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Abstract

The matrix cracking transverse to loaglidirection is usually the one of most
common observations of damages inmposite laminates. The initiation and
propagation of transverse cracks have been a longstanding issue in the last few
decades. In this paper, a three-dimengistrass analysis method based on the state
space approach is used to compute thesstse including the inter-laminar stresses
near transverse cracks in laminated conipss The stress field is then used to
estimate the energy release rate, from which the initiation and propagation of
transverse cracking are predicted. Theppsed method is illustrated by numerical
solutions and is validated by available expental results. Tehe best knowledge of

the authors, the predictions of crackh@eiour for non-symmetrical laminates and
laminates subject to in-plarsbearing are presented for fivet time in the literature.

Introduction

The first form of damages in laminates is usually matrix microcracks. The most
common observation of microcracking is criagkin 90° plies during axial loading in

the 0° directions (Narin, 2000). Transversacking is therefore the most common
damage mode in composite materials. An idiaie effect of transverse cracking is to
cause stiffness degradations of the lamin&teess singularities netlre crack tips at

the ply interface may initiate interlaminar delamination. Delamination is not
necessarily the ultimate structural failubit it may result in fibre-matrix debonding
and fibre rupture, which will eventually ledd the loss of structural integrity. The
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ultimate failure of a composite laminate follows the occurrence of transverse cracking,
longitudinal cracking, delamation and fibre breaking.

The initiation and propagation of tramsse cracks in composite laminates
have been the focus of failure investigation in the last few decades. Extensive
investigations have been carried dagth experimentally and analytically.

Garrett and Bailey (1977), Parvizi&@t (1978) and Bailey and Parvizi (1981)
are amongst the earliest researchers whoechaut extensive experiments to observe
transverse cracks. They found that cracks formed in a direction parallel to the
transverse reinforcement and the thickness of tiepB@s had signi€ant effect on
the cracking process. Flaggs andrdu(1982) presented the results of an
experimental study confirming that thenstrained transverse cracking phenomena
observed in the 90ply of uniaxially loaded [@90°]s composite laminates was also
exhibited by the more generdd/9(°]s class of composite laminates. Nairn and Hu
(1992), Liu and Nairn (1992) and Nairn et al. (1993) cared a series of
experiments on crack densigs a function of applied &ml. For all the laminates
tested, the characteristic cracking @irkad no cracks until an onset stress was
reached. After the initial crack, the crackndity typically increases very rapidly. The
onset stress decreases as the thickness of theli@8 increases. Yokozeki et al.
(2005) investigated crack accumiida in multiple plies of [2/90°]s laminates
(6=30°, 45 and 60). Most of the experimental ingggations showed that the first
damage mode was usually transverse cracking. Both the thickness lay&& and
the stiffness of constrain layers affectbe initiation and propagian of transverse
cracks.

The majority of earlier analytical wio on transverse cracking assumed that
cracks formed when the stress or straiached the transverse strength of a ply
material. Garrett and Baile{1977) assumed that a transverse ply had a unique
breaking straing,, and strengtlay,. If a stress is applied & direction parallel to the
longitudinal plies, the transverse ply will fail at a stregsUsing the same strength
criteria, Parvizi, et al (1978gported more detailed studies a glass fibre reinforced
epoxy composite. Leblond et al. (1996) studmdltiplication of transverse cracks as
a function of applied stress in crosg-ghminates. The crack development was
assumed to be controlled by the fracture stress in thel@&®. However the strength

based theory usually can not provide a gpaatliction of transverse cracking because



the strength of 90plies of a laminate is usually ntite same as that of a different
laminate.

Due to the drawbacks and limitations of the strength based methods, the
majority of recent work was based fragunechanics using the energy method to
predict transverse crackingMost energy models used representative volume
element (RVE) to predict next crack formation when the energy released due to crack
formation reached the criticadtrain energy release rate. It has been widely
recognised that for the same material piyilaates with different lamination profiles,
the value ofG. almost keeps constant (Ngir@000). Consequently, the method
applies for a wide variety ofkainates from a single value Gt.

Parvizi et al. (1978) demonstrated tleasimple shear lag analysis used in
conjunction with the Griffith energy criteriazan be used to accurately predict matrix
cracking. Flaggs (1985) made use of a stemergy release rate fracture criteria in
conjunction with an approximate two-diménsal shear-lag model to predict tensile
matrix failure. Wang et al (1985) employee tnergy release rate method of classical
fracture mechanics to model various matepack interactionsDvorak and Laws
(1987) investigated the firstypfailure using a critical energglease rate criteria and
later Laws and Dvorak (1988) presented @dsl for progressive transverse cracking
based on statistical fracture mechanitsirn (1989; 2000), Liand Nairn, (1992) and
Nairn and Hu (1992) carried out a seriestfdy on matrix cracking by finite fracture
mechanics. Zhang et al. (1992) and kam Zhang (1993) proposed the equivalent
constraint model (ECM), in which the engy release rate due to transverse ply
cracking, incorporating reguwial thermal stresses, waerived. McCartney (1998;
2002; 2004; 2005) investigated ply crack depenent for various lamination profiles;
from cross-ply to general symmetric lamirgteubjected to adi@xtension or mixed
mode loading. Smith and Ogin (1999) cddted the critical bending moment at
transverse cracking under flexural loadshgsa fracture mechanics approach. Joffe et
al. (2001) used a crack-closure technigoiecalculate the energy release caused by
cracking. A Monte-Carlo simulation in incremtal strain-controlled loading was used
to model the transverse cracking process. Thel&ger was dividd into a large
number of elements and atimal energy release rate, was assigned to each element
according to Weibull distribution. Yokozekl al. (2002) employed energy release

rate to investigate crack initiatiome propagation across specimen width. Energy



release rates associated with crack propagan the width diretion were calculated
using a three-dimensional FEA. Subseqlyerbkozeki et al. (2005) used the same
method to study micro-cracking behaviour induced by matrix cracks in adjacent plies.
Lim and Li (2005) calculated energy eeke rates for transverse cracking and
delamination under the geawmadised plane strain ondition. By introducing the
minimum strain energy density criterion @onon-linear FE analiss Sirivedin et al.
(2006) predicted matrix crack propageti in continuous-carbon fibre/epoxy
composites.

It is obvious that for an energy bdsmethod, an accurat@ediction of the
stress distribution within a RVE is essahto an accurate #siate of the potential
energy within the element. This is particularly difficult for a laminated RVE with
transverse cracks. Traditional analysisamfiinated composites used classic or higher
order plate theories that usually providedsatisfactory predictions to interfacial
stresses and the stress singularities attifjge of transverse cracks. Zhang and Ye
(2007a) recently developed an analyticald®l that can provide accurate predictions
to the stress fields, including all theterfacial stresses, and a satisfactory
approximation to the stress singularitieamply cracks. The model was based on a
state space approach that has been suodgssbed to solve a variety of stress
problems (Soldatos and Ye, 1994; Ye &ualdatos, 1994a, b, 1995; Ye and Sheng,
2003; Ye et al., 2004; Zhang and Ye, 2007b)n@ared with other analytical models,
this new model takes full three-dimensional consideration of laminar properties,
displacements and interfacial stress coiities! at all materialnterfaces. The model
can also deal with both symmetric andn-symmetric laminates with a universal
approach. A comprehensive account ofrttethodology can be found in Ye (2002).

In combination with the ate space formulation (Y2002) this paper presents
a model to predict crack propagation byngsan energy based approach. An accurate
stress distribution within a RVE with craxks obtained from the state space solution.
The stresses are then used to compute the energy release rate in the crack propagation
analysis. Numerical results are obtained amchpared with the sts results available
in the literature. Results are also presented for non-symmetric laminates and laminates
subjected to in-plane shearing. From théhars’ best knowledge, these results are

new and are not available in the literature.

Stresses of angle-ply laminates with transver se cracks



Solution of an angle-ply lamina

Consider an off-axis lamina (Fig. 1) wighmincipal material directions (1-2-3) in the
global x-y-z coordinate system. The lamai has constant thickness width L and
infinite length. The displacements in they andz directions are denoted ly v and
w, respectively. Suppose that the lamina is subjected to a uniform tension by the

application of a constant longdunal strain in the y direction;, ,which represents a

laminate that is long and relatively unifornrm one direction, such as aircraft wing
panels. The constant strain in the y di@ttalso represents the state of stress at a
point in a material subject to a generalizggine strain, where the stresses and strains
in other two directionare more dominating.

The lamina is made of a homogeneousnaotlinic and linearlyelastic material
whose principal material direction 1,.i.¢éhe fiber direction, has an angleoto thex
axis.

(a) Stress-strain relations

The basic constitutive equation for thernlastic stress analysis is (Herakovich,
1998)

fob=[clle}- 7). @)

Here, the matrices], {¢} and {gT} are stiffness matrix, total strains and thermal
strains, respectively. For a linfaelastic monoclinic material,
_Cil C]’.2 Ci3 0 0 CiG_
Cha Cpp Gz 0 0 Cy
c]- Ciz C3 Gz 0 0 Gy
0 0 0 Cy Cis O
0 0 0 Cy Ci O
[Cie C26 C3g 0 0 Ceg]

: (2)

where thec; are stiffness coefficients that can be expressed in terms of Young's
moduli, Poisson’s rat@and shear moduli.

fel=len ey e 6. o &l ©)
" =t ayar, (4)
where AT denotes temperature change,

laj=[a, a, a, 0 0 a,], (5)

wherea , a,, a. andq,, are the coefficients of axial thermal expansion relative
to thex, y, z directions and shear theal expansion, respectively.

(b) Equilibrium equations



oo, aO'xy oo,

ha +=2=0
ox oy oz
ooy, . oo, . oo, 0. (6)

ox oy 0z
0
aO-)cz + GJ’Z + ao-zz =0
ox oy Oz

(c) Strain-displacement relations

ou ov ow
Exx = 2 Eyy = Ep =
Toox oy oz (7)
_Ow  Ov _Ou  Ow _Ou  Ov’

L= —t—, g, =—t—, &y = —+—
ooy oz oz ox Y oy ox

Since the lamina is subjett to a uniform extensiog, in the y direction, it follows
that

o, G)

&y = 5 -
Then the generalized plane strain defororats assumed such that all components of
stress and strain do not depend upon
To carry out the following deductions, let
a=0ldx, C;=—Ci3/Cyg, Cp =Ciy—Ci3/Chy, Cy=Cip—CisChsl Cig,
Cy= C'zz—c'zglcéal Cs :—Céalcés, Ce :—Céelcés, o :1/Cé3, Cg :1/C§>5'
Co =Cig —Cl'3cé6/Cé3' Cio=C2 —Céscéelcés, C11:C215/A, Cio=Cyyl A , C13:Cé5/A,
Ciq=Cos — Cég [C33, A= Cfs —Cy4Css - (9)
From the third equation of Eq. (1) and Eq. (7), one has

ow
Fol Cau+Ciav+C,o, +Cig,—(Cia, +Cia, +Cia,, —a_)AT . (10)
By substituting Eq. (7) into the first, second and sixth equations of Eq. (1), the in-

plane stresses can be expressed as

o, C,a Cja -C,||l u C, Cea,+Ca, +Ca,
c,=|Ca Cya —-C;iiv +1C,r5,—Ca, +Ca, +Cya, AT. (11)
O Ca C,a —-Ci|lo., C Gy, +Cp w T C14axy

Inserting Eg. (11) into Eq. J&nd considering Eq. (10) all as the fourth and fifth
equations of Eq. (1), the following firgirder partial differetial equation can be

obtained



u 0 0 -a -C, C(C, 0 u 0

v 0 0 0 C, c; 0 v 0
o|w| | Ca C,a 0 0 0 C ||w Ce,-(Ca, +Ca, +Ca, —a,)AT
ozlo[Tl-ca’ —c’ 0 0 0 Callo[" 0

o.| |-Ca’ -C,a® 0 0 0 Cual|o, 0

o, 0 0 0 -« 0 0 ||o.. 0

2
Assuming that displacemenisy, andw can be expressed, respectively, as

u(e,y,z) =u(x,z)+ U@ (Z)(l_z_ljc)

vix, v, 2) =v(x,2) + V@ (Z)(l—%)hs‘oy, (13)

w(x,y,z) = w(x,z)

where U@ (z) and ¥@(z) are unknown boundary displacements that can be

determined by imposing traction free conditions along the stress free surfaces (see the
boundary condition section). In Eq.(13), thdldwing Fourier series expansions are
assumed

U, (2)sin&)

7, (2)sin()
& |, () cos)
=2

= <l =

: (14)

Ou| 0| Xm(2)sin)
oy Y, (2)sin(5x)
O Z, (z)cosx)

where é=mz/L . In the case of a uniform extéms in the x-diretion, the axial
displacement: is zero atc=L/2. Hence, the integer in Eq. (14) and the equations
below takes only even numbers, ne= 0, 2, 4, ... .
By introducing Egs. (13) and 4) into (12) and expanding theand 1 in Eg. (13)
into also Fourier series, the following non-homogenous state space equation for an
arbitrary value ofn is obtained
d

—-F.G}=[6.IF. @)+ B,(), (15a)
where
F.0=0.0 7.0 m6 x.6 1.0 20, (15b)



[0 0 & -Cp C 0
0 0 0 C; -Cz O
C C 0 0 0 C
[Gm]: 1§2 Gi ! ! (150)
C? Gg? 0 0 0 -C¢
Co? Cug® 0 0 0 -G
| 0 0 0 -¢ 0 0 |

T
(B,(2)}= {O’O’C;a,, ~(Ca, +Coa, +Cyat, —ar, )AT_ZLCIU(“)(z)—ZfﬁV””(z),o,o,O] , (15d)

T
{Bm(z)}:{—i(1+ comﬂ)w,—im cos;m)w ,o,o,o,o} (m=2,4,6...).
mm /4 mmw dz
(15e)
The solution of the non-homogenous state space Eq. (15) is
. )= F, @)+ ok B, (e
0
= [0, @IfF, O +{H, @)}z <[0.4]. (16)
In particular, at=h,
F.,0)}=[D,, @)]F, @} +{H, (), (17)

where [Dm (h)] is called transfer matrix. The calation of the two constant matrices,
[D,.(n)] and {H,,(4)}, in Eq. (17) can be found eith@nalytically or numerically from

Ye (2002).

Solution of an angle-ply laminate
Consider an infinite long multi-layered general angle-ply laminate of thickiiess

and widthZL. Again the laminate is subjectéal a constant longitudinal straig, .We

may imagine that it is composed 8ffictitious sub-layerseach of which may have
different thickness. However, it is assumedtttine thickness of all the fictitious sub-
layers approach zero uniformly &sapproaches infinity. Assuming, in addition, that
different sub-layers may be composed dfedent monoclinic materials, two types of
materials interfaces are distinguished i thlate; the fictitious interfaces which
separate sub-layers with the same matg@riaperties and the real ones that separate
sub-layers composed of different matexidlpon choosing a suitably large value of
N, each individual sub-layer becomes thinr Each of the sub-layers, (15)-(17) are

the solutions. The state space equation aaddim of solution of an arbitrary sub-



layer, e.g., thgth one whose thickness ks, can easily be obtaed by replacing:
with 4, in Egs. (15)- (17). The state space equation oftthsub-layer then becomes:

LEE), =[6,], R}, + B, (18)

After repeating the above quess for all the individal sub-layers and with
appropriate continuity requirements imposea@lathe real and @titious interfaces, a
solution for the entire laminate can be formulated.

In order to find the solution of the problem, the two unknown displacement

componentsy @ (z) andr©(z) in Eq. (15) must be determined first. If the sub-layers
of the laminate are all sufficiently thi it is reasonable to assume that”(z) and

¥ ©(z) within the thin layer are linearly distributed in thdirection, i.e.

vO)=U; (1—hi) +UY hi

J 7,ze[0, Ay, j=1, 2,...,N, (19)
O@) =V, @--)+V] —
- n'

J

whereu;, U, ¥; andr; are the values af”(z) andr?(z) at the top and bottom

surfaces of thgth thin layer, respectively. Insertiigf. (19) into Egs. (15d) and (15e),

vector (g, ()}, in Eq. (18) can be expressed as

J

{Bo(z)}J = [0,0, ngo - (Clax + Csay + CGOZX), -, )AT

, 0, h;l, 20
—%[U;(1—f)+U;fj_%[wa—f)+’/ff)QQO]T 2o 4l (202)
J J J J
- + - _pt T
B.(2), = 4 Yy 4 h ,o,o,o,o} (m=2,4,6...). (20D)
mrx h; mrzx h;
The solution of Eq.(18) at=#; is
{Fm (h])}] :[Dm (hj )]I {Fm (O)}/ +{Hm (h])}] " (2 1)

By introducing the following continuitgonditions at all interfaces, i.e.,

0. =), /=1, 2, N-L, (22)

and then using Egs.(21) and (22) recleliyva relationship betaen the state vectors

on the top and bottom surfaces of the laminate is established as follows:
{Fm(hN)}N :[Bm]N {Fm (0)}1+{ﬁm} ’ (238.)

where



B, =[]1_1N[ D) ,} , (23b)

{ﬁm}:[ﬁ [Dm]_/J{Hm}l"'(ﬁ [Dm]‘j}{Hm}Z—'_“q_{Hm}N' (230)

=N =N
[F. ()}, and {F, )}, are, respectively, the state arst at the top and bottom surfaces
of the laminated composite. The tractitnee conditions at the top and bottom
surfaces yields

X,0 1,0 2,0 =0 o d
{[Xm(hN) Th) Z,0)li=[0 0 o

Substituting Eg. (24) into Eqg. (23) results in the following linear algebra equation

(24)

system
§41 §42 §43 IZm 121714
1251 352 353 Vi p == E m5 (1 (25)
D61 D62 D63 Wm HmG

1

whereD; andH,,, are the matrix elements [Bm]and{ﬁm} of EQs.(23b- 23c) that are

related to the three diggement components at the bottom surface, respectively.
Eq.(25) is a set of linear algebra eqoas in terms of the three displacement

componentsy,,, 7, andw,,, at the top surface. The terms on the right-hand side of

Eq. (25),H,4, H,s and H,,, contain 4N unknown constants/;, U;, v;, andv;

(j=1, 2,..N), introduced in Eq.(19). Because of the continuityét(z) andr©(z) at
the interface between thith and thej¢-1)th sub-layersy; =u;, andv; =r;, (=1,
2,...N-1). Hence, the number of unknowanstants is then reduced tav2Q). These

constants are determined by introducaqgpropriate boundary conditions along the

transverse edges.

Ply-crack boundary conditions
When a general angle-ply laminate is subjected to an in-plane extension

perpendicular to the 9Gibers, transverse ply cracks app@arallel to the fibers and
across the entire width from edge to edge. For example, subject to a uniform biaxial

extension,, and Fr,, and a shear loading,, the p°/90°%/¢°y laminate shown in

Fig. 2 displays an array of periodic cracks in the,3@yers, where the subscripts

10



denote the number of the real plies withiply group. In reality, matrix cracks can
occur in any plies, but there are a lag@up of laminates, in which transverse
cracking in 90° plies is the dominated dgmanode, and therefore the minor matrix
cracking in non-90° pleis ignored in the present model. Other damage modes, e.g.
delamination and fibre breakage usually ocauhigh crack densities, so the current
work focuses on low and intermediate crack densities.

Assuming that the cracks are equalpaced, a representative volume element
(Fig. 3) can be taken from any two neighboring cracks to predict the stress and
displacement fields.

For the cracked layers &0, L the boundary conditions are traction free,

i.e., o, =0,=0. For the un-cracked layers &t0, L, due to the fact that the

laminate is subjected to uniform extensamd shear loading, the displacements of an

uncracked layer in theandy directionsu andv, remain constant, that is

{u((),y,z)zuo

v(0,y,z)=v, e6a)

Substituting Eq. (26a) and Eq. (14) ifEq. (5.13) yields at x=0 and y=0

u(00,z) = iUw (2)sinEx0)+U© (z)(l— 22 Oj =u,
- (26b)

j +g,x0=v,
L

v(00,z) = ifm (z)sinEx0)+V© (Z)(l—

From also the equilibrium of the interrahd external forces, the following equation

exists

’“ (27a)

or, from Eq.(11)

11



[Cz‘t-;Um (z)+ C9§I7m (2)-CZ, (Z)]/ + [ngo -(Ca, +Co, + Caaxy)AT]j

(27h)
(€T, (2) + e, (2) - CZ,,(2)], + [Cuago = (Cor, + Cr, + Cryer,)AT]

N

C, 2C,,

© Lupog,  —
U%(2)+ 7 vV ()]]d S,

_|:2C2 U(o)(z)_i_%l/(o) (z):| JdZZFo

where F, and S, are the forces per unit length@dFB). From the introduction of the

boundary conditions, it can be seen thatgblution can be found to the required

accuracy by increasing the totalmber of the thin layers.

Propagation of transverse cracking in laminates

The total complementary potential energy of a representative element

Fig. 3 shows a representative volume eamwhich is taken from between two
neighboring cracks in ad{/90°%/¢°s] composite laminate. Assuming that stress
analysis has been carried out on this idealized element from the previous section,
where the laminate was assumed to consigY ittitious sub-layers. By using the
present stress analysis, the total complaary potential energis easier to obtain

than the total potential energy becaue stresses, used to calculate the
complementary strain energy, are detesdinmmediately afte solving the state

space equations. The complementary strain ernérgy this representative element is
N
U, =U! (28)
j=1
where the superscript ‘denotes thgth sub-layer and// is the complementary strain

energy of theth sub-layer of the representative volume element. Using the stresses

from the previous sectiord/’ per unit length in the direction can be obtained as

U :%j [G71C] Y o} + AT{G "{ o} ], dxdz (29a)

O t—~

where

{oc}=[o, o0, 0. O, O O'Xy]T (29b)

w 2z

12



Considering that the laminateusder a uniformly prescribed straigin they

direction, the potential adhe prescribed straigy can be calculated as

N .
Vo= ZVC/ =
j=1

The total complementary potential energytho$ representative volume element is

N b

J‘ .T [50 o, ]j dxdz (30)

Jj=1

given as the difference ofglcomplementary strain ener@y and the potential of

prescribed displacements .

hjp

[ E( }'[C] Yo} +AT{d c})—eoc»} dxdz (31)

0 J

reu-v.-¥
=1

J

The energy release rate due to transverse cracking

Consider a composite laminate subjdct® external loading and there are a
sufficiently large number afransverse cracks in the Olayers. The entire length of
the laminate isL, and the thickness of cracked layersHs Fig. 4 shows the
propagation process of the transverse cracks $taie (a) to state (c). In state (a), it is
assumed that there exigt uniformly spaced transverse cracks in the laminate.

Therefore the crack density this state is

_k
Pr = L_ (32)

With the changes of external loadingnew transverse crack forms and the crack
pattern changes from state) @ state (b). The number of the transverse cracks
increases fronk to (k+1). Although in reality a new crack formation is randomly
distributed, the overall crack distributiomtis to be uniform when the number of
cracks is large. In order to simplify the anadystate (b) is idealized to state (c), in
which the f+1) cracks are also equally spdcelhe simplification of the crack
spacing here is also due to that the footishe present study ihe effect of crack
density on degradation of material propertigse crack density of state (c) is then

_k+1
P = 17 (33)

e

During the transverse cracking procetbg crack surface area incrementdis The

energy release rate fromatt (a) to state (b) is

13



dr

G="
dA
_ L'(p )= 1L(p) _ (k+1)I( )=k ()
H, H, (34)
_Lpi (P )= Lo L (P
H

c

whereT(p,.,) andT'(p,) are the total complementary patial energies of the entire
laminate at crack densitigs,, and p, , respectively;T’.(p,,,) andT.(p,) are the

respective total complementary potentehergies of the representative volume
element at crack densities,, andp, .

The transverse crack propagation criterion
A new crack will form if the energy released due to crack formation reaches

the critical energy release ratg, i.e.
G =G, (35)

G, is a material property and has uniteokrgy per unit area. It can be measured by
an experimental method.

Fig. 5 is a flowchart showing how totdemine the critical cracking load for a
given crack density. For a gindoad, stress analigsis carried ouby using the state
space model. The energy release f@tef a representative volume element is then
computed by Eq. (34) and compared with If G>G,, the current load is reduced to
achieve a smaller energy release rate uGtiG.. If G<G. the current load is
increased to obtain a larger energy release rate@nti.. If G=G., the current load
Is taken as the critical crackihgpad for the given crack density.

Numerical results

The formulations and criterion proposetose are applied to predict transverse
cracking in composite laminates with di#at configurations, including symmetric
cross-ply laminates, symmetric anglg-plaminates and gersl non-symmetric
laminates. The material properties and disien of these laminates (Liu and Nairn,
1992; Joffeet al., 2001) are given in Tabll. Effects of residual thermal stresses are
included in the analysisAT is the difference between the room temperature and the
cure temperature. Table 1 also lidgtee critical energy release rate for each

material.

14



Symmetric laminates subjected to tension

The crack density as a function of apgliaverage stresses for symmetric cross-ply
laminates is plotted in Fig.6. Herein, the apglaverage stresstise axial tension per

unit length in thex direction divided by the heighif of the laminate. The test and
variational results of Liuand Narin (1992) are also ahin in these figures for
comparisons. The numerical results for Material 1 wittp/§0°;]s and [(2/90°4]s
lamination profiles are plotteih Figs. 6a and 6b, resgtively. Using a single value

of G, the predictions of the two laminates agree well with the experimental results,
which indicates that the criit energy release rate canused as a material property

that characterizes trarenge crack propagation @@mposite materials.

The dependence of crack density on the applied average stress for symmetric angle-
ply laminates with layupstp°/90°,]s are presented in Figs. 7a and 7b. The laminates
are composed of Material 2. The present results are compared with those obtained by
Monte-Carlo simulations and experimentaledism Joffe et al. (2001). Once again very
good agreements are observed in these figilirean be seen that cracks occur earlier

in the [£30°/90°4]s than in the £15°/90°4]s laminates.

Non-symmetric laminates subjected to tension
After successful validation for cross-ply symmetric laminates, the method is applied
to predict transverse crapkopagation in two non-symmedriaminates. The first one
is constructed by replacing one set ofQ@yers in the abovetB0°/90°,]s laminate
with 0°4 layers. Thus the new profile:30°/90°4/0°4/ + 30°], is now non-symmetric.
The stress-crack density relation of the sgmmetric laminate is plotted in Fig. 8a.
In comparison with Fig. 7b, the onset cratkess of the non-synetric laminate is
significantly increased. The secolaininate has a lay-up of [3@0°/30°/90°] and is
composed of Material 3. Both the Olayers are assumed kave transverse cracks
and the crack distributions in both layare identical. Fig. 8b shows the crack density
as a function of the applied enage stress in the laminate.

No comparisons have been made igsH8a) and (8b), because the present
solutions are believed to be the first omeghe literature on predicting transverse
crack propagation in non-symmetric laminates. These results, therefore, can be used

as benchmarks for testing new models.
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Laminates subjected to tension and shearing

In this section, the present method istiertused to study the effects of shearing on
transverse cracking. A symmetric anchan-symmetric cracked laminates under a
combination of tension and shearing are yred, respectively. It is assumed that the
laminates are composed of Material 3 fréable 1. A series ofurves are shown in

Fig.9 to demonstrate the effects of shearss&e on the transverse cracking process of

a symmetric [3@/90°/90°/30°] laminate. The laminate is subjected to a combined
action of uniform tension and shearing.eThpplied average stress, which is the
average stress on the crosstgm perpendicular to theaxis (Fig 2), increases, while

the shear stress keeps constant. Théespphear stresses are -100, -50, 0, 50 and 100
MPa, respectively. It can be seen thathbibte magnitude and the direction of shear
stresses have significant effect on the initiation and development of transverse cracks.
The negative shear stresses advance and the positive stresses delay the transverse
cracking. This is because the {B00°/90°/30°] laminate has a negative shear strain in

the x-y plane when the laminate is subjected to a single tensionxrditestion (Fig

2). If a negative sheatress is also applied, the magnitudehe negative shear strain
increases. On the contrary, applying a positive shear stress decreases the magnitude of
the shear strain. As a result, the energgase rate in the casé applying negative

shear stress is higher than that in theesasf applying no shear stress or positive
stresses.

The same set of shear stresses aflso applied on a non-symmetric
[30°/90°/30°/90°] laminate and the obtained stress-crack density relations are shown
in Fig. 10. As can be seen, the effect abiearing on cracking is similar to the
symmetric case. Nevertheless, under thaesébading condition the crack initiation
stress of the non-symmetric laminate iglsily higher than thatf the symmetric one.

This is because the 9layers in the symmetric laminate are thicker and a thicker 90
layer is more prone to crack formation.

To the authors’ best knowledge, compéeatlutions to the results presented
in Figs. 9 and 10 are not available in the literature. The results can again be used as

benchmark solutions for future development of new theories.

Concluding remarks

16



By using the energy method, an approach dbasethe state space stress analysis to
predict the propagatioof transverse cracking in geral composite laminates has
been proposed. The proposed method inhéhiés advantages of the state space
method, by which an accurate stress distributiad, hence, an accurate estimate of
strain energy can be computed. The hodtcan also deal withoth symmetric and
non-symmetric laminates.

In conjunction with the stress andbjsthe energy release rate due to
transverse cracking was derived in a laaé with an idealized uniform crack
distribution. A new crack forms when the emerelease rate approaches the critical
energy release rate.

Numerical results for symmetric lamiea were compared with alternative
numerical solutions and experimentakults. The solution was extended to the
analysis of non-symmetric laminates underimmsand then to the analysis of general
laminates subjected to both tension and shearing. Thisdaewew numerical
solutions that are hardly found in the d@g&ure. From the new results, it was found
that shearing had significant efft on the cracking process.

It is noted that in this work the transverse cracking process was simplified as a
crack density increment in a uniformly spacsdte, while the nature of the crack
multiplication in reality is stochastic. Thougleod comparisons with test results have
been observed for the globe relationshigiween the applied stresses and crack
density, a statistical approashould be resorted toadeling transverse cracking in

future work in order to gain deependerstanding of #hcracking process.
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Table 1 Material properties and dimensions

Material 1 Material 2 Material 3
Type ribertte Glass/epoxy  Graphite/epoxy
934/T300
EL 128 GPa 44.73 GPa 144.78 GPa
E+ 7.2 GPa 12.76 GPa 9.58 GPa
wr 0.3 0.297 0.31
- 0.5 0.42 0.52
Gt 4.0 GPa 5.8 GPa 4.97 GPa
Gt 2.4 GPa 4.49 GPa 3.37 GPa
a1 -0.09x10°°C 8.6x10°/°C N/A
a;  28.8x10°°C 22.1x10/°C N/A
AT -125°C -105°C aC
G. 690 J/m 610 J/m 900J/nt
L, 50 mm 50 mm 50 mm
Hpy 0.154 mm 0.144 mm 0.127 mm
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Fig. 1 Nomenclature of an off-axis lamina.
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Fig. 2 Schematic view of & /90°%/$°¢] laminate with an array of transverse ply
cracksin 90%, layers.
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Fig. 3 A representative volume element of6&,J/90°%/$°] laminate with ply cracks in
90% layers.
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28



Crack Density (1/mm)

0.6 15
05 1 € 12|
1 £
0.4 A
] = 0.9 A
0.3 1 2
] 8 06 1
0.2 A ~
@ — Present
0.1 — Present S 037
O T T T T T T 0 T T T T T
300 350 400 450 500 200 300 400 500 600
Applied Average Stress (MPa) Applied Average Stress (MPa)
(a) (b)

Fig. 8. Dependence of crack densitythe applied average stress in
(@) [£30°/90r4/0°4/ + 30°] glass/epoxy laminateith transverse cracks;
(b) [30°/90°/30°/90°] graphite/epoxy laminate i transverse cracks.

29



—
o

,é 1 2 |

£

> 09

2 =0MPa

(]

A 06 |

x G, =50MPa

S _

503" G, =100MPa
O T T T

0 100 200 300 400 500 600 700 800
Applied Average Stress (MPa)

Fig.9. Dependence of crack density on theiegmverage stress and shear stresses in
a [30°/90°/90°/30°] graphite/epoxy laminate.

30



—
o

o o =
) © N
| | |

Crack Density (1/mm)
o
w

1 o
G,=-50MPa "~ ~

G,=-100MPa .~

S
. /
l’ I

; G, =0MPa
G, =50MPa

V\ .
G,,=100MPa

/

0

Fig.10. Dependence of crack density on thgliad average stress and shear stresses

100 200 300 400 500 600 700 800
Applied Average Stress (MPa)

in a [30°/90°/30°/90°] graphite/epoxy laminate.

31



