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Abstract 
The Volterra series model is a direct generalisation of the linear convolution integral and is 
capable of displaying the intrinsic features of a nonlinear system in a simple and easy to apply 
way. Nonlinear system analysis using Volterra series is normally based on the analysis of its 
frequency-domain kernels and a truncated description. But the estimation of Volterra kernels and 
the truncation of Volterra series are coupled with each other. In this paper, a novel complex-
valued orthogonal least squares algorithm is developed. The new algorithm provides a powerful 
tool to determine which terms should be included in the Volterra series expansion and to estimate 
the kernels and thus solves the two problems all together. The estimated results are compared with 
those determined using the analytical expressions of the kernels to validate the method. To further 
evaluate the effectiveness of the method, the physical parameters of the system are also extracted 
from the measured kernels. Simulation studies demonstrates that the new approach not only can 
truncate the Volterra series expansion and estimate the kernels of a weakly nonlinear system, but 
also can indicate the applicability of the Volterra series analysis in a severely nonlinear system 
case. 

 
Keywords: orthogonal least squares; Volterra series; generalised frequency response function; 
nonlinear systems. 

1  Introduction 

Volterra series[1] have been used for the modelling and analysis of nonlinear systems in many 
industries such as marine[2], automotive[3], structural[4], biological[5], and communication 
systems[6]. The Volterra model is a direct generalisation of the linear convolution integral and 
provides an intuitive system representation. The multidimensional Fourier transform of the 
Volterra kernels is a natural extension of the linear frequency response function to the nonlinear 
case and is often referred to as the Generalised Frequency Response Functions (GFRFs). The 
GFRFs have received much more research interest over the time-domain Volterra kernels. This is 
because important nonlinear phenomena such as harmonics, intermodulation and gain 
expansion/depression can easily be explained by the interactions between different frequency 
components and orders of these GFRFs[7]. 

The GFRFs of nonlinear systems can be determined by either a parametric-model-based 
method or a nonparametric-model-based method[8]. In the parametric approach, a nonlinear 
parametric model is first identified from the input–output data. The GFRFs are then obtained by 
mapping the resultant model into the frequency domain using the probing method[9]. The 
nonparametric approach is often referred to as frequency-domain Volterra system identification 
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and is based on the observation that the Volterra model of nonlinear systems is linear in terms of 
the unknown Volterra kernels, which, in the frequency domain, corresponds to a linear relation 
between the output frequency response and linear, quadratic, and higher order GFRFs. This linear 
relationship allows the use of a least squares (LS) approach to solve for the GFRFs. Several 
researchers[10-12] have used this method to estimate the GFRFs. But they usually made the 
assumption that it is known a priori that the system under study can be represented by just two or 
three terms. However, such information is rarely available a priori. 

It is well known that the Volterra series cannot represent severely non-linear systems. And 
even for a weakly nonlinear system, the order of the Volterra series expansion to achieve an 
approximation accuracy may still be very high. This indicates that the estimation of the GFRFs is 
related to the truncation of the Volterra series expansion. And because nonlinear system analysis 
using Volterra series is usually based on a truncated description, the study on the truncation of the 
Volterra series expansion is important. Although Billings and Lang[13] proposed an algorithm to 
truncate Volterra series representations, the algorithm makes an assumption that the GFRFs are 
known a priori or they can be obtained from the time-domain model, which is, however, not 
practical in many cases.  

In this paper, a novel approach utilising a complex-valued orthogonal least squares (OLS) 
algorithm regularised by an adjustable prediction error sum of squares (APRESS) criterion will be 
developed for both the truncation of the Volterra series expansion and the estimation of the 
GFRFs. 

2  Volterra modelling of nonlinear systems in the time and frequency domain 

The output ݕሺݐሻ of a single input single output (SISO) analytical system can be expressed as a 
Volterra functional polynomial of the input ݑሺݐሻ to give 

      n

n=1

y
N

y t t  (1) 

where ܰന is the maximum order of the system nonlinearity and ݕሺሻሺݐሻ is the nth-order output of 
the system, which is given by 
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where ݄ ሺ߬ଵǡ ڮ ǡ ߬ሻ is a real valued function of ߬ଵǡ ڮ ǡ ߬ called the nth order impulse response 
function or Volterra kernel of the system [1]. Volterra generalised the linear convolution concept 
to deal with nonlinear systems by replacing the single impulse response with a series of 
multidimensional integration kernels. The nth-order Volterra kernel describes nonlinear 
interactions among n copies of the input. The multidimensional Fourier transform of the nth-order 
Volterra kernel yields the nth-order transfer function or generalised frequency response function 
(GFRF) 

      1 1

1 1 1, , , , n nj
n n n n nH j j h e d d       

   

 
       (3) 

which is a natural extension of the concept of the linear frequency response function to the 
nonlinear case. In Eq.(3), ଔҧ is the imaginary unit. 

The nth-order kernel and the kernel transform are not unique because an interchange of 
arguments in ݄ ሺ߬ଵǡ ڮ ǡ ߬ሻ  may give different kernels without affecting the input–output 
relationships. To ensure that the GFRFs are unique, they are symmetrised to give 
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Using the concept of GFRF, the general relationship between the input spectrum ܷሺଔҧ߱ ሻ and 
the output spectrum ܻሺଔҧ߱ ሻ can be obtained as 
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where  
1 n

d   


 
 denotes the integration of ሺήሻ over the n-dimensional hyperplane ߱ଵ  ڮ ߱ ൌ ߱. 

When the system is subject to a harmonic input such as 

    cos  u t A t A  (6) 

the output spectrum at the driving frequency can be expressed as[4] 
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where ቔଶቕ denotes the floor function, which gives the largest integer less than or equal to 
ଶ ǡቔమቕሺଔҧȳǡܪ , ڮ ǡ ଔҧȳǡ െଔҧȳǡ ڮ ǡ െଔҧȳሻ  is a higher-order GFRF with ݊ െ ቔଶቕ  arguments of ȳ  and ቔଶቕ 

arguments of െȳ, and ܥ ቀ݊ǡ ቔଶቕቁ is the number of combinations of ቔଶቕ objects from a set with n 

objects and given as 
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Eq. (7) can also be written as 
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is the (2j+1)th order output spectrum component. 

In Eq.(9), ܻ ଵ ൌ ଵଶ  ଵǡ is just the output spectrum of the linear system. Thus Eq.(9) clearlyܪܣ

demonstrates that how the output energy at the driving frequency contributed by the linear term is 
modified by the higher-order nonlinear effects to yield the output frequency response ܻሺ݆ȳሻ. 

3  Determination of the GFRFs 

The concept of GFRF is a natural extension of the concept of the linear frequency response 
function to the nonlinear case and represents the characteristics of nonlinear systems in a manner 
which is independent of the inputs. However, GFRFs differ from the frequency response function 

http://mathworld.wolfram.com/Integer.html
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in linear systems in two aspects. First, the frequency-domain description of a nonlinear system is 
associated with a sequence of GFRFs instead of only one frequency response function in the linear 
case. This is because the Volterra series representation of nonlinear systems involves a sequence 
of Volterra kernels, while GFRFs are defined as the Fourier transform of these kernels. In 
addition, GFRFs are multi-variable functions even when the underlying system is single-
input/single-output. Although these complexities bring about difficulties in the determination of 
the GFRFs, various computation and estimation methods have been developed. 

3.1 Computation of the GFRFs 

Given a parametric model of a nonlinear system, there are a number of methods to obtain the 
GFRFs of the system. Arguably the most direct one is the harmonic probing method of Bedrosian 
and Rice [6] and Bussgang et al [14]. In the case of SISO nonlinear systems, the basic idea of the 
probing method can be introduced as below. 

It was shown by Rugh [15] that for nonlinear systems which are described by the Volterra 
model (1), (2) and excited by a combination of harmonic exponentials 
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the output response can be expressed as 
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where  
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In most cases, Eq.(14) will contain repeated frequency arguments. In the special case where ܭ ൌ ݊ , however, all the frequency components are distinct and namely ݉ ൌ ͳǡ ݅ ൌ ͳǡ ڮ ǡ ܭ . 
Therefore, 

    
1 1 1, , ! , ,
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Considering Eq.(15), Eq.(13) can then be written as 

     1
1! , ,

n
ii

jt

n n

terms with
terms from

y t n H j j e repeated
lower orders

frequencies

  

 
           

 

 (16) 

For nonlinear systems which have a parametric model with parameter vector ߠ, 

       0 , , ,y t f t y t u t  (17) 

and which can also be described by the Volterra model (1) and (2), substituting Eqs.(12) and (16) 
into Eq.(17) for ݕሺݐሻ  and ݑሺݐሻ , and extracting the coefficient of ݁ݔሺଔҧݐ σ ߱ୀଵ ሻ  from the 
resulting expression produces an equation from which the GFRF ܪሺଔҧ߱ ଵǡ ڮ ǡ ଔҧ߱ ሻ  can be 
obtained. 
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By using the aforementioned probing method, the GFRFs of the generalized higher-order 
Duffi ng oscillator model 
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where ܦ ൌ ݀ Τݐ݀  denotes the differential operator, ߙ is the order of the derivative, ݈ is the order of 
the exponential and ܿሺ݈ǡ  ሻ are the model coefficients, were derived as follows[16]ߙ
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where ܵ  , the Stirling set of the second kind, denotes the set whose elements cover all the 
partitions of a set ሺͳǡʹǡ ڮ ݊ሻ into ݈  blocks, ܵ  ሾሿ denotes the pth element of ܵ , and ȁܵ ȁ, the 
Stirling number of the second kind, is the cardinality of the Stirling set of the second kind, and   
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In Eq.(20), ߤ ൌ ଵݎ  ଶݎ  ڮ ିଵݎ  ͳ ൌ ݊ െ ݎ  ͳ  and ሺݎǢ ݈ǡ ݊ሻ  beneath the leftmost
denotes summation taken over those partitions of n which have l parts such that 

 1 2 1 2,l lr r r n r r r        (21) 

The second summation 
'

N in Eq.(20) extends over the N symmetric products. The number of 

terms in 
'

N is 
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n
N
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where ݓଵ is the number of equal r’s in the first run of equalities in the arrangement ݎଵ  ଶݎ ڮ   ଶ the number in the second run, and so on. When the r’s are unequal, the w’s do notݓ ,ݎ
appear. 

The generalized higher-order Duffi ng oscillator model represents a wide class of nonlinear 
systems frequently encountered in engineering. Specially, when ܣ ൌ ʹ, ܿ ሺͳǡʹሻ ൌ ͳ and ܿ ሺ݈ǡ ʹሻ ൌͲ for ݈  ʹ, Eq.(18) becomes 

    
1 1

,1 ,0
 

   
L L

l l

l l

y c l y c l y u  (23) 

which represents the generalized Duffi ng oscillator model, in which ଵ݂ሺήሻ ൌ σ ܿሺ݈ǡ ͳሻሺήሻୀଵ  is the 
nonlinear damping polynomial function and ݂ሺήሻ ൌ σ ܿሺ݈ǡ Ͳሻሺήሻୀଵ  is the nonlinear stiffness 
polynomial function. 

The probing method can also be extended to the single input multiple output nonlinear systems. 
If the system is of a single input and two outputs and can be described by the following parametric 
model 
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Eq.(16) can be written as 
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Then substituting ݑଵሺݐሻ ൌ σ ݁ఫҧఠ௧ୀଵ ,  and ݕଵሺݐሻ and ݕଶሺݐሻ expressed by Eq.(25) into Eq.(24), 
and extracting the coefficient of ݁ݔሺଔҧݐ σ ߱ୀଵ ሻ from the resulting expressions produces two 
coupled equations from which the GFRF matrix ሾܪଵሺଔҧ߱ ଵǡ ڮ ǡ ଔҧ߱ ሻǡ ଶሺଔҧ߱ܪ ଵǡ ڮ ǡ ଔҧ߱ ሻሿ can be 
obtained. 

3.2 Estimation of the GFRFs 

Eq. (7) shows that ܻሺଔҧȳሻ  is a function of the excitation amplitude ܣ . Therefore, if one 
measures ܻሺଔҧȳሻ  for various excitation amplitudes and neglects higher-order terms, one can 
estimate the GFRFs[17-19]. For example, if one measures ܻሺଔҧȳሻ, ݅ ൌ ͳǡʹǡ ڮ ǡ ܰ for ܰ different 
excitation amplitudes ܣ respectively, and considers the first ഥܰ terms on the right-hand side of Eq. 
(7), one can write the following equation, 
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N

i j ij i
j
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where 
 j 2j+1, jH   (27) 
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2 12
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and ɂ୧, ݅ ൌ ͳǡʹǡ ڮ ǡ ܰ, is the model residual. The relationship between �ഥ and the maximum order 
of the system nonlinearity �ഥഥ is given by Eq. (10). 

Eq.(26) can also be written in the matrix form as 
  Y ĭĬ Ȅ  (29) 

where 

      1 2, , ,
T

NY j Y j Y j     Y  (30) 

 , , ,  1 2 Nĭ = ĳ ĳ ĳ  (31) 

 1,0 3,1 2 1,, , ,
T

N NH H H 
   Ĭ  (32) 

  1 N

T  Ȅ ˈˈ  (33) 

The residual vector બ is assumed to be of zero mean and uncorrelated with ܒ, ݆ ൌ ͳǡʹǡ ڮ ǡ ഥܰ 
and 

 1 , ,
T

j Nj    jĳ  (34) 

where ߶, ݆ ൌ ͳǡʹǡ ڮ ǡ ഥܰ, ݅ ൌ ͳǡʹǡ ڮ ǡ ܰ, is given by Eq.(28). 
The solution of Eq. (29) can be obtained by the LS algorithm as 

   1H Hˆ 
Ĭ ĭ ĭ ĭ Y  (35) 
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where ୌ ൌ ഥ  which is the conjugate transpose of ,  denotes the transpose, and ഥ  denotes 
the matrix with complex conjugated entries. 

The LS-based parameter estimation approach needs to make an assumption that the output 
frequency response in Eq. (7) can be truncated by ഥܰ terms while ܰഥ is a sufficiently large number. 
However, many of these candidate model terms may be redundant. The inclusion of redundant 
model terms often makes the model become oversensitive to the training data and is also likely to 
make the information matrix ୌ  ill -conditioned which may result in biased parameter 
estimates. Therefore, a truncated Volterra series expansion must be determined prior to the 
estimation of the GFRFs. On the other hand, Volterra series analysis is based on a truncated 
description and a finite Volterra series is required in practical nonlinear system analysis. To solve 
these problems all together, the OLS algorithm can be used. The OLS method provides a powerful 
tool to select the significant model terms, determine the optimal number of model terms, and then 
estimate the model parameters and has already been widely applied in the identification of 
nonlinear systems. But because both the output frequency response and the GFRFs are complex, 
the complex-valued OLS algorithm is required. Several complex-valued OLS algorithms [20, 21] 
were proposed but in forms different from the widely used real-valued algorithm. However, the 
OLS algorithm in itself is complex-valued. In this paper, the conventional algorithm was revisited. 
A unique form of the complex-valued and real-valued algorithm was presented. This can avoid 
confusions and help ease of use of the OLS algorithm. 

4  Complex-valued orthogonal least squares algorithm 

Since the ܰ ൈ ഥܰ  ( ഥܰ  ܰ ) measured matrix   has full column rank, it can be uniquely 
decomposed as 

 =ĭ QR  (36) 
where ۿ is an ܰ ൈ ഥܰ  unitary matrix and ܀ is an ܰഥ ൈ ഥܰ  upper triangular matrix with positive 
diagonal elements ݎଵଵ, ݎଶଶ, ݎ ,ڮேഥேഥ. 

Denote ۲ ൌ diagሾݎଵଵǡ ଶଶǡݎ ڮ ǡ  ேഥேഥሿ and then Eq.(36) can be rewritten asݎ
 =ĭ WA  (37) 

where ۯ ൌ ۲ିଵ܀ is an ܰഥ ൈ ഥܰ upper triangular matrix with unit diagonal elements, that is, 
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and ܅ ൌ ܰ is an ۲ۿ ൈ ഥܰ matrix with orthogonal columns ܒܟ, ݆ ൌ ͳǡʹǡ ڮ ǡ ഥܰ such that 

 
H 2

1 2= = =diag , , , N    W W D ȁ  (39) 

where 

 , , 1,2, ,j j N   j jw w  (40) 

and the symbol ۃήǡ   ήۄ denotes the inner product of two vectors. 
Note that for two complex vectors હ ൌ ሾߙଵǡ ڮ ǡ ሿ, ߙ ൌ ሾߚଵǡ ڮ ǡ    ,ሿߚ

  TH,  Į ȕ ȕ Į ȕ Į  (41) 
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Substituting Eq.(37) into Eq.(29) gives 
 = +Y WAĬ Ȅ  (43) 
Denote 
 =AĬ g  (44) 

and then Eq.(43) can be expressed as 
 = +Y Wg Ȅ  (45) 

or 

 
=1

= +
N

j
j

g jY w Ȅ  (46) 

which is an auxiliary model equivalent to Eq.(29) and the space spanned by the orthogonal basis 
vectors ܟǡ ǡܟ ഥ is the same as that spanned by the original model basis ǡۼܟ,ڮ ǡ   .ഥۼ,ڮ

By using the LS algorithm, the auxiliary parameter vector  can be solved from Eq.(45), 

   1H H=


g W W W Y  (47) 

Substituting Eq.(39) into Eq.(47) gives 
 -1 H=g ȁ W Y  (48) 

or  

 = , 1,2, ,
,

jg j N j

j j

w

w w

Yˈ
 (49) 

Several orthogonalization procedures including classical Gram-Schmidt, modified Gram-
Schmidt and Householder transformation[22] can be used to implement the orthogonal 
decomposition of the measured matrix . Then after obtaining the auxiliary parameter vector  by 
Eq.(48), the parameter vector દ  can be easily solved from Eq.(44) by using backward 
substitutions. However, our objective is not just to estimate the parameters, but also to detect 
which terms are significant and should be included within the model. This can be achieved by 
computing the error reduction ratio(ERR) described below. 

Suppose that ܻሺ݆ȳሻ, , ݅ ൌ ͳǡʹǡ ڮ ǡ ܰ is the output after its mean has been removed. Since બ is 
uncorrelated with ܑ, ݅ ൌ ͳǡʹǡ ڮ ǡ ഥܰ, the variance of ܻሺ݆ȳሻ can be expressed as 
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where the first part ቀσ หgหଶܒܟୌܒܟேഥୀଵ ቁ ܰΤ , which can be explained by the involved terms, is the 

desired output variance while the second part ቀȄ
ୌ

Ȅ ቁ ܰΤ  represents the unexplained variance. 

Thus หgหଶܒܟୌܒܟ ܰΤ  is the increment to the explained desired output variance brought by the jth 
term ܒܟ and the jth error reduction ratio introduced by ܒܟ can be defined as 
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Substituting Eq.(49) into Eq.(51) yields 
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which is also called the squared correlation coefficient between ܇ and ܒܟ. 
From Eq.(50), the residual sum of squares ԡબۼഥԡଶ ൌ ฮ܇ െ ฮଶ܇

, where ܇  is the model 
prediction produced by the associated ഥܰ terms model, can also be obtained,  
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while the residual vector NȄ  can be expressed from Eq.(46) as 

 
1 ,

N

j

  j

j

j

j
N

w
Ȅ w

w w

Y
Y

ˈ
 (54) 

Note that Eqs.(50), (51), (52), and (53) have been extended to the complex-valued case. 
Dividing both sides of Eq.(50) by ܇܇ ܰΤ  gives 
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Ȅ Ȅ

Y Y
 (55) 

which clearly indicates that the larger the ERR value associated with a particular term is, the more 
reduction in the residual variance will be produced if this term is included in the model. Thus the 
ERR provides a simple but effective means to detect which term is significant and should be 
selected. Notice that a term which is introduced at an early stage will have a larger ERR than that 
would be obtained if it were reordered to enter as a candidate term at a later stage. To overcome 
the order dependency of ERR, the terms can be selected in a forward stepwise manner. The 
detailed orthogonalization, for example, using the classical Gram-Schmidt algorithm, and terms 
selection procedure is described as follows. 

 
Ƒ At the first step, consider all the possible ܒ, ݆ ൌ ͳǡʹǡ ڮ ǡ ഥܰ as candidates for ܟ, and for ݆ ൌ ͳǡʹǡ ڮ ǡ ഥܰ, compute 
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2

;

100%.
,

jERR  

j
1 j

j
1

j j
1 1

Y

Y Y

w ĳ

w

w w

ˈ

ˈ

 (56) 
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Find the maximum of ܴܴܧଵሺሻ, say ܴܴܧଵሺభሻ ൌ max ቄܴܴܧଵሺሻǡ ͳ  ݆  ഥܰቅ. Then the first term to 

be included in the model is ܒ ܟ . ൌ ሻܒሺܟ ൌ ܒ  is then selected as the first column of ܅ 
together with the first element of the auxiliary parameter vector , gଵ ൌ ǡ܇ۃ ۄܟ ǡܟۃ Τۄܟ , the 

error reduction ratio produced by the first term, ܴܴܧଵ ൌ ଵሺభሻܴܴܧ , and the associated sum-
squared-error ԡબԡଶ ൌ ǡ܇ۃ ۄ܇ െȁ܇ۃǡ ȁଶۄܟ ǡܟۃ Τۄܟ . As defined in Eq.(38), the first column of ۯ, ܽଵଵ ൌ ͳ.   

 
Ƒ At the kth step where ݇  ʹ, all the ܒ, ݆ ൌ ͳǡʹǡ ڮ ǡ ഥܰ, ݆ ב ሼ݆ଵǡ ڮ ǡ ݆ିଵሽ are considered as 

possible candidates for ܓܟ, and for ݆ ൌ ͳǡʹǡ ڮ ǡ ഥܰ, ݆ ב ሼ݆ଵǡ ڮ ǡ ݆ିଵሽ, calculate 
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 (57) 

Find the maximum of ܴܴܧሺሻ, say ܴܴܧሺೖሻ ൌ max ቄܴܴܧሺሻǡ ͳ  ݆  ഥܰǡ ݆ ് ݆ଵǡ ڮ ǡ ݆ ് ݆ିଵቅ. 

Then the kth term to be included in the model is ܓܒ while the kth column of ܓܟ ,܅ ൌ ሻܓܒሺܓܟ
, the 

kth element of the auxiliary parameter vector , g୩ ൌ ǡ܇ۃ ۄܓܟ ǡܓܟۃ Τۄܓܟ , the kth error reduction 

ratio ܴܴܧ ൌ ሺೖሻܴܴܧ
, and the kth sum-squared-error ԡબܓԡଶ ൌ ǡ܇ۃ ۄ܇ െ σ ห܇ۃǡ หଶۄܒܟ ǡܒܟۃ ൗୀଵۄܒܟ . 

The elements of the kth column of ۯ are computed by 
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 (58) 

  
Ƒ According to Eq.(55), the procedure can be terminated at the നܰth step (ܰന  ഥܰ) when 

 
1

1 , 0 1
N

j
j

ERR  


     (59) 

where ߩ is a chosen error tolerance and in practice, can actually be learnt during the selection 
procedure. 

 
The criterion (59) concerns only the performance of the model (variance of residuals). 

Because a more accurate performance is often achieved at the expense of using a more complex 
model, a trade-off between the performance and complexity of the model is often desired. A 
number of model selection criteria that provide a compromise between the performance and the 
number of parameters have been introduced and incorporated into the OLS algorithm over the past 
few decades. Despite the differences amongst these model selection criteria, they are 
asymptotically equivalent under general conditions[23]. In this paper, the adjustable prediction 
error sum of squares (APRESS)[24] is employed to solve the model length determination problem, 

      APRESS n c n MSE n  (60) 

where 
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2

1

1
c n

n N
 

   
 (61) 

with ߙ  ͳ, is the complexity cost function and 

  
2

MSE n
N

 nȄ
 (62) 

is the mean squared error corresponding to the model performance. 

The model selection procedure is terminated at the ഥܰth step when 

    
1

ˆ min
n N

APRESS N APRESS n
 

     (63) 

Practically a distinct turning point of the APRESS statistic versus the model length can be 
easily found, especially when computed by using several adjustable parameters ߙ, and this can 
then be used to determine the model length. 

The final model is thus the linear combination of the ഥܰ significant terms ܒ ǡ ڮ ǡ ܒ ഥಿ  selected 

from the ܰഥ candidate terms ǡ ڮ ǡ ۼഥ , 

      
ˆ

1

ˆ
k

N

k j
k

tY t t 


   (64) 

where the parameter દ ൌ ଵǡߠൣ ڮ ǡ ேഥ൧ߠ
 can easily be computed from Eq.(44) by using backward 

substitutions, 
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 (65) 

It should be pointed out that in practice the mean of the output does not need to be removed 
because adding a constant to the denominator of the ERR (51) will not affect the result of the 
maximization in this selection procedure. Because of the orthogonal property, this procedure is 
very efficient and leads to a parsimonious model. Moreover, any numerical ill-conditioning can be 
avoided by eliminating ܓܟ  if ܓܟୌܓܟ  is less than a predetermined threshold. Similar selection 
procedures can also be derived using the modified Gram-Schmidt algorithm and Householder 
transformation algorithm. Simulation studies will be conducted in the next section to apply the 
developed OLS algorithm to the truncation of the Volterra series expansion and the estimation of 
the GFRFs of a typical nonlinear system. 

5  Simulation study 

Consider a single degree of freedom (SDOF) system shown in Fig. 1. This represents a mass 
supported on a linear spring ݇ଵሺήሻ in parallel with a nonlinear damper with a cubic polynomial 
characteristic ܽଵሺήሻ  ܽଷሺήሻଷ where ܽ ଷ represents the system nonlinearity. The mass is subjected to 
a harmonic excitation force of amplitude ܨ and frequency ȳ, and the output is the force ்ܨሺݐሻ 
transmitted to the system of interest via the mass-spring-damper element. This is a quite simple 
model but can represent a wide range of engineering systems such as automotive suspensions, 
machinery mounts, and base isolators of buildings. 

Denote  
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    F Ty t F t  (66) 

    dy t x t  (67) 

and   

  ( ) cosmu t F t   (68) 

The equilibrium equation for the system in Fig. 1 and the transmitted force at the support can 
be expressed as   

 3
1 1 3( ) ( ) ( ) ( ) ( )d d d dmy t k y t a y t a y t u t     (69) 

 3
1 1 3( ) ( ) ( ) ( )F d d dy t k y t a y t a y t    (70) 

This is a single input two output model but the transmitted force is the primary concern. Take 
the system linear characteristic and input parameters as follows: ݉ ൌ ʹͶͲ kg, ݇ ଵ ൌ ͳͲͲͲ � mିଵ, ܽ ଵ ൌ ʹͻǤ ݏ � mିଵ, ܨ ൌ ͳͲ �, ߗ ൌ ͺǤͳ rad sିଵ. 

By using the probing method described in Section 3.1, the analytical expressions of the GFRFs 
for the transmitted force have already been derived by Zhang et al [4] and were given in Appendix 
A. Simulation studies will be conducted in this section for systems (69) and (70) subject to the 
harmonic input (68) to evaluate the nth order output spectrum component ଶܻାଵ for the following 
three nonlinear damping characteristics using the new complex-valued OLS algorithm,  

(i) ܽଷ ൌ ͳͲͲ ݏଷ � mିଷ 
(ii) ܽଷ ൌ ʹͲͲ ݏଷ � mିଷ 
(iii ) ܽଷ ൌ ͷͲͲ ݏଷ � mିଷ 

The estimated results will then be compared with those determined using the analytical 
expressions of the GFRFs to demonstrate the effectiveness of the new method. Alternatively, by 
using the approach in Appendix B, the physical parameters of the system can be extracted from 
the measured GFRFs and then be compared with their true values to validate the method. 

5.1 For the condition when ࢇ ൌ  ࢙ ିܕ ۼ  

In this case, the system was excited using the excitation amplitudes from 1 N to 10 N with an 
increment of 0.3 N. Solving Eqs.(69) and (70) yielded the system time-domain output ݕிሺݐሻ. The 
output spectra ܻிሺଔҧȳሻ was then obtained by performing an FFT operation on the steady state 
output ݕிሺݐሻ. Note that the FFT calculation of a harmonic signal should be conducted using a 
sampled sequence over a time interval which is a multiple of the signal period [25]. The output 
spectra together with the corresponding excitation amplitudes can then form Eq.(29). And the 
complex-valued OLS algorithm developed in Section 4 was then used to truncate the Volterra 
series expansion and to estimate the GFRFs.  

The model length ܰഥ in Eq.(29) was assumed to be the same as the number of measurements ܰ. The initial model thus involved a total of 31 candidate model terms. The complex-valued OLS 
algorithm was then employed to select and rank the significant model terms. By setting the 
adjustable parameter ߙ ൌ Ͳǡ ͲǤʹǡ ڮ ǡͲǤͺ, the APRESS statistic versus the model length over the 
measured data, were calculated and shown in Fig. 2, where the bottom line with circles, 
corresponding to ߙ ൌ Ͳ, indicates the mean-squared-errors. It can be seen from Fig. 2 that there is 
a turning point at the abscissa 6 for various values of the adjustable parameter ߙ. Model structure 
detection is quite critical in system identification. To validate the effectiveness of the APRESS 
statistic, the Bayesian information criterion (BIC) statistic versus the model length was computed, 
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ln 1N n N

BIC n MSE n
N n

   


 (71) 

The results are shown in Fig. 3 indicating the model length is also 6 where BIC arrives at the 
minimum value. The indexes of the first six model terms selected and ranked in order of the 
significance by the complex-valued OLS algorithm, together with the coefficient of each term and 
its corresponding ERR, are shown in Table 1. Table 2 indicates that the system can be represented 
by a Volterra series with maximum order 11. Reapplying the complex-valued OLS algorithm to 
the model represented by these terms over the measured data gave the estimation of the GFRFs 
which were substituted into Eq.(11) to obtain the output spectrum components ଶܻାଵ . These 
results were then compared with the analytical results determined using the GFRFs expressions in 
Appendix A and were shown in Fig. 4. Clearly, the complex-valued OLS algorithm correctly 
truncated the Volterra series expansion of the system and correctly estimated the GFRFs. 

The aforementioned procedure was repeated for the output ݕௗሺݐሻ. The only difference is that 
the GFRFs for the excitation frequency ͳͲ rad sିଵ, in addition to ͅ Ǥͳ rad sିଵ in the transmitted 
force case, was also identified. It should be pointed out that as indicated by the OLS algorithm, the 
system excited at the non-resonant frequency ͳͲ rad sିଵ  should be represented by a Volterra 
series with maximum order 3 which is significantly smaller than the maximum order 11 for the 
resonant frequency ͺǤͳ rad sିଵ. This is actually a fundamental behaviour of nonlinear systems. It 
is well known that the dynamic characteristics of a linear system are independent of the input and 
are described by only the frequency response function. But for a nonlinear system, despite that the 
first, second, and higher order GFRFs are still independent of the input, the dynamic 
characteristics depend on not only the GFRFs but also the input applied to it. Although a nonlinear 
system subject to similar inputs such as harmonic excitations with similar frequencies may be 
represented by a Volterra series of the same maximum order, a system subject to different inputs 
are normally represented by Volterra series expansions of different orders. And a good practice is 
to apply the complex-valued OLS algorithm to them separately to determine the appropriate order. 
After obtaining the GFRFs for the excitation frequencies ͺǤͳ rad sିଵ and ͳͲ rad sିଵ, the method 
in Appendix B was then used to estimate the system parameters to further verify the method. The 
results are listed in Table 2 and agree with the true values very well, which confirms the 
effectiveness of the proposed method. Notice that in Table 2, the relative error is defined by ȁݔ௧௨ െ ොȁݔ ௧௨ݔ ൈ ͳͲͲΨΤ , where ݔ௧௨  and ݔො  are the true value and estimated value of the 
parameter ݔ, respectively.    

5.2 For the condition when ࢇ ൌ  ࢙ ିܕ ۼ  

In this case, the system was also excited using the excitation amplitudes from 1 N to 10 N with 
an increment of 0.3 N. The excitation together with the FFT transformation of the solution of 
Eqs.(69) and (70) formed Eq.(29). As a starting point, the model length was assumed to be the 
same as the amount of measurements and the initial model involved 31 candidate model terms. 
The significant terms were then selected and ranked by the complex-valued OLS algorithm. After 
setting the adjustable parameter ߙ ൌ Ͳǡ ͲǤʹǡ ڮ ǡͲǤͺ, the APRESS statistic versus the model length 
over the estimation data, were calculated and shown in Fig. 5, where the bottom line with circles, 
corresponding to ߙ ൌ Ͳ, indicates the mean-squared-errors. It can be seen from Fig. 5 that there is 
a turning point at the abscissa 8 for various values of the adjustable parameter ߙ. The indexes of 
the first eight significant model terms, together with the coefficient of each term and its 
corresponding ERR, are shown in  
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Table 3. Reapplying the complex-valued OLS algorithm to the model represented by these 
terms produced the estimation of the GFRFs. The output spectrum components ଶܻାଵ were then 
computed and compared with the corresponding analytical results determined using the GFRFs 
expressions in Appendix A, which is shown in Fig. 6. And again, the complex-valued OLS 
algorithm correctly truncated the Volterra series expansion of the system and correctly estimated 
the GFRFs. The procedure was repeated for the output ݕௗሺݐሻ with the excitation frequencies ͺǤͳ rad sିଵ  and ͳͲ rad sିଵ . The system parameters were then estimated using the method in 
Appendix B and are provided in  

Table 4. And once again, the system parameters were accurately estimated, which further 
validate the effectiveness of the method.  

Comparing the results of Sections 5.1 and 5.2 indicates that the stronger the nonlinearity is, the 
more terms in the Volterra series expansion are necessary to represent the system. A natural 
question is what happens if the nonlinearity is very strong and the Volterra series diverges. Is the 
complex-valued OLS algorithm able to predict this non-convergent behaviour? This will be 
investigated in the next section. 

5.3   For the condition when ࢇ ൌ  ࢙ ିܕ ۼ  

The excitations were exactly the same as those in Sections 5.1 and 5.2. And the complex-
valued OLS algorithm was employed to select and rank the 31 candidate model terms. The 
APRESS statistic versus the model length with the adjustable parameter ߙ ൌ Ͳǡ ͲǤʹǡ ڮ ǡͲǤͺ were 
then calculated and shown in Fig. 7. There is an obvious turning point at the abscissa 10 even with 
the bottom line with circles which corresponds to ߙ ൌ Ͳ and represents the mean-squared-errors. 
The indexes of the first ten significant model terms, together with the coefficient of each term and 
its corresponding ERR, are shown in Table 5. The GFRFs were estimated by reapplying the 
complex-valued OLS algorithm to the system model represented by these terms. The output 
spectrum components ଶܻାଵ were then computed and compared with the corresponding analytical 
results determined using the GFRFs expressions in Appendix A, which is shown in Fig. 8. It can 
be observed from the analytical results that the Volterra series expansion diverges as the 
amplitudes of the output spectrum components increase with the nonlinear order. But even in this 
situation, the complex-valued OLS algorithm correctly estimated the GFRFs up to the ninth order, 
which allows it to be used as an indicator of the convergence of the Volterra series expansion. The 
identification procedure was also repeated for the output ݕௗሺݐሻ with the excitation frequencies ͺǤͳ rad sିଵ and ͳͲ rad sିଵ. The system parameters were again estimated using the method in 
Appendix B and are provided in Table 6 which indicates that they were accurately estimated. Lee 
[18] also reported that the GFRFs could be correctly estimated even when an excitation amplitude 
is outside of the convergence range. But note that only a convergent Volterra series is meaningful. 
If the numerically estimated results show the Volterra series expansion of a system diverges, it 
means the system nonlinearity is too strong and the Volterra series analysis shouldn’t be pursued 
further.       

6  Conclusions 

A complex-valued OLS algorithm in the same form of the conventional OLS algorithm was 
developed and applied into the truncation of the Volterra series expansion and the estimation of 
the GFRFs of nonlinear systems. The estimated GFRFs were then compared with the analytical 
results determined using the probing method to evaluate the effectiveness of the new method. The 
system parameters were also extracted from the estimated GFRFs and compared with their true 
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values to further validate the method. Simulation studies demonstrate that the complex-valued 
OLS algorithm can correctly truncate the Volterra series expansion and correctly estimate the 
Volterra kernels of a weakly nonlinear system. And for a severely nonlinear system, the complex-
valued OLS algorithm can correctly estimate the first few higher-order GFRFs and predict the 
non-applicability of the Volterra series analysis. In this paper, the approach is demonstrated by 
using a SDOF system subject to a sinusoidal excitation. For a harmonically excited system, only 
the diagonal values of the GFRFs are necessary for the analysis of the system and thus were 
estimated. But the main idea in this paper can easily be extended to more general cases such as 
systems under multi-tone excitations so as to obtain the complete multidimensional GFRFs’ 
points and also multiple-degree-of-freedom (MDOF) nonlinear systems. These will be studied in 
later publications. 
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Appendix A. Analytical expressions of the GFRFs for the transmitted force 

The expressions of the GFRFs for the transmitted force were derived by Zhang et al[4] and 
will simply be quoted here. 
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and 
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where 
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and 
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Specifically, 
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where   

          1 1 1 2 1 2 3 1 3(1)(2)(3) d d dj H j j H j j H j       (77) 

And in the case ݊ ൌ ͷ, 
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Here 
                               

                             
3

113 5 4 321 5 3 421 5 2 341 5 1 324 4 3 521
4 2 351 4 1 325 3 2 541 3 1 524 2 1 354

M      
   

 (79) 

where  

          5 1 5 4 1 4 3 2 1 3 3 2 1(5)(4)(321) 3! , ,d d dj H j j H j j j j H j j j            (80) 

and so on.  
In the case ݊ ൌ , 
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Here 
                               

                             
                             
                             
     

3
115 7 6 54321 7 5 64321 7 4 56321 7 3 54621 7 2 54361

7 1 54326 6 5 74321 6 4 57321 6 3 54721 6 2 54371

6 1 54327 5 4 76321 5 3 74621 5 2 74361 5 1 74326
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2 1 54376
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(82) 

and 
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where  

     
          7 1 7 6 1 6 5 4 3 2 1 5 1 2 3 4 5

7 6

5

543

! , , , ,

21

d d dj H j j H j j j j j j H j j j j j                
(84) 

     
          7 6 4 3 7 6 4 5 3 1 3 5 3 1 2 1 2

764 531 2

3! , , 3! , ,d d dj j j H j j j j j j H j j j j H j                
(85) 

and so on.  

Note that the first five terms of ܯଷଷଵሺଷሻ  were missing in [4] due to typographical errors but are 
added in here.   

In the case ݊ ൌ ͻ, 
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where ܯଵଵሺଷሻ ଵଷହሺଷሻܯ , , and ܯଷଷଷሺଷሻ  have 36, 504 and 280 terms respectively. These expressions are 
omitted here due to space limitations. 

Appendix B. Estimation of system parameters using the GFRFs of the displacement 

Once the GFRFs of the displacement are measured, the linear and nonlinear parameters of the 
system can then be estimated. 

According to Eq.(73), the linear GFRF of the displacement can be expressed as,  
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Eq.(87) can be rewritten by 
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where Reሾήሿ and Imሾήሿ denote the real and imaginary part of a complex number respectively. If the 
linear GFRFs ܪଵௗሺଔҧȳሻ, ݅ ൌ ͳǡʹǡ ڮ ǡ ܰ for ܰ different excitation frequencies ȳ are measured by 
the new method proposed in this paper, Eq.(88) can be expressed in the following matrix form, 

 HĬ I  (89) 
where 
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The linear parameters of the system ෝ݉ , ොܽଵ , ݇ଵ  can be obtained from Eq.(89) by the LS 
algorithm, 

   1T Tˆ 
Ĭ H H H I  (93) 

According to Eq.(76), the third-order GFRF of the displacement can be expressed as,  

      3 3
3 1 1 3

ˆ, ,d d dH j j j j H j H j a          (94) 

where ܪଵௗሺെଔҧɘሻ can be obtained by Eq.(87) and the linear parameters are given by Eq.(93). 
As ܪଷௗሺଔҧȳሻ, ݅ ൌ ͳǡʹǡ ڮ ǡ ܰ, has already been measured by the new method, Eq.(94) can be 

written in the following matrix form, 
 3a Q H  (95) 

where 
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The nonlinear parameter ܽଷ can then be obtained by, 

   1T T
3â


 Q Q Q H  (98) 
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Table 1 
The model terms selected and ranked in order of the significance by the complex-valued OLS algorithm together with 
the coefficient of each term and its corresponding ERR. 

index 1 2 3 4 5 6 
terms H1,0 H3,1 H5,2 H7,3 H9,4 H11,5 

ERR (%) 99.95 0.0444 9.34e-5 2.61e-7 7.95e-10 2.45e-12 
 
Table 2 
The parameters of the cubic damper with ܽଷ ൌ ͳͲͲ ݏଷ � mିଷ  estimated by using the measured GFRFs of the 
displacement output. 

parameter true value estimated value relative error ݉ ሺkgሻ 240 242.19 0.91% ܽଵ ሺݏ � mିଵሻ 29.6 29.82 0.75% ݇ଵ ሺ� mିଵሻ 16000 16142.2 0.89% ܽଷ ሺݏଷ � mିଷሻ 100 101.05 1.05% 
 
Table 3 
The model terms selected and ranked in order of the significance by the complex-valued OLS algorithm together with 
the coefficient of each term and its corresponding ERR. 

index 1 2 3 4 5 6 7 8 
terms H1,0 H3,1 H5,2 H7,3 H9,4 H11,5 H13,6 H15,7 

ERR (%) 99.86 0.135 8.88e-4 7.87e-6 7.75e-8 7.85e-10 7.88e-12 7.59e-14 
 
Table 4 
The parameters of the cubic damper with ܽଷ ൌ ʹͲͲ ݏଷ � mିଷ  estimated by using the measured GFRFs of the 
displacement output. 

parameter true value estimated value relative error ݉ ሺkgሻ 240 243.33 1.39% ܽଵ ሺݏ � mିଵሻ 29.6 29.87 0.91% ݇ଵ ሺ� mିଵሻ 16000 16217.04 1.36% ܽଷ ሺݏଷ � mିଷሻ 200 193.94 3.03% 
 
Table 5 
The model terms selected and ranked in order of the significance by the complex-valued OLS algorithm together with 
the coefficient of each term and its corresponding ERR. 

index 1 2 3 4 5 6 7 8 9 10 
terms H1,0 H3,1 H5,2 H7,3 H9,4 H11,5 H13,6 H15,7 H17,8 H19,9 

ERR (%) 99.54 0.454 0.0105 3.35e-4 1.22e-05 4.71e-07 1.85e-08 7.22e-10 2.76e-11 1.36e-12 
 
Table 6 
The parameters of the cubic damper with ܽଷ ൌ ͷͲͲ ݏଷ � mିଷ  estimated by using the measured GFRFs of the 
displacement output. 

parameter true value estimated value relative error ݉ ሺkgሻ 240 244.13 1.72% ܽଵ ሺݏ � mିଵሻ 29.6 29.92 1.07% ݇ଵ ሺ� mିଵሻ 16000 16269.29 1.68% ܽଷ ሺݏଷ � mିଷሻ 500 518.15 3.63% 
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Fig. 1 A SDOF mass-spring-damper system. 
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Fig. 2 The APRESS statistic versus the model length when ࢇ ൌ  ࢙ ିܕ ۼ: the lines from bottom to the top 

correspond to ࢻ ൌ ǡ Ǥ ǡ ڮ ǡ Ǥ ૡ. The bottom line with circles, corresponding to ࢻ ൌ , indicates the mean-squared-
errors (MSE). 
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Fig. 3 The BIC statistic versus the model length when ࢇ ൌ  ࢙ ିܕ ۼ. 
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Fig. 4 The magnitudes of output spectrum components ଶܻାଵ at the driving frequency when  ܽଷ ൌ ͳͲͲ ݏଷ � mିଷ. 
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Fig. 5 The APRESS statistic versus the model length when ࢇ ൌ  ࢙ ିܕ ۼ: the lines from bottom to the top 

correspond to ࢻ ൌ ǡ Ǥ ǡ ڮ ǡ Ǥ ૡ. The bottom line with circles, corresponding to ࢻ ൌ , indicates the mean-squared-
errors (MSE). 
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Fig. 6 The magnitudes of output spectrum components ଶܻାଵ at the driving frequency when  ܽଷ ൌ ʹͲͲ ݏଷ � mିଷ. 
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Fig. 7 The APRESS statistic versus the model length when ࢇ ൌ  ࢙ ିܕ ۼ: the lines from bottom to the top 

correspond to ࢻ ൌ ǡ Ǥ ǡ ڮ ǡ Ǥ ૡ. The bottom line with circles, corresponding to ࢻ ൌ , indicates the mean-squared-
errors (MSE). 
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Fig. 8 The magnitudes of output spectrum components ଶܻାଵ at the driving frequency when  ܽଷ ൌ ͷͲͲ ݏଷ � mିଷ. 
 
 


