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Abstract.  This paper presents a novel liver segmentation algorithm. This is a 

model-driven approach; however, unlike previous techniques which use a 

statistical model obtained from a training set, we initialize patient-specific 

models directly from their own pre-segmentation. As a result, the non-trivial 

problems such as landmark correspondences, model registration etc. can be 

avoided. Moreover, by dividing the liver region into three sub-regions, we 

convert the problem of building one complex shape model into constructing 

three much simpler models, which can be fitted independently, greatly 

improving the computation efficiency. A robust graph-based narrow band 

optimal surface fitting scheme is also presented. The proposed approach is 

evaluated on 35 CT images. Compared to contemporary approaches, our 

approach has no training requirement and requires significantly less processing 

time, with an RMS error of 2.44±0.53mm against manual segmentation. 

1 Introduction 

This work forms part of a project to develop virtual environments for training in 

interventional radiological procedures. It requires major abdominal structures, e.g. 

liver, kidney and blood vessels etc, to be segmented with particular interest in those 

cases where typical pathology is presented. The data for liver segmentation in this 

study therefore comes from patients with various pathologies and is obtained from 

different sources using different protocols which vary in quality and resolution and 

include both contrast enhanced and non-enhanced data. These diversities increase the 

variability of the liver data in both shape and texture. 

Many techniques for liver segmentation have been proposed and implemented in 

recent years, see [1] for a recent review. These can be classified as texture-based and 

model-driven approaches. Due to the similar intensity values of some surrounding 

structures in CT data, approaches which are mainly based on local intensity or 

intensity gradient features are usually not sufficient to differentiate liver tissue. 

Therefore, model-based approaches have been widely explored where prior 

knowledge about the typical shape of a liver is used to constrain the segmentation 

process. Despite a number of different representations [2,3,4], many of these 

approaches rely on principal component analysis of corresponding landmark points 

marked on a training set to calculate allowed modes of variation of the shape model 

which may result in limited deformations impeding the exact adaptation to the 
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structure of interest. Although techniques [5,6] have been developed to overcome this, 

these approaches still require the shape model to be roughly aligned and oriented to 

the structure of interest so that the iterative search procedure can lock onto the target. 

In this paper, a novel shape model construction method is presented. Unlike 

previous work utilizing training datasets to capture the mean modes of shape 

variations, our patient-specific shape model is directly derived from each image 

dataset. Our previous work [7] has shown how a target region can be captured through 

applying morphological erosion on an edge enhanced image followed by a region 

growing algorithm (Fig. 1a); this pre-segmentation is then automatically embedded 

into a curvature-driven level set to evolve a smooth surface toward the real boundary. 

Due to the similarity of intensity values with surrounding structures, the liver pre-

segmentation is likely to include some non-liver tissues (Fig. 1b). Hence in this paper, 

we construct a three-patch surface model (Fig. 1c) to eliminate such unwanted parts 

from the pre-segmentation. Only the most reliable information from the pre-

segmentation is used to initialize our three-patch shape model, representing upper, 

right lobe and lower liver boundaries. A graph-based optimal surface fitting scheme is 

then applied independently on each patch (Fig. 1e), from which we obtain a refined 

pre-segmentation result having non-liver tissues removed (Fig. 1d). 

 

Fig. 1. Model construction 1 . (a) Initial liver estimation (blue) with manual segmentation 

(white). (b) Pre-segmentation (blue) with manual segmentation (white). (c) Deformed surface 

patches (orange) on the pre-segmentation (blue). (d) Refined pre-segmentation after non-liver 

tissues are removed. (e) Manual segmentation with surface patches (orange), for comparison 

with (d). (f) Final result of liver segmentation (blue) with the manual segmentation (white). 

2 Method 

The method consists of the following three main steps: 

1) Liver pre-segmentation: This is obtained by applying our previous work [7] 

followed by a smoothness operation using a curvature-driven level set approach. The 

liver pre-segmentation serves as a basis for the subsequent segmentation. 

                                                           
1 All the cases illustrated in this paper are from the datasets provided by [8]. 
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2) Model initialization and deformation: This is a fully automatic process to 

remove unwanted tissues from the pre-segmentation. Firstly a three-patch surface 

model is initialized, representing the upper, right lobe and lower liver surfaces, 

separately (section 2.1). Next a graph-based optimal surface fitting scheme (section 

2.2) is applied to recover the “real” liver boundaries (Fig. 1c,1e), from which we can 

obtain a refined pre-segmentation result with non-liver tissues removed (Fig. 1d). 

3) Liver pre-segmentation refinement and precise liver region recovery by level 
set evolution (section 2.3): To recover some missing parts, such as some tips or small 

perturbations of the liver edges, due to morphological and smoothness operations in 

step one, we re-implement the level set evolution but driven by both image force and 

inner force, to obtain a more accurate liver contour (Fig. 1f). 

2.1 Model Initialization 

The feature points for the three-patch surface construction are identified on each 

coronal slice of the pre-segmentation images. Due to the property of B-Splines, the 

sensitivity of the surface to some poorly located feature points is reduced when it is 

initialized from a large number of points. 

2.1.1 Upper liver surface construction 

The upper liver surface aims to separate liver and heart regions by using a curved 

surface approximating the base of the right and left lungs. 

Initially, the lungs are segmented using region growing, seeded automatically by 

finding points with the lowest HU value directly above the highest part of the liver 

right lobe found from the pre-segmentation. From the segmentations the corner points 

on the bottom of each lung (Fig. 2a) are detected automatically on every coronal slice 

and a number of points sampled between the left and right corners of right/left lung 

along large gradient values. The number of sampled points is determined by the 

distance between the left and right bottom corners of the right and left lung. The B-

Spline reconstruction technique [9] is applied to create the curved surface 

approximating the set of sample points (Fig. 2). 

 

Fig. 2. Upper liver surface construction. (a) Feature points of lungs and B-Spline reconstruction 

(2D). (b) Constructed upper liver surface (orange) fitting to the bottom of the lungs (3D). (c) 

Upper liver surface is overlapped on the manual segmentation result (white). 

2.1.2 Liver right lobe boundary construction 
The liver right lobe boundary is created to delineate the abdominal cavity wall even 

when it is only partially detectable on the image. The initialized curved surface 
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encapsulates the right lung wall2 and the right lobe of the liver pre-segmentation (Fig. 

3b, 4b). A point set for B-Spline interpolation is created by sampling points in each 

coronal slice. For the lung wall, three evenly spaced points are selected. For feature 

points on the liver right lobe wall, to avoid noise introduced to the pre-segmentation, 

only two points located close to the bottom of the lung and one point located at the 

inferior segment of the right lobe (Fig. 3a) are used.  

 

Fig. 3. Liver right lobe boundary (yellow) initialization and deformation (2D). (a) Feature 

points (yellow). (b) B-Spline reconstruction. (c) Discretization. (d) Deformation. 

The initialization and deformation result (3D) of the liver right lobe wall is also 

shown in Fig. 4. For comparison, we overlay the fitted boundary onto the manual 

segmentation result in Fig. 4d. More detailed discussion on the deformation procedure 

is given in section 2.2. 

 

Fig. 4. Liver right lobe boundary initialization and deformation (3D). (a) Liver pre-

segmentation (blue) and right lung detection (pink). (b) Liver right lobe boundary initialization 

(red). (c) Liver right lobe boundary deformation (fitting). (d) Deformed liver right lobe 

boundary (red) overlays on the manual segmentation result (white). 

2.1.3 Lower liver surface construction 
The objective of approximating the lower liver surface is to exclude any non-liver 

tissues under the liver. The main problematic area in our pre-segmentation result is 

the portal vein, which is located near the centre of the liver. Therefore, we choose two 

pairs of sample points at both sides of the bottom of the liver, 1) the leftmost point on 

the left lobe boundary and a second point on the left lobe boundary but 7mm under 

the first, 2) the lowest point on the inferior segment of the right lobe and a point 

which is 7 mm above (Fig. 5a). The distance is only used as a reference to obtain the 

second point in each pair. This distance is small enough to ensure the initialized liver 

lower patch excludes the portal vein. In a similar manner to the other surfaces, the 

lower liver surface is created from the sample points by using B-Spline reconstruction 

(Fig. 5b). 

                                                           
2 The right lung always exists for liver segmentation where the top of the liver right lobe is 

included in image sources.  
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Fig. 5. Lower liver surface (yellow) initialization and deformation (2D). (a) Feature points 

(yellow). (b) B-Spline reconstruction. (c) Discretisation. (d) Deformation. 

2.2 Deformable Model 

Similar to the work presented in [5,10], the initial liver model (Fig. 6a) is deformed to 

create the “real” liver boundary (Fig. 6d) by applying a graph based fitting scheme. 

The details of constructing the directed graph can be found in [10]. A simplified 

visualization of this graph structure is given in Fig. 6c. To increase computation 

efficiency and robustness to outliers, we introduce the narrow band concept of the 

level set method. The lower liver surface is used to illustrate our approach. 

According to the property of the B-Spline, the continuous lower liver surface can 

be discretised at any desired resolution [9]. In practice, to increase robustness to the 

local minimum, we adopt a sampling scheme where an average distance between 

adjacent vertices is about 3 times the voxel size of the original image (Fig. 3c,5c). We 

denote the discretised lower liver surface as S t =0 = (V0, E) with vertices set V0 and 

edges set E. The graph search determines the optimal position vi* for each vertex vi ∈ 

V0. The final optimized surface is denoted as S*=(V*, E). The vertex at any location 

can then be derived using B-Spline interpolation. 

The external force is computed from the edge map of the pre-segmentation image, 

which serves as a template eliminating any region outside the liver region (Fig. 6b). 

The region inside the liver pre-segmentation is denoted by Rps. Defining an infinite 

line L(vi) starting at vertex vi with the direction N(vi, t), L(vi) intersects with an edge 

on the edge map at point pi*. A spring force drives the vertex vi in the corresponding 

direction: 
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(1) 

δ is the width of the narrow band around St. A smoothness constraint, denoted by 

∆, is imposed on the geometric relations of the nodes in the graph. That is, a shift 

between any pair of neighbouring points on each sought surface cannot be bigger than 

∆. A smaller value of ∆ forces the sought surface to be smoother.  

The surface fitting scheme is implemented in an iterative way. The process is 

stopped when either the predefined number of iterations has been achieved or the 

average vertex movement falls below a given threshold. More example results of 

deformation have been depicted in Fig. 3(5)d (2D) and Fig. 4c (3D). 
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Fig. 6. Deformable model (patient-2). (a) Model initialization. (b) Edge map. (c) Graph. (d) 

Model deformation. 

2.3 Pre-segmentation refinement and precise liver segmentation 

Using the three optimized surface patches, the tissues outside the boundary (indicated 

by the surface normal direction) can be removed from the pre-segmentation (Fig. 1d). 

The result is a refined liver pre-segmentation which is the input of the level set 

evolution for accurate liver shape recovery (automatically). 

The level set evolution in this section is driven by a joint force, i.e. image based 

force (external force) and curvature force (internal force), where the image based 

force is dominant. The external force is computed from a probabilistic map [11]. 

As the refined estimation is close to the real boundary, only a few iterations are 

required and thus the final result is not sensitive to the choice of parameters. We use 

0.2 and 0.8, corresponding to the weights of curvature and image force respectively, 

for all experiments. 

3 Evaluation and Experimental Results  

In our project, it is desirable to segment liver inner structures, e.g. tumors and vessels, 

as separate objects. For comparison, we automatically integrate the explicitly 

segmented inner structures into the liver segmentation (Fig. 7b). The surface patches 

constructed in section 2 are used to trim vessels outside the liver region (Fig. 7a). 

3.1 Evaluation of accuracy 

Our approach has been evaluated on 20 patient CT datasets 3  provided by the 

organizers of the MICCAI Workshop on 3D Segmentation in the Clinic [8] and 5 

further patient CT data from the CRaIVE4 project. Both volume-based and mesh-

based evaluations are conducted. Manual segmentations are taken as references. 

1) Volume comparison: 
This is measured based on three criteria defined by [12], which are all expressed as a 

fraction of the volume of reference models; 1) True positive volume fraction (TPVF): 

the fraction of voxels in the intersection of our segmentation and the reference model; 

                                                           
3 Since there is no training process required by our method, we use their 20 training datasets for 

testing as well. The results of 10 test datasets have been submitted to [8] for evaluation. 
4 Collaborators in Radiological Interventional Virtual Environments, http://www.craive.org.uk  
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2) False negative volume fraction (FNVF): the fraction of voxels defined in manual 

segmentation but missed by our method; 3) False positive volume fraction (FPVF): 

the fraction of voxels falsely identified by our method. The average TPVF is 

95.77(±2.07)%. FNVF and FPVF are 4.23(±2.07)% and 4.31(±2.49)%, respectively.. 

To be comparable with other liver segmentation experiments, we also calculate the 

overlap error and volume difference (Table 1).  

2) Mesh comparison: 
This experiment is based on the distance measurement between vertices of the 

reference model and our result. The mesh is created by using the marching cubes 

algorithm from the VTK library, using the same parameters for all datasets. The 

average RMS error is 2.44±0.53mm. The average maximum distance 16.84±4.35mm 

and the average mean distance is -0.15±0.22mm. 

3.2 Evaluation of efficiency 

Our method was performed on an Intel Core2 2.66GHz processor. The average 

segmentation time is about 1 minute (step1: 15sec.; step2: 25-30sec.; step3: 10sec.). 

The comparison to recent liver segmentation experiments is given in Table 1.  

 
Fig. 7. (a) Liver Segmentation (light blue), tumor (white) and vessels (dark blue and brown). 

(b) Segmentation after merging (in blue), overlapped with the manual segmentation (white). 

4 Conclusions and Future Work 

Despite a large body of literature, (semi-) automatic liver segmentation from a 3D 

volume remains a challenge. Due to the large variations in shape and intensity pattern, 

the success of the classic statistical model-based approaches is often compromised by 

the limited number of training datasets. To overcome this, we propose a novel model-

driven approach which creates a deformable model from each patient dataset directly. 

Moreover, by converting the problem of building one complex shape model into 

constructing three much simpler models that can be fitted independently, we greatly 

improve the computation efficiency. 
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Table 1. Comparison to recent liver segmentation experiments. They are listed in the order of 

the best automatic, fastest automatic and best semi-automatic methods. 

Method 
Overlap 

Error [%] 

Volume 

Diff. [%] 

Avg. Dist. 

[mm] 

RMS Dist. 

[mm] 

Max. Dist. 

[mm] 
Run time 

Datasets 

tested 
Contrast 

Kainmueller [13] 7.0 -3.6 1.1 2.3 20.9 15 mins 10 yes 

Rusko [14] 10.7 -4.3 1.8 3.8 28.3 56 sec. 10 yes 

Lee et al. [15] 6.9 -1.3 1.1 2.1 21.3 7.4 mins 10 yes 

Our approach 8.15 0.079 0.21 2.44 16.84 1 min 25 mixed 
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