rarely available a priori.

It is well known that the Volterra series cannot represent severely non-linear systems. And
even for a weakly nonlinear system, the order of the Volterra series expansion to achieve an
approximation accuracy may still be very high. This indicates that the estimation of the GFRFs is
related to the truncation of the Volterra series expansion. And because nonlinear system analysis
using Volterra series is usually based on a truncated description, the study on the truncation of the
Volterra series expansion is important. Although Billings andgfE8] proposed an algorithm to
truncate Volterra series representations, the algorithm makes an assumption that the GFRFs are
known a priori or they can be obtained from the time-domain model, which is, however, not
practical in many cases.

In this paper, a novel approach utilising a complex-valued orthogonal least squares (OLS)
algorithm regularised by an adjustable prediction error sum of squares (APRESS) criterion will be
developed for both the truncation of the Volterra series expansion and the estimation of the
GFRFs.

2 Volterra modelling of nonlinear systemsin the time and frequency domain

The outputy(t) of a single input single output (SISO) analytical system can be expressed as a
Volterra functional polynomial of the input(t) to give

V()= 39" () ®

whereN is the maximum order of the system nonlinearity affd(¢) is the rth-order output of
the system, which is given by

Ol ®

whereh, (t4,+:+,7,) IS a real valued function af, -, t,, called the nth order impulse response
function or Volterra kernel of the systel [Volterra generalised the linear convolution concept

to deal with nonlinear systems by replacing the single impulse response with a series of
multidimensional integration kernels. Thethiorder Volterra kernel describes nonlinear
interactions among n copies of the input. The multidimensional Fourier transform oifi-thieler
Volterra kernel yields theth-order transfer function or generalised frequency response function
(GFRF)

Hy (T, J@,)= fj...Ijhn(fl,...,Tn)e—ﬂwﬁ.umnrn)drl,,_ dr. (3)

which is a natural extension of the concept of the linear frequency response function to the
nonlinear case. In Eq.(3)is the imaginary unit.

The rth-order kernel and the kernel transform are not unique because an interchange of
arguments inh,(tq,-:+,7,) may give different kernels without affecting the inpuitput
relationships. To ensure that the GFRFs are unique, they are symmetrised to give
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Hsym( J a)l’ o J a)n) B F all pe;Iat'onsH asym(J Q)l’ ,J w”) (4)
of {wlwn}

Using the concept of GFRF, the general relationship between the input sp&¢ujrand
the output spectrum(fw) can be obtained as

Y(jo)= Z L+ oo (T W)HU (Fopo, (5)

where (1)do,, denotes the integration 6f) over the n-dimensional hyperplang + --- +
o+ top=0
W, = .
When the system is subject to a harmonic input such as
u(t)=|Acog(Qt+ £A) (6)

the output spectrum at the driving frequency can be expragdéd

Y(jo)= 3 Z_ﬁc[n,HJ A3 A M ™)

n=1,3;-- N

Where[ J denotes the floor function, which gives the Iar%est integer less than or eGZuaI to
Hnng(].Q, -+, JQ,—jQ,---,—jQ) is a higher-order GFRF with — [;J arguments ofl and EJ
L2

arguments of-Q, andC (n, EJ) is the number of combinations leﬂ objects from a set with n
objects and given as

NadEGE:

Eq. (7) can also be written as

N
Y(7Q)=2 Y 9

=1

where

= IN
N=|— 10
g a0

1

Y2j+1 221+1C (21 +1 J )|A| 2j+1,j (11)

is the (2j+ 1)h order output spectrum component.
In Eq.(9),Y; = %AHL0 is just the output spectrum of the linear system. Thus EQ.(9) clearly
demonstrates that how the output energy at the driving frequency contributed by the linear term is

modified by the higher-order nonlinear effects to yield the output frequency respgnge
3 Deter mination of the GFRFs

The concept of GFRF is a natural extension of the concept of the linear frequepaysee
function to the nonlinear case and represents the characteristics of nonlinear systems in a manner
which is independent of the inputs. However, GFRFs differ from the frequency response function
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in linear systems in two aspects. First, the frequency-domain description of a nonlinear system is
associated with a sequence of GFRFs instead of only one frequency response function in the linear
case. This is because the Volterra series representation of nonlinear systems involves a sequence
of Volterra kernels, while GFRFs are defined as the Fourier transform of these kernels. In
addition, GFRFs are multi-variable functions even when the underlying system is single-
input/sinde-output. Although these complexities bring about difficulties in the determination of

the GFRFs, various computation and estimation methods have been developed.

3.1 Computation of the GFRFs

Given a parametric model of a nonlinear system, there are a number of ntetbbtisn the
GFRFs of the system. Arguably the most direct one is the harmonic probing method of Bedrosian
and Rice[[§] and Bussgang et[al][14]. In the case of SISO nonlinear systems, thdebasithe
probing method can be introduced as below.

It was shown by Rugh [15] that for nonlinear systems which are described by the Volterra

model (1), (2) and excited by a combination of harmonic exponentials
K

u(t)=> e, 1<k <N (12)
i=1
the output response can be expressed

Y(O)=33 S H, (T Tay el

n=l =1 i,=1

n

N _ _ thK ma (13)
= Z z GrT'!lI’T‘k ( Ja)l’...’ J a)K)e i=1
n=1 ziilm =n,m>0
where
- _ I - — _ —
Gm...nk(jwli""ij):LHn ja)l""ij a)l""’j a)K"“J Wy (14)
n].'”k' x ~

In most cases, Eq.(14) will contain repeated frequency arguments. In the speciehe&ase
K =n, however, all the frequency components are distinct and namety1,i =1, ,K.
Therefore,

Gyom (Jon, - Jog)=nH, (Jo, ] o,) (15)
Considering Eq.(15), Eg.(13) can then be written as
) terms with terms from
y(t)=n'H, (e, Ta)n)ejtz‘zla" +| repeated +[ J (16)
) lower order
frequencie
For nonlinear systems which have a parametric model with parameter &gctor
y(t)=fo(t.0y(t) u(t)) (17)

and which can also be described by the Volterra inddeand (2), substituting Eqgs.(12) and (16)
into Eq.(17) fory(t) andu(t), and extracting the coefficient ekp(jt Y., w;) from the
resulting expression produces an equation from which the GERfw,,::-,jw,) can be
obtained.



By using the aforementioned probing method, the GFRFs of the generalized higher-order

Duffi ng oscillator model
L A
> > c(l,a)(Dy) =u (18)

1=1 a=0
whereD = d/dt denotes the differential operatarjs the order of the derivativéjsthe order of
the exponential and(l, «) are the model coefficients, were derived as follows[16]

(n>L) (29)

whereS!, the Stirling st of the second kind, denotes the set whose elements cover all the
partitions of a se€1,2,---n) into [ blocks,S.[p] denotes the th element ofS}, and|S|, the
Stirling number of the second kind, is the cardinality of the Stirling set of the second kind, and

S , _ e - _ _ - e
Ss| p]é(Z)ZN[E!< o+ T, ) H, (TogeTo, ) (T, o+ o, )
p=1 r;ln

xH, (To,p o, )1\ (To,++]e,)H, (j_w#’...,j_wn):'

(20)

In Eq.(20),u=r+nrn+--1n_1+1=n—-—nrn+1 and (r;[,n) beneath the Ieftmosz
denotes summation taken over those partitions of n which have | parts such that
nL+r,+-+r=n r<r,<--<y (22)
The second summatioE'N in Eq.(20) extends over the N symmetric products. The number of
terms inzlN is
n!
Crintentwlw el
wherew; is the number of equalg in the first run of equalities in the arrangemegnt r, <
-+ < 17, w, the number in the second run, and so on. When’thare unequal, the’svdo not
appear.
The generalized higher-ord&uffing oscillator model represents a wide class of nonlinear

systems frequently encountered in engineering. Specially, wheg, c(1,2) = 1 andc(l,2) =
0 forl = 2, Eq.(18) becomes

y+gc(l,l)y'+gc(l,0)y' _u (23)

which represents the generalizedffi ng oscillator model, in whiclf, () = Y¥I_, ¢(I,1)(-)! is the
nonlinear damping polynomial function arfg(-) = ¥i—, c(1,0)(-)! is the nonlinear stiffness
polynomial function.

The probing method can also be extended to the single input multiple output nonlinear systems.
If the system is of a single input and two outputs and can be described by the following parametric
model

(22)



(1) = 6(t0.92(0).¥:(0) (1) )
Yo (1) = f,(t,6,y,(t),y,(t) uy(t))
Eq.(16) can be written as
n terms with terms from
y(t)=nH, (T, Ta)n)e”Z‘:l“‘ +| repeated +( J J=1,2 (25)
h _ lower order
frequencie
Then substituting, (t) = ¥, e/?i¢, andy, (t) andy,(t) expressed by Eq.(25) into Eq.(24),
and extracting the coefficient efcp(jt Y7, w;) from the resulting expressions produces two

coupled equations from which the GFRF mafi, Jwq, , Jwy,), Hpo Jwy, -+, Jwy,)] can be
obtained.

3.2 Estimation of the GFRFs

Eq. (7) shows that (jQ) is a function of the excitation amplitude Therefore, if one
measured (jQ) for various excitation amplitudes and neglects higher-order terms, one can
estimate the GFRIES[17-]19]. For example, if one measig), i = 1,2,---, N for N different
excitation amplituded; respectively, and considers the filsterms on the right-hand side of Eq.
(7), one can write the following equation,

N
Y(i2)=>04 +4 26)
j=1
where
gj = H2j+1,j (27)
) . A2j+1
¢, =C(2j+1,j) I (28)

andg;, i = 1,2,--, N, is the model residual. The relationship betwdeand the maximum order
of the system nonlinearity is given by Eq. (10).
Eq.(26) can also be written in the matrix form as

Y=0O+E (29)
where
Y =[%(7Q) Y, (TQ). Y. ()] (30)
:[(Pp 0y, (PN] (31)
©=[H,oHsu - Hagoa | (32)
E=[ey v & (33)

The residual vectd is assumed to be of zero mean and uncorrelatedgyith= 1,2, ---, N
and

.
o = o] (34)
where¢;;, j = 1,2,-+,N,i = 1,2,---,N, is given by Eq.(28).
The solution of Eg. (29) can be obtained byltBealgorithm as

O=(o"®) oY (35)
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where®! = ®T which is the conjugate transposedaf®T denotes the transpose, abdienotes
the matrix with complex conjugated entries.

The LS-based parameter estimation approach needs to make an assumption that the output
frequency response in Eq. (7) can be truncatedl bgrms whileN is a sufficiently large number.
However, many of these candidate model terms may be redundant. The inclusion of redundant
model terms often makes the model become oversensitive to the training data and is also likely to
make the information matrixb"® ill-conditioned which may result in biased parameter
estimates. Therefore, a truncated Volterra series expansion must be determined prior to the
estimation of the GFRFs. On the other hand, Volterra series analysis is based on a truncated
description and a finite Volterra series is required in practical nonlinear system analysis. To solve
these problems all together, the OLS algorithm can be used. The OLS method provides a powerful
tool to select the significant model terms, determine the optimal number of model terms, and then
estimate the model parameters and has already been widely applied in the identification of
nonlinear systems. But because both the output frequency response and the GFRFs are complex,
the complex-valued OLS algorithm is requireév&al complex-valued OLS algorithnjs R0, 21]
were proposed but in forms different from the widely used real-valued algorithm. However, the
OLS algorithm in itself is complex-valued. In this paper, the conventional algorithm was revisited
A unique form of the complex-valued and real-valued algorithm was presented. This can avoid
confusions and help ease of use of the OLS algorithm.

4 Complex-valued orthogonal least squaresalgorithm

Since theN X N (N < N) measured matrixb has full column rank, it can be uniquely
decomposed as
D=QR (36)
whereQ is anN x N unitary matrix andR is anN x N upper triangular matrix with positive
diagonal elements ¢, 155, ***, "W -
DenoteD = diag[r;1, 722, **+, "] and then Eq.(36) can be rewritten as

D=WA (37)
whereA = D 1R is anN x N upper triangular matrix with unit diagonal elements, that is,
1 a, a; - G
0 1 a; - ag
A=/0 0 . . (38)
S
0 - 0 0 1
andW = QD is anN x N matrix with orthogonal columna;, j = 1,2, .-+, N such that
W"W=D*=A=diad 4, 4, ;- Jy ] (39)
where
A =(w,wp), =12 N (40)

and the symbo{-, -) denotes the inner product of two vectors.
Note that for two complex vectoos= [ay, -, ax]™, B = [B1,***, BxlT,

(a,B) :BHu:(B)Ta (41)



K
(a,0)=0"a=[a, = Ja[ (42)

Substituting Eq.(37) into Eq.(29) gives

Y=WA®+E (43)
Denote
AG®=g (44)
and then EqQ.(43) can be expressed as
Y=Wg+= (45)
or
N
Y=Y g,w,+E (46)

i=1
which is an auxiliary model equivalent to Eq.(29) and the space spanned by the orthogonal basis
vectorswy, wy, ---,wy is the same as that spanned by the original model asgs, ---,¢@x.

By using the LS algorithm, the auxiliary parameter vegtoan be solved from Eq.(45),

g=(WHw) wHy (47)
Substituting Eq.(39) into Eq.(47) gives
g=A"W"Y (48)
or
B <Y, Wj> ) _
9,= . j=12;--N (49)

(w;, w;)

Several orthogonalization procedures including classical Gram-Schmidt, modified Gram-
Schmidt and Householder transformafiof[22] can be used to implement the orthogonal
decomposition of the measured mathix Then after obtaining the auxiliary parameter vegtby
Eq.(48), the parameter vect@®@ can be easily solved from Eq.(44)y using backward
substitutions. However, our objective is not just to estimate the parameters, but also to detect
which terms are significant and should be included within the model. This can be achieved by
computing the error reduction ratio(ERR) described below.

Suppose that;(jQ), ,i = 1,2,---, N is the output after its mean has been removed. Siige
uncorrelated withp;, i = 1,2,---, N, the variance of;(jQ) can be expressed as

1

ﬁ:NYW

- =|g"Ag+2(®0)" =+ 2]

S 2 H 1 _h-
Z‘gj‘ wiw, + 2 E"E (50)



where the first par(ZJ’-V=1|gj|2wini)/N, which can be explained by the involved terms, is the
desired output variance while the second éarPE)/N represents the unexplained variance.

Thus|gj|2ijwi/N is the increment to the explained desired output variance brought by the jth
termw; and the jth error reduction ratio introducedvh;y:an be defined as

\9\

ERR = xlOO%, ji=1,2,-N (51)
Substituting Eq.(49) into Eq.(51) ylelds
2
Y,wW. _
ERR = K ’>‘ x100%, j=1,2,--N (52)
(Y,Y><Wj,wj>

which is also called the squared correlation coefficient betWessdw;.

From Eq.(50), the residual sum of squafi@ll? = ||Y —¥||", where¥ is the model
prediction produced by the associaléterms model can also be obtained,

[l =Y. v) Z<W W> (53)
while the residual vectdE can be expressed from Eq.(46)
L (Yow)
= - , 54
Z:;‘<Wj,wj>w' )

Note that Egs.(50), (51), (52), and (53) have been extended to the complex-valued case.
Dividing both sides of Eq. (50) YTY/N gives
(:Hw)/N o2

o ZERR (Y" Y)/N_02

Y

which clearly indicates that the Iarger the ERR value associated with a particular term is, the more
reduction in the residual variance will be produced if this term is included in the model. Thus the
ERR provides a simple but effective means to detect which term is significant and should be
selected. Notice that a term which is introduced at an early stage will have a larger ERR than that
would be obtained if it were reordered to enter as a candidate term at a later stage. To overcome
the order dependency of ERR, the terms can be selected in a forward stepwise manner. The
detailed orthogonalization, for example, using the classical Gram-Schmidt algorithm, and terms
selection procedure is described as follows.

o At the first step, consider all the possilgg j = 1,2,---,N as candidates fow,, and for
j=1.2,---,N, compute
W(lj) =0,
(2
KY, wﬁ”}‘ (56)

ERR/) = L %100%.
i (Y,Y)<W(l‘),w(l”>>< i




Find the maximum oERRij), sayERRijl) = max {ERR?), 1<j< IV}. Then the first term to

be included in the model ip;,. wy = wfl) = @;, is then selected as the first columnWsf
together with the first element of the auxiliary parameter vegtgy = (Y, wy)/(wy, wyq), the
error reduction ratio produced by the first terRR, =ERR§j1), and the associated sum-
squared-ermo||Z4]|? = (Y, Y) —[(Y,wq)|?/{wq, w;). As defined in Eq.(38), the first column Af
a;; = 1.

o At the kth step wherk > 2, all theg;,j = 1,2,,N, j & {j;,"*, ji—1} are considered as
possible candidates few,, and forj = 1,2,---,N, j & {j1,***, jx—1}, calculate

0o SO
Wk (I)] ; <Wp' Wp >Wpl
(v wi) °
ERR' = 1 %100%.
<Y,Y><Wf(‘),wfj)>

Find the maximum oERR,((j), sayERR,((j") = max {ERR,((j), 1<j<N,j#j,,j ;tjk_l}.
Then the kth term to be included in the modeapjswhile the kth column oW, wy, = wl((jk), the
kth element of the auxiliary parameter vegpg, = (Y, wy)/{(wy, wy), the kth error reduction
ratio ERR, = ERR,(C”‘), and the kth sum-squared-erf®||? = (Y, Y) — X¥_; [, w,-)|2/(w,-,wi).
The elements of the kth column Afare computed by

<(ij’wp> _
a, = <Wp,Wp>’ p=1-,k-1 (58)
1, p=k

o According to Eq.(55), the procedure can be terminated aftthetep § < N) when
N
1-> ERR < p, 0<p<1 (59)
j=1

wherep is a chosen error tolerance and in practice, can actually be learnt during the selection
procedure.

The criterion (59) concerns only the performance of the model (variance of residuals).
Because a more accurate performance is often achieved at the expense of using a more complex
model, a trade-off between the performance and complexity of the model is often desired. A
number of model selection criteria that provide a compromise between the performance and the
number of parameters have been introduced and incorporated into the OLS algorithm over the past
few decades. Despite the differences amongst these model selection criteria, they are
asymptotically equivalent under general condit[23]. In this paper, the adjustable prediction
error sum of squares (APRE$S)[24] is employed to solve the model length determination problem,

APRESY 0= ¢ 0 MSE (60)
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c(n)= [ﬁ] (61)

with « > 1, is the complexity cost function and

MSE( n) = @ (62)

is the mean squared error corresponding to the model performance.
The model selection procedure is terminated aivtiestep when

APRESS( 7\) - min[ APRESE )] (63)

1<n<N
Practically a distinct turning point of the APRESS statistic versus the model length can be
easily found, especially when computed by using several adjustable parametedsthis can
then be used to determine the model length.

The final model is thus the linear combination offheignificant termsph,---,cpiﬁ selected
from theN candidate termeq, -+, @x;,

Y(t)=

where the parameté = [91,---,9ﬁ]T can easily be computed from Eq.(44) by using backward
substitutions,

M=

09, (t)+e(t) (64)

=
I

1

. NG A A (65)
6.=9, — . 8,0, fork=N-1,N-2;-,1.
p=k+1

It should be pointed out that in practice the mean of the output does not need to be removed
because adding a constant to the denominator of the ERR (51) will not affect the result of the
maximization in this selection procedure. Because of the orthogonal property, this praosedure
very efficient and leads to a parsimonious model. Moreover, any numerical ill-conditioning can be
avoided by eliminatingw if wiiwy is less than a predetermined threshold. Similar selection
procedures can also be derived using the modified Gram-Schmidt algorithm and Householder
transformation algorithm. Simulation studies will be conducted in the next section to apply the
developed OLS algorithrto the truncation of the Volterra series expansion and the estimation of
the GFRFs of a typical nonlinear system.

5 Simulation study

Considera single degree of freedom (SDOF) system shawhig. 1. This represents a mass
supported on a linear sprig(-) in parallel with a nonlinear damper with a cubic polynomial
characteristiai; (*) + a3 (-)® wherea; represents the system nonlinearity. The mass is subjected to
a harmonic excitation force of amplituglg and frequency), and the output is the foré®(t)
transmitted to the system of interest via the mass-spring-damper element. & histes simple
model but can represent a wide range of engineering systems such as automotive suspensions
machinery mounts, and base isolators of buildings.

Denote

11



Ve (t)=F (1) (66)
Yy () =x(t) (67)

and
u(t) = F,cog Q1) (68)

The equilibrium equation for the system in Fig. 1 and the transmitted force at the support can
be expressed as
My, (0 + K Yo () +a %)+ a ()= u) (69)
Ve ) =k yq (®) +a, ¥, () + & V() (70)
This is a single input two output model but the transmitted force is the primary concern. Take
the system linear characteristic and input parameters as follows:
m = 240kg, k; = 16000Nm™1, a; =29.6sNm™!, E, =10N,2 =8.1rads™ .
By using the probing method described in Section 3.1, the analytical expressions of the GFRFs
for the transmitted force have already been derived by Zhand &t al [4] andiverén Appendix
A. Simulation studies will be conducted in this section for systems (69) and (70) subject to the
harmonic input (68) to evaluate thehrorder output spectrum componépi, , for the following
three nonlinear damping characteristics using the new complex-valued OLS algorithm,
(i) a; = 100 s> Nm™3
(i) a; = 200 s3> Nm™3
(iii) a3 = 500 s> Nm™3
The estimated results will then be compared with those determined using the analytical
expressions of the GFRFs to demonstrate the effectiveness of the new method. Alternatively, by
using the approach in Appendix B, the physical parameters of the system can be extracted from
themeasured GFRFs and then be compared with their true values to validate the method.

5.1 For the condition when a; = 100 s> Nm™3

In this case, the system was excited using the excitation amplitudes from 1 N to 10 N with an
increment of 0.3 N. Solving Eqs.(69) and (70) yielded the system time-domain putputThe
output spectrdz(jQ) was then obtained by performing an FFT operation on the steady state
outputyp(t). Note that the FFT calculation of a harmonic signal should be conducted using a
sampled sequence over a time interval which is a multiple of the signal perjod [25]. The output
spectra together with the corresponding excitation amplitudes can then form EQ.(29). And the
complex-valued OLS algorithm developed in Section 4 was then used to truncate the Volterra
series expansion and to estimate the GFRFs.

The model lengtiV in Eq.(29) was assumed to be the same as the number of measurements
N. The initial model thus involved a total of 31 candidate model terms. The complex-valued OLS
algorithm was then employed to select and rank the significant model terms. By setting the
adjustable parameter=0,0.2,---,0.8, the APRESS statistic versus the model length over the
measured data, were calculated and showh in Rig. 2, where the bottom line with circles,
corresponding ta = 0, indicates the mean-squared-errors. It can be see Fig. 2 that there is
a turning point at the abscissa 6 for various values of the adjustable par@anmétetel structure
detectionis quite critical in system identification. To validate the effectiveness of the APRESS
statistic, the Bayesian information criterion (BIC) statistic versus the model leagttomputed,
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BIC (n) = N n[N_ln_(E)_l] MSE( ) (71)

The results are shown in Fig. 3 indicating the model length is also 6 where BIC arrives at the
minimum value. The indexes of the first six model terms selected and ranked in order of the
significance by the complex-valued OLS algorithm, together with the coefficient of each term and
its corresponding ERR, are shown in Table 1. Table 2 indicates that the system can b&tedprese
by a Volterra series with maximum order 11. Reapplying the complex-valued OLS algorithm to
the model represented by these terms over the measured data gave the estimation of the GFRFs
which were substituted into Eq.(11) to obtain the output spectrum compdi@gnts These
results were then compared with the analytical results determined using the GFRFs expnessions
Appendix A and were shown in Fig. 4. Clearly, the complex-valued OLS algorithm correctly
truncated the Volterra series expansion of the system and correctly estimated the GFRFs.

The aforementioned procedure was repeated for the ogipt)t The only differencés that
the GFRFs for the excitation frequeriyrad s=, in addition to8.1 rad s~! in the transmitted
force case, was also identified. It should be pointed out that as indicated by the OLS algorithm, the
system excited at the non-resonant frequertcyad s~ should be represented by a Volterra
series with maximum order 3 which is significantly smaller than the maximum order 11 for the
resonant frequend§.1 rad s~1. This is actuallya fundamental behaviour of nonlinear systems. It
is well known that the dynamic characteristics of a linear system are independent of tlaadhput
are described by only the frequency response function. But for a nonlinear system, despée that th
first, second, and higher order GFRFs are still independent of the input, the dynamic
characteristics depend on not only the GFRFs but also the input applied to it. Although a nonlinear
system subject to similar inputs such as harmonic excitations with similar frequencies may be
represented by a Volterra series of the same maximum order, a system subject to different inputs
are normally represented by Volterra series expansions of different orders. And a good ipractice
to apply the complex-valued OLS algorithm to them separately to determine the appropriate order.
After obtaining the GFRFs for the excitation frequenéidsrad s~! and10 rad s, the method
in Appendix B was then used to estimate the system parameters to further verify the method. The
results are listed ih_Table] 2 and agree with the true values very well, which confirms the
effectiveness of the proposed methbihtice that il Table P, the relative error is defireg
|Xtrue — X|/Xerue X 100%, wherex,,. andx are the true value and estimated value of the
parameter, respectively.

5.2 For the condition when a; = 200 s3 Nm™3

In this case, the system was also excited using the excitation amplitudes from 1 N to 10 N with
an increment of 0.3 N. The excitation together with the FFT transformation of the solution of
Eqgs.(69) and (70) formed Eq.(29). As a starting point, the model length was assumed to be the
same as the amount of measurements and the initial model involved 31 candidate model terms.
The significant terms were then selected and ranked by the complex-valued OLS algitiéihm
setting the adjustable parameter 0,0.2,---,0.8, the APRESS statistic versus the model length
over the estimation data, were calculated and shoffiig. 5, where the bottom line with circles,
corresponding te = 0, indicates the mean-squared-errors. It can be see Fig. 5 that there is
a turning point at the abscissa 8 for various values of the adjustable paranigierindexes of
the first eight significant model terms, together with the coefficient of each term and its
corresponding ERR, are shown |
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Reapplying the complex-valued OLS algorithm to the model represented by these
terms produced the estimation of the GFRFs. The output spectrum comggnentgere then
computed and compared with the corresponding analytical results determined using the GFRFs
expressions in Appendix A, which is shown Fig. 6. And again, the complex-valued OLS
algorithm correctly truncated the Volterra series expansion of the system and correctly estimated
the GFRFs. The procedure was repeated for the oujgu} with the excitation frequencies
8.1rads ! and10rads™!. The system parameters were then estimated using the method in
Appendix B and are provided| |

And once again, the system parameters were accurately estimated, which further
validate the effectiveness of the method.

Comparing the results of Sections 5.1 and 5.2 indicates that the stronger the nonlinearity is, the
more terms in the Volterra series expansion are necessary to represent the system. A natural
guestion is what happens if the nonlinearity is very strong and the Volterra series diverges. Is the
complex-valued OLS algorithm able to predict this non-convergent behaviour? This will be
investigated in the next section.

5.3 For the condition when a; = 500 s> Nm™3

The excitations were exactly the same as those in Sections 5.1 and 5.2. And the complex-
valued OLS algorithm was employed to select and rank the 31 candidate model terms. The
APRESS statistic versus the model length with the adjustable paramet@y0.2,---,0.8 were
then calculated and shovimlFig. 7] There is an obvious turning point at the abscissa 10 even with
the bottom line with circles which correspondsrte- 0 and represents the mean-squared-errors.
The indexes of the first ten significant model terms, together with the coefficient of each term and
its corresponding ERR, are shown[in Table 5. The GFRFs were estimated by reapplying the
complex-valued OLS algorithm to the system model represented by these terms. The output
spectrum componeni§;,; were then computed and compared with the corresponding analytical
results determined using the GFRFs expressions in Appendix A, which is st]éen §. It can
be observed from the analytical results that the Volterra series expansion diverges as the
amplitudes of the output spectrum components increase with the nonlinear order. But even in this
situation, the complex-valued OLS algorithm correctly estimated the GFRFs up to the ninth order
which allows it to be used as an indicator of the convergence of the Volterra series expansion. The
identification procedure was also repeated for the ouytp(f) with the excitation frequencies
8.1rads™! and10rad s™1. The system parameters were again estimated using the method in
Appendix B and are provided[in Tablp 6 which indicates that they were accurately estireated.
also reported that the GFRFs could be correctly estimated even when an excitation amplitude
is outside of the convergence range. But note that only a convergent Volterra series isfaleaning
If the numerically estimated results show the Volterra series expansion of a system diverges, it
means the system nonlinearity is too strong and the Volterra se4igsis shouldn’t be pursued
further.

6 Conclusions

A complex-valued OLS algorithm in the same form of the conventional OLS algorithm was
developed and applied into the truncation of the Volterra series expansion and the estimation of
the GFRFs of nonlinear systems. The estimated GFRFs were then compared with the analytical
results determined using the probing method to evaluate the effectiveness of the new method. The
system parameters were also extracted from the estimated GFRFs and compared with their true
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values to further validate the method. Simulation studies demonstrate that the complex-valued
OLS algorithm can correctly truncate the Volterra series expansion and correctly estienate
Volterra kernels ohweakly nonlinear systemi\nd for a severely nonlinear system, the complex-
valued OLS algorithm can correctly estimate the first few higher-order GFRFs and phedict
non-applicability of the Volterra series analysis. In this paper, the approach is demonstrated by
using a SDOF system subject to a sinusoidal excitation. For a harmonically excited system, only
the diagonal values of the GFRFs are necessary for the analysis of the system and thus were
estimated. But the main idea in this paper can easily be extended to more general cases such as
systems under multi-tone excitations so as to obtaincéhelete multidimensional GFRFs’

points and also multiple-degree-of-freedom (MDOF) nonlinear systems. These will be studied in
later publications.
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Appendix A. Analytical expressions of the GFRFsfor the transmitted force

The expressions of the GFRFs for the transmitted force were derived by Zhapd et al[4] and
will simply be quoted here.

joa, +k n=1

T pia) (72)

n 2 _ _
_m(TE a)I] Hnd(ja)l’...,ja)n)’ n:2’3’...
i=1

and
1
= =1
p(Ta) "
S
3la;) [
Ho (T jo,) = -——"5—, n=35- (73)
0, n= 2,4,
where
ﬂ(jn “’u]:m(?n w} +a{T_Zn‘,a%j+k1 (74)
and
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Specifically,
A la,M® 2)(3
Hsd(le,sz,Ja)g):— 3'ail\2111 =_a3(1_)(3)( ) (76)
ap(iya| #7%a)
where _ _
(1)(2)(3)é (JTC"l)Hm (J_wl)(J_C‘)z)H Jd(j_wz)(j_wg)'l ﬁ(j_a)z) (77)
And in the case = 5,
a’SMllS

Heg (Tou ] 0] 03] @, g & (78)
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Here

() _
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where
(5)(4)(321)= (T%)Hm (]_a)s)(J_ a)4)H u (J_ 0)4) 3(j_a)3+j_a) 2+j_a)1}'| 8 (i_w bojo ) (80)
and so on.
In the caser = 7,

- - = = = = = A_aS(M115+M(331)

7d(Ja)1]w2]a)3'j D4 O5) W) a)) (81)
(15

Here

M3 =(7)(6) (54323 +( F( §( 64321 ( JT 4 563pa( )(7)(3 54621 )(7(2 54a¢
(7)(1)(54326+( 6( 3( 74321-( )& 4 573pL( )6)(3 54721 )((2 5437
(6)(1)(54327+( 5( 4( 76321-( )8 )8 746pL( )()(2 74361 )(3( 1 7432(82)
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and

16



M

=(765)(433(3+( 76} 43¢ pr( 766 4p1)8( 785 3014 J64 AP+l
(764)(533( 9+( 76} S2% p-( 764 3AL)S( 783 482+1  J63 M5)+2
(763)(423( §+( 76} 5% pr( 762 4B6)L( 7R2 48D Y62 MS)+ 3
(762)(353( 4+( 76)( 43/ Br( 76L 436)2( 761 489+ J61 23+~
(754)(639(3+( 75K 63% pr( 794 OML)8( T7R4 30144 3YBH62)(D+
(753)(463( 3+( 75§ 42% pr( 798 6RL)4( THZ 4B9+L  J62 M3} ¢
(752)(463( 3+( 753( 36k P ( 730 43e)6( 781 486)+d  JOL A2+
(759(329( 4+( 74¥ 65 )i-( 748 6HL)2( M3 GRY+R Y43 J2}+ 6
(742)(633( 3+( 742( 63 Br( 742 6HL)8( 742 36Y+4 AL A3+ E
(749(633( 3+( 74)( 628 JB-( 730 326)6( 782 469+1 2yH6Y(9+
(732)(453( §+( 733( 65% P ( 730 48R )5( 781 465+  JBL M2+ ¢
(739(629(4+( 72)( 438 Br( 73L 4B5)6( 721 369+3 21 R6H+4
(654)(329( 7+( 65K 420 Jrr( 652 4RL)7( 81 482)+q U3 W2+ gy
h (642)(353( 7+ ( 64N 328 Jr-( 632 4HL)7( 631 4R9)+( P2l K3

(7)(6) (s4221) 2

(T@)Hm (j_a)7)(j_w6)H m(j_a’e)S! (j_a’5+j_a)4+j_a’3+j_w 2"'1'_0)9" ‘ ) 0} O 0, © )5
(760)(533( 9 )
3!(Ta)7 + ] o+ j_co4)H a (j_a)7,j_a)6,j_a)4) 3!(j_a) H oH o J)-I o (_a) j o o )(_a)l-) Cﬂj(_a) )

and so on.

Note that the first five terms (Mg)l were missing irﬁ|4] due to typographical errors but are
added in here.
In the caser = 9,

3
T e I = W 3|a3( 117+M(13)5+M(3%3)

5

whereM&) ME) andM&), have 36, 504 and 280 terms respectively. These expressions are
omitted here due to space limitations.

(84)

(86)

Appendix B. Estimation of system parametersusing the GFRFs of the displacement

Once the GFRFs of the displacement are measured, the linear and nonlinear parameters of the
system can then be estimated.
According to Eq.(73), the linear GFRF of the displacement can be expressed as,
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H = — (87)
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Eq.(87) can be rewritten by
- - = — m

Re[-0'H, (To)} RejaH,(To)} R 4 (7o) . {1}
Im{-0’H, (To)} Im{TeH 4 (7o)} ImH 4 (7o)} «| 1O
whereRe[:] andIm[-] denote the real and imaginary part of a complex number respectively. If the

linear GFRF#H,,(JQ;),i = 1,2,---, N for N different excitation frequencig¥ are measured by

the new method proposed in this paper, EqQ.(88) can be expressed in the following matrix form,
HO =1 (89)

(88)

where

Re{-Q°H, (7Q,)] RETQH,(7Q,)} RéH ,(jQ))
Im{-Q’H,, (TQ,)} Im{JQH (7o)} ImH ()
H= : : : (90)
Re[-Q"Hy (TO) RETQHL(TON)] R w(i04)
[Im{-Q"Hy, (TQ))} Im{TQH L (TQ)} ImH (T2}
@=[m a, k] (91)
1=[1,0,-,1,4" (92)

The linear parameters of the systéim d,, k, can be obtained from Eq.(89) by the LS
algorithm,

——

6 =(H"H) "HI (93)
According to Eq.(76), the third-order GFRF of the displacement can be expressed as,
H3d(ja),ja),—j a))=—j (01"13&(] a))'| 1d(_j a))i3 (94)

whereH, ;(—jw) can be obtained by Eq.(87) and the linear parameters are given by Eq.(93).
As H3;,(jQ;),i = 1,2,---,N, has already been measured by the new method, Eq.(94) can be
written in the following matrix form,

Qa,=H (95)
where
Q=| Re{-TQMH (TQ)H 4 (-TQ))}, m-TQHL(TQH (), - o6
Re{_JTQNsHl?:j (TQN)HM (_j_QN)} ) lm{_j_Q N:i_l 13d (j_QN)_r 1d (_j_Q N)}]T
H :[Re{Hsd (Tgl 'j_Ql’_j_Ql)} Im{H 3 (j_Qlj_Ql'_j_Q J)} U ( )
97

Re{H:ad (TQN 1j—QN ’_j_QN)} J Im{H 3d (j_QN j_QN Tj_QN)}]T
The nonlinear parametag can then be obtaindxy,
5,=(Q'Q) Q'H (98)
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Table 1
The model terms selected and ranked in order of the significance lpittplex-valued OLS algorithm together with
the coefficient of each term and its corresponding ERR.

index 1 2 3 4 5 6
terms Hio Hsy Hs» Hzs Ho 4 Hiis
ERR (%) 99.95 0.0444 9.34e-5 2.61le-7 7.95e10 2.45e12
Table 2

The parameters of the cubic damper with= 100 s> N m™3 estimated by using the measured GFRFs of the
displacement output.

parameter true value estimated value relative error
m (kg) 240 242.19 0.91%
a; (sNm™) 29.6 29.82 0.75%
ky, Nm™) 16000 16142.2 0.89%
as (s3Nm™3) 100 101.05 1.05%

Table 3
The model terms selected and ranked in order of the significance logtiplex-valued OLS algorithm together with
the coefficient of each term and its corresponding ERR.

index 1 2 3 4 5 6 7 8
terms Hio Hsa Hs Hzs Ho4 Hiis Hise Hisz
ERR (%) 99.86 0.135 8.88e-4 7.87e-6 7.75e-8 7.85e10 7.88e12 7.59e14
Table 4

The parameters of the cubic damper with= 200 s3> Nm™3 estimated by using the measured GFRFs of the
displacement output.

parameter true value estimated value relative error
m (kg) 240 243.33 1.39%
a; (sNm™?) 29.6 29.87 0.91%
ky, Nm™) 16000 16217.04 1.36%
as (s3Nm™3) 200 193.94 3.03%

Table 5
The model terms selected and ranked in order of the significance bpittplex-valued OLS algorithm together with
the coefficient of each term and its corresponding ERR.

index 1 2 3 4 5 6 7 8 9 10

terms Hio Hsa Hs Hys Ho 4 Hiis Hise His 7 Hizs Hiog

ERR (%) 99.54 0.454 0.0105 3.35e-4 1.22e05 4.71e07 1.85e08 7.22ed10 2.76edil 1.36ei2

Table 6
The parameters of the cubic damper with= 500 s> N m™~3 estimated by using the measured GFRFs of the
displacement output.

parameter true value estimated value relative error
m (kg) 240 24413 1.72%
a; (sNm™1) 29.6 29.92 1.07%
ky (Nm™1) 16000 16269.29 1.68%
as (s3Nm™3) 500 518.15 3.6
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u(t) = F,cos(t)
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m T
F (1) X
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Fig. 1 A SDOF mass-spring-damper system.

22



Iog10(APRESS)
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Model length

Fig. 2 The APRESS statistic versus the model length when 100 s3> N m~3: the lines from bottom to the top
correspond te = 0,0.2,---,0.8. The bottom line with circles, correspondingate= 0, indicates the mean-squared-

errors (MSE).
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Fig. 3 The BIC statistic versus the model length wéagis= 100 s3 N m~3.
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Fig. 4 The magnitudes of output spectrum compongnts at the driving frequency whea; = 100 s3Nm3.
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Fig. 5 The APRESS statistic versus the model length when 200 s3> N m~3: the lines from bottom to the top
correspond ta = 0,0.2,---,0.8. The bottom line with circles, correspondingate= 0, indicates the mean-squared-

errors (MSE).
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Fig. 6 The magnitudes of output spectrum compongnts at the driving frequency whea; = 200 s3Nm3.

27



Iogm(APRESS)

Model length

Fig. 7 The APRESS statistic versus the model length when 500 s3> N m~3: the lines from bottom to the top
correspond te = 0,0.2,---,0.8. The bottom line with circles, correspondingate= 0, indicates the mean-squared-

errors (MSE).
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Fig. 8 The magnitudes of output spectrum compongnis at the driving frequency whea; = 500 s3> Nm™3.
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