
J Sched
DOI 10.1007/s10951-016-0490-0

Open Shop Scheduling with Synchronization

C. Weiß1 · S. Waldherr2 · S. Knust2 · N. V. Shakhlevich1

© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract In this paper, we study open shop scheduling
problemswith synchronization. Thismodel has the same fea-
tures as the classical open shop model, where each of the n
jobs has to be processed by each of themmachines in an arbi-
trary order. Unlike the classical model, jobs are processed
in synchronous cycles, which means that the m operations
of the same cycle start at the same time. Within one cycle,
machines which process operations with smaller processing
times have to wait until the longest operation of the cycle is
finished before the next cycle can start. Thus, the length of a
cycle is equal to the maximum processing time of its opera-
tions. In this paper, we continue the line of research started
by Weiß et al. (Discrete Appl Math 211:183–203, 2016). We
establish new structural results for the two-machine problem
with the makespan objective and use them to formulate an
easier solution algorithm.Other versions of the problem,with
the total completion time objective and those which involve
due dates or deadlines, turn out to be NP-hard in the strong
sense, even for m = 2 machines. We also show that relaxed
models, in which cycles are allowed to contain less than m
jobs, have the same complexity status.

B N. V. Shakhlevich
N.Shakhlevich@leeds.ac.uk

C. Weiß
mm12cw@leeds.ac.uk

S. Waldherr
swaldher@uni-osnabrueck.de

S. Knust
sknust@uni-osnabrueck.de

1 School of Computing, University of Leeds,
Leeds LS2 9JT, UK

2 Institute of Computer Science, University of Osnabrück,
49069 Osnabrück, Germany

Keywords Open shop · Synchronization · Complexity

1 Introduction

Scheduling problems with synchronization arise in appli-
cations where job processing includes several stages, per-
formed by different processingmachines, and all movements
of jobs between machines have to be done simultaneously.
This may be caused by special requirements of job transfers,
as it happens, for example, if jobs are installed on a circular
production unit which rotates to move jobs simultaneously
to machines of the next stage (see Soylu et al. 2007; Huang
2008; Waldherr and Knust 2014). Alternatively, there may
be health and safety regulations requiring that no machine is
in operation while jobs are being removed from or moved to
a machine. Similar synchronization takes place in the con-
text of switch-based communication systems, where senders
transmit messages to receivers in a synchronous manner, as
this eliminates possible clashes for receivers (see Gopal and
Wong 1985; Rendl 1985; Kesselman and Kogan 2007).

Synchronization arises naturally in assembly line systems
where each assembly operation may start only after all pre-
ceding operations are completed, see Doerr et al. (2000),
Chiang et al. (2012), and Urban and Chiang (2016), and the
surveybyBoysen et al. (2008). In the context of shop schedul-
ing models, synchronization aspects were initially studied
for flow shops (Soylu et al. 2007; Huang 2008; Waldherr and
Knust 2015), and later for open shops (Weiß et al. 2016).
In the latter paper the makespan problem is addressed, with
the main focus on the underlying assignment model. In the
current paper we continue that line of research, elaborating
further the study of the makespan minimization problem and
addressing other variants of the model with different objec-
tive functions.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-016-0490-0&domain=pdf

J Sched

Formally, the open shop model with synchronization
is defined as follows. As in the classical open shop, n
jobs J1, J2, . . . , Jn have to be processed by m machines
M1, M2, . . . , Mm, n ≥ m. Each job J j , 1 ≤ j ≤ n, con-
sists of m operations Oi j for 1 ≤ i ≤ m, where Oi j has
to be processed on machine Mi without preemption for pi j
time units. The synchronization requirement implies that job
processing is organized in synchronous cycles, with opera-
tions of the same cycle starting at the same time. Within one
cycle,machineswhich process operations of smaller process-
ing times have to wait until the longest operation of the cycle
is finished before the next cycle can start. Thus, the length
of a cycle is equal to the maximum processing time of its
operations. Similar to the classical open shop model, we
assume that unlimited buffer exists between the machines,
i.e., jobs which are finished on one machine can wait for
an arbitrary number of cycles to be scheduled on the next
machine.

The goal is to assign the nm operations to them machines
in n cycles such that a given objective function f is opti-
mized. Function f depends on the completion times C j of
the jobs J j , where C j is the completion time of the last cycle
in which an operation of job J j is scheduled. Following the
earlier research by Huang (2008) and Waldherr and Knust
(2015), we denote synchronous movement of the jobs by
“synmv” in the β-field of the traditional three-field nota-
tion.Wewrite O|synmv| f for the general synchronous open
shop problem with objective function f and Om|synmv| f
if the number m of machines is fixed (i.e., not part of the
input). The most common objective function is to minimize
the makespan Cmax, defined as the completion time of the
last cycle of a schedule. If deadlines Dj are given for the
jobs J j , the task is to find a feasible schedule with all jobs
meeting their deadlines, C j ≤ Dj for 1 ≤ j ≤ n. We use the
notation O|synmv,C j ≤ Dj |− for the feasibility problem
with deadlines. In problem O|synmv|∑C j the sum of all
completion times has to be minimized.

Usually, we assume that every cycle contains exactly m
operations, one on each machine. In that case, together with
the previously stated assumption n ≥ m, exactly n cycles
are needed to process all jobs. However, sometimes it is
beneficial to relax the requirement for exactly m operations
per cycle. Then a feasible schedule may contain incom-
plete cycles, with less than m operations. We denote such
a relaxed model by including “rel” in the β-field. Simi-
lar to the observation of Kouvelis and Karabati (1999) that
introducing idle times in a synchronous flow shop may be
beneficial, we will show that a schedule for the relaxed
problem O|synmv, rel| f consisting of more than n cycles
may outperform a schedule for the nonrelaxed problem
O|synmv| f with n cycles.

The synchronous open shop model is closely related to
long known optimization problems in the area of commu-

nication networks: the underlying model is the max-weight
edge coloring problem (MEC), restricted to complete bipar-
tite graphs, see Weiß et al. (2016) for the link between
the models, and Mestre and Raman (2013) for the most
recent survey on MEC and other versions of max-coloring
problems. As stated in Weiß et al. (2016), the complexity
results from Rendl (1985) and Demange et al. (2002), for-
mulated for MEC, imply that problems O|synmv|Cmax and
O|synmv, rel|Cmax are stronglyNP-hard if both n andm are
part of the input. Moreover, using the results from Demange
et al. (2002), Escoffier et al. (2006), Kesselman and Kogan
(2007), deWerra et al. (2009), andMestre andRaman (2013),
formulated for MEC on cubic bipartite graphs, we conclude
that these two open shop problems remain strongly NP-hard
even if each job is processed by at most three machines and
if there are only three different values for nonzero processing
times.

On the other hand, if the number of machines m is fixed,
then problem Om|synmv|Cmax can be solved in polyno-
mial time as m-dimensional assignment problem with a
nearly Monge weight array of size n × · · · × n, as dis-
cussed in Weiß et al. (2016) and in Sect. 2 of the current
paper. The relaxed version Om|synmv, rel|Cmax admits the
same assignment model, but with a larger m-dimensional
weight array extended by adding dummy jobs. As observed
in Weiß et al. (2016), the number of dummy jobs can be
bounded by (m−1)n. Both problems, Om|synmv|Cmax and
Om|synmv, rel|Cmax, are solvable inO(n) time, after oper-
ations are sorted in nonincreasing (or nondecreasing) order
of processing times on all machines. However, this algorithm
becomes impractical for larger instances, as the constant term
of the linear growth rate exceeds (m!)m .

The remainder of this paper is organized as follows. In
Sect. 2, we consider problem O2|synmv|Cmax and establish
a new structural property of an optimal solution. Based on it
we formulate a new (much easier) O(n)-time solution algo-
rithm, assuming jobs are presorted on eachmachine. Thenwe
address in more detail problem O|synmv, rel|Cmax and pro-
vide a tight bound on the maximum number of cycles needed
to get an optimal solution. In Sects. 3 and 4 we show that
problems O2|synmv,C j ≤ Dj |− and O2|synmv|∑C j

are strongly NP-hard. Finally, conclusions are presented in
Sect. 5.

2 Minimizing the makespan

In this section, we consider synchronous open shop prob-
lems with the makespan objective. Recall that problem
Om|synmv|Cmax with a fixed number of machinesm can be
solved inO(n) time (after presorting) by the algorithm from
Weiß et al. (2016). In Sect. 2.1 we elaborate further results
for the two-machine problem O2|synmv|Cmax, providing a

123

J Sched

new structural property of an optimal schedule, which results
in an easier solution algorithm. In Sect. 2.2 we study the
relaxed problem O|synmv, rel|Cmax and determine a tight
bound on the maximum number of cycles in an optimal
solution.

2.1 Problem O2|synmv|Cmax

Problem O2|synmv|Cmax can be naturally modeled as an
assignment problem. Consider two nonincreasing sequences
of processing times of the operations on machines M1 and
M2, renumbering the jobs in accordance with the sequence
on M1:

p11 ≥ p12 ≥ . . . ≥ p1n, p2k1 ≥ p2k2 ≥ . . . ≥ p2kn .

To simplify the notation, let (ai)ni=1 and (b j)
n
j=1 be the cor-

responding sequences of processing times in nonincreasing
order. The i th operation on M1 with processing time ai
and the j th operation on M2 with processing time b j can
be paired in a cycle with cycle time max{ai , b j } if these
two operations are not associated with the same job. Let
F = {(1, j1), (2, j2), . . . , (n, jn)} be the set of forbidden
pairs: (i, ji) ∈ F if operations O1i and O2 ji belong to the
same job.

Using binary variables xi j to indicatewhether the i th oper-
ation on M1 and the j th operation on M2 (in the above
ordering) are paired in a cycle, the problem can be formulated
as the following variant of the assignment problem:

APF : min
n∑

i=1

n∑

j=1
wi j xi j

s.t.
n∑

i=1
xi j = 1, 1 ≤ j ≤ n,

n∑

j=1
xi j = 1, 1 ≤ i ≤ n,

xi j ∈ {0, 1}, 1 ≤ i, j ≤ n,

xi j = 0, (i, j) ∈ F ,

with the cost matrixW = (wi j), where

wi j = max
{
ai , b j

}
, 1 ≤ i, j ≤ n. (1)

Due to the predefined 0-variables xi j = 0 for forbidden pairs
of indices (i, j) ∈ F it is prohibited that two operations of
the same job are allocated to the same cycle.

In Weiß et al. (2016) a slightly different formulation is
used tomodel synchronous open shop as an assignment prob-
lem:

AP∞: min
n∑

i=1

n∑

j=1
ci j xi j

s.t.
n∑

i=1
xi j = 1, 1 ≤ j ≤ n,

n∑

j=1
xi j = 1, 1 ≤ i ≤ n,

xi j ∈ {0, 1}, 1 ≤ i, j ≤ n,

with the cost matrix C = (ci j), where for 1 ≤ i, j ≤ n

ci j =
{
max

{
ai , b j

}
, if (i, j) /∈ F ,

∞, if (i, j) ∈ F .
(2)

Here, for the forbidden pairs (i, j) ∈ F there are ∞-entries
in the cost matrix, one in every row and every column. A
feasible solution of the open shop problem exists if and only
if the optimal solution value of AP∞ is less than ∞.

Note that the problem AP∞ in its more general form is
the subject of our related paper, Weiß et al. (2016). In the
current paper we focus on the formulation APF , which is
equivalent to AP∞ for costs ci j of form (2). Formulation
APF allows us to produce stronger results, see Theorems
1–2 in the next section. The main advantage of formulation
APF is the possibility to use finite w-values for all pairs of
indices, including wi j ’s defined for forbidden pairs (i, j) ∈
F .

Example 1 Consider an example with n = 4 jobs and the
following processing times:

j 1 2 3 4
p1 j 7 5 3 2
p2 j 3 4 6 2

The sequences (ai) and (b j) of processing times are of the
form:

i 1 2 3 4
ai 7 5 3 2
Job J1 J2 J3 J4

j 1 2 3 4
b j 6 4 3 2
Job J3 J2 J1 J4

The forbidden pairs are F = {(1, 3), (2, 2), (3, 1), (4, 4)},
the associated matrices W and C are

W =

⎛

⎜
⎜
⎜
⎜
⎝

i \ j 1 2 3 4
1 7 7 7 7
2 6 5 5 5
3 6 4 3 3
4 6 4 3 2

⎞

⎟
⎟
⎟
⎟
⎠

, C =

⎛

⎜
⎜
⎜
⎜
⎝

i \ j 1 2 3 4
1 7 7 ∞ 7
2 6 ∞ 5 5
3 ∞ 4 3 3
4 6 4 3 ∞

⎞

⎟
⎟
⎟
⎟
⎠

.

The entries in bold font in W and C correspond to the
optimal solution illustrated in Fig. 1. Here, x12 = 1 for the
pair of jobs J1, J2 assigned to the same cycle, and x23 =
x34 = x41 = 1 for the other cycles. The makespan is 7+6+
3 + 3 = 19.

123

J Sched

Fig. 1 Gantt chart of an optimal schedule for Example 1

It is known (cf. Bein et al. 1995; Burkard et al. 1996)
that matrix W = (wi j) defined by (1) satisfies the Monge
property, i.e., for all row indices 1 ≤ i < r ≤ n and all
column indices 1 ≤ j < s ≤ n we have

wi j + wrs ≤ wis + wr j . (3)

Without the additional condition on forbidden pairs F , a
greedy algorithm finds an optimal solution X = (

xi j
)
to

the assignment problem and that solution is of the diagonal
form:

xii = 1 for i = 1, . . . , n; xi j = 0 for i �= j. (4)

Forbidden pairs or, equivalently, ∞-entries, may keep the
Monge property satisfied so that the greedy algorithm
remains applicable, as discussed by Burkard et al. (1996) and
Queyranne et al. (1998). However, if at least one of the for-
bidden pairs from F is a diagonal element, then solution (4)
is infeasible for problem APF . A similar observation holds
for problem AP∞ if an ∞-entry lies on the diagonal. In that
case, as demonstrated in Weiß et al. (2016), there exists an
optimal solutionXwhich satisfies a so-called corridor prop-
erty: the 1-entries of X belong to a corridor around the main
diagonal of width 2, so that for every xi j = 1 of an opti-
mal solution the condition |i − j | ≤ 2 holds. Notice that in
Example 1 there are two forbidden pairs inF of the diagonal
type, (2, 2) and (4, 4); the specified optimal solution satisfies
the corridor property. A related term used typically in two-
dimensional settings is the bandwidth (see, e.g., Ćustić et al.
2014).

The corridor property is proved inWeiß et al. (2016) in its
generalized form for the case of the m-dimensional assign-
ment problem with a nearly Monge array (this is an array
where ∞-entries are allowed and the Monge property has
to be satisfied by all finite entries). Thus, this property also
holds for the m-machine synchronous open shop problem. It
appears that for the case ofm = 2 the structure of an optimal
solution can be characterized in a more precise way, which
makes it possible to develop an easier solution algorithm.

In the following, we present an alternative characteriza-
tion of optimal solutions for m = 2 and develop an efficient
algorithm for constructing an optimal solution. Note that the
arguments in Weiß et al. (2016) are presented with respect
to problem AP∞; in this paper our arguments are based on
the formulation APF and on its relaxation APF=∅ , with the
condition “xi j = 0 for (i, j) ∈ F ” dropped.

A block Xh of size s is a square submatrix consisting of
s× s elements with exactly one 1-entry in each row and each
column of Xh . We call a block large if it is of size s ≥ 4,
and small otherwise. Our main result is establishing a block-
diagonal structure of an optimal solution X = (xi j),

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

X1 0 0 . . . 0
0 X2 0 . . . 0

. . .

0 . . . 0 Xz−1 0
0 . . . 0 0 Xz

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(5)

with blocks Xh, 1 ≤ h ≤ z, of the form

(
1
)
,

(
0 1
1 0

)

,

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ ,

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ (6)

around the main diagonal, and 0-entries elsewhere. Note that
the submatrix

⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠

is excluded from consideration.

Theorem 1 (“Small Block Property”): There exists an opti-
mal solution to problem APF in block-diagonal structure,
containing only blocks of type (6).

This theorem is proved in Appendix 1. The small block
property leads to an efficientO(n)-time dynamic programing
algorithm to find an optimal solution. Here we use for-
mulation AP∞ rather than APF , as infinite costs can be
easily handled by recursive formulae. The algorithm enu-
merates optimal partial solutions, extending them repeatedly
by adding blocks of size 1, 2, or 3.

Let Si denote an optimal partial solution for a subproblem
of AP∞ defined by the submatrix of W with the first i rows
and i columns. If an optimal partial solution Si is known,
together with solutions Si−1 and Si−2 for smaller subprob-
lems, then by Theorem 1 the next optimal partial solution
Si+1 can be found by selecting one of the following three
options:

– extending Si by adding a block of size 1 with xi+1,i+1 =
1; the cost of the assignment increases by wi+1,i+1;

– extending Si−1 by adding a block of size 2 with xi,i+1 =
xi+1,i = 1; the cost of the assignment increases by
wi,i+1 + wi+1,i ;

– extending Si−2 by adding a block of size 3with the small-
est cost:

123

J Sched

(i) xi−1,i+1 = xi,i−1 = xi+1,i = 1 with the cost
wi−1,i+1 + wi,i−1 + wi+1,i , or

(ii) xi−1,i = xi,i+1 = xi+1,i−1 with the cost wi−1,i +
wi,i+1 + wi+1,i−1.

Let w(Si) denote the cost of Si . Then

w(Si+1) = min
{
w(Si) + wi+1,i+1,

w(Si−1) + wi,i+1 + wi+1,i ,

w(Si−2) + wi−1,i + wi,i+1 + wi+1,i−1,

w(Si−2)+wi−1,i+1 + wi,i−1 + wi+1,i
}
.

(7)

The initial conditions are defined as follows:

w(S0) = 0,
w(S1) = w11,

w(S2) = min {w11 + w22, w12 + w21} .

Thus, w(S3), …, w(Sn) are computed by (7) in O(n) time.

Theorem 2 Problem O2|synmv|Cmax can be solved in
O(n) time.

Concluding this subsection, we provide several obser-
vations about the presented results. First, the small block
property for problem O2|synmv|Cmax has implications for
the assignment problem AP∞ with costs (2) and for more
general cost matrices. The proof of the small block property
is presented for problem APF . It is easy to verify that the
proof is valid for an arbitrary Monge matrix W , not neces-
sarily of type (1); the important property used in the proof
requires that the set F has no more than one forbidden pair
(i, j) in every row and in every column, and that all entries
of the matrix W , including those corresponding to the for-
bidden pairs F , satisfy the Monge property. Thus, the small
block property and theO(n)-time algorithmhold for problem
AP∞ if

(i) there is nomore than one∞-entry in every row and every
column of the cost matrix C, and

(ii) matrix C can be transformed into a Monge matrix by
modifying only the ∞-entries, keeping other entries
unchanged.

Note that not every nearlyMonge matrix satisfying (i) can
be completed into a Monge matrix satisfying (ii); see Weiß
et al. (2016) for further details. However, the definition (2)
of the cost matrix C for the synchronous open shop allows
a straightforward completion by replacing every entry ci j =
∞ by ci j = max

{
ai , b j

}
.While completability was not used

in the proof of the more general corridor property presented
in Weiß et al. (2016), the proof of the small block property
depends heavily on the fact that thematrix of the synchronous

open shop problem can be completed into aMongematrix. In
particular, we use completability when we accept potentially
infeasible blocks in the proof of Lemma 3 and repair them
later on with the help of Lemmas 4 and 5. In the literature,
the possibility of completing an incomplete Monge matrix
(a matrix with unspecified entries) was explored by Deineko
et al. (1996) for the traveling salesman problem. They discuss
Supnick matrices, a subclass of incomplete Monge matrices,
for which completability is linkedwith several nice structural
and algorithmic properties.

Finally, we observe that while the assignment matrices
arising from the multimachine case are completable in the
same way as for the two-machine case (see Weiß et al.
2016), it remains open whether this can be used to obtain
an improved result for more than two machines as well. The
technical difficulties of that case are beyond the scope of this
paper.

2.2 Problem O|synmv, rel|Cmax

In this section, we consider the relaxed problem O|synmv,

rel|Cmax where more than n cycles are allowed, with unal-
located (idle) machines in some cycles. This problem can
be transformed to a variant of problem O|synmv|Cmax by
introducing dummy jobs, used to model idle intervals on the
machines. Dummy jobs have zero-length operations on all
machines, and it is allowed to assign several operations of a
dummy job to the same cycle. Thus, in a feasible schedule
with dummy jobs, all cycles are complete, but some of them
operations in a cycle may belong to dummy jobs.

Similar to the observation ofKouvelis andKarabati (1999)
that introducing idle times in a synchronous flow shop may
be beneficial, we show that a schedule for the relaxed open
shop problem O|synmv, rel|Cmax consisting of more than n
cycles may outperform a schedule for the nonrelaxed prob-
lem O|synmv|Cmax with n cycles.

Example 2 Consider an example withm = 3 machines, n =
5 jobs and the following processing times:

j 1 2 3 4 5
p1 j 3 2 4 3 1
p2 j 5 3 2 3 1
p3 j 4 5 1 4 1

In the upper part of Fig. 2 an optimal schedule for problem
O3|synmv|Cmax with n = 5 cycles and a makespan of 18 is
shown. For the relaxed problemO3|synmv, rel|Cmax adding
a single dummy job J6 leads to an improved schedule with 6
cycles and makespan 17 (see the lower part of Fig. 2).

The maximum total number of cycles of nonzero length
is nm, which occurs if each of the nm “actual” operations is
scheduled in an individual cycle. Then, in each of these nm

123

J Sched

Fig. 2 An optimal schedule for O3|synmv|Cmax and an improved
schedule for O3|synmv, rel|Cmax (with dummy job J6)

cycles one actual operation andm−1 dummy operations are
processed. To achieve a best schedule it is therefore sufficient
to include n(m − 1) dummy jobs, each dummy job consist-
ing of m zero-length operations. This implies that problem
Om|synmv, rel|Cmax for a fixed numberm of machines can
be solved in polynomial time by the algorithm from Weiß
et al. (2016).

For the two-machine case described in Sect. 2.1, if the
actual jobs are numbered as 1, . . . , n, and the dummy jobs
are numbered as n+1, . . . , 2n, thenwe apply the algorithm to
the extended cost matrixW ′ obtained from the n×n matrix
W defined by (2), by adding rows and columns n+1, . . . , nm
with entries

wi j =
⎧
⎨

⎩

ai , i = 1, . . . , n, j = n + 1, . . . , 2n,

b j , i = n + 1, . . . , 2n, j = 1, . . . , n,

0, i = n + 1, . . . , 2n, j = n + 1, . . . , 2n.

Here combining an operation of an actual job (having
processing time ai or b j) with a dummy job incurs a cycle
of length ai or b j , while combining two dummy operations
incurs an artificial cycle of 0 length, even if both operations
belong to the same dummy job. For the case of multiple
machines the cost matrix can be adjusted analogously, see
Weiß et al. (2016) for details.

Clearly, for algorithmic purposes it is desirable to have
the number of added dummy jobs as small as possible. As
discussed inWaldherr et al. (2015), for the synchronous flow
shop problem F |synmv, rel|Cmax, instances exist where for
an optimal solution (n − 1)(m − 2) dummy jobs are needed.
In the following we show that for the open shop problem
O|synmv, rel|Cmax at most m − 1 dummy jobs are needed
to obtain an optimal solution.

Theorem 3 There exists an optimal solution to problem
O|synmv, rel|Cmax with at most m − 1 dummy jobs, so that
the number of cycles is at most n + m − 1.

Proof Let S be an optimal schedule with ξ dummy
jobs, ξ ≥ m. We construct another schedule S̃ with

Cmax(S̃) ≤ Cmax(S) and ξ − 1 dummy jobs. Notice that
it is allowed to assign several operations of the same dummy
job to any cycle.

Case 1 If there exists a cycle I ′ which consists solely of
dummy operations of the same job Jd ∈ {Jn+1, Jn+2, . . . ,

Jn+ξ }, then that dummy job can be eliminated and S̃ is found.
Case 2 If there exists a cycle I ′ which consists solely

of dummy operations, some of which belong to different
dummy jobs, then we can achieve Case 1 by selecting a
dummy job Jd arbitrarily and swapping its operations from
outside I ′ with the dummy operations in I ′. The resulting
schedule is feasible and has the same makespan.

Case 3 Suppose no cycle in S consists purely of dummy
operations. Let I ′ be the shortest cycle and let ν be the number
of actual operations in I ′, 1 ≤ ν ≤ m. We demonstrate that
each actual operation processed in I ′ can be swapped with a
dummy operation from another cycle.
Consider an actual operation Oi j in cycle I ′ with machine
Mi processing job J j . Select another cycle I ′′ (its existence is
demonstrated below) such that it does not involve an opera-
tion of J j andhas a dummyoperation onMi . Swapoperations
on Mi in I ′ and I ′′, reducing the number of actual operations
in I ′ by 1. Clearly, after the swap both cycles are feasible,
because introducing a dummy operation into I ′ cannot cause
a conflict, and because no operation of J j was processed in I ′′
before the swap. After the swap, both cycles I ′ and I ′′ have
either the same length as before or cycle I ′ becomes shorter.
Performing the described swaps for each actual operation
Oi j in cycle I ′, we arrive at Case 1 or 2.
A cycle I ′′ exists since

– there are at least ξ cycles with a dummy operation on
Mi (ξ ≥ m) and those cycles are different from I ′;

– there are exactly m − 1 cycles with J j processed on a
machine that differs from Mi , and those cycles are dif-
ferent from I ′. 	

We continue by demonstrating that the bound m − 1 is
tight.

Example 3 Consider an instance of problem O|synmv,

rel|Cmax with m machines, n = m + 1 jobs and process-
ing times pi j = 2m for i = 1, . . . ,m, j = 1, . . . , n−1, and
pin = 1 for i = 1, . . . ,m.

An optimal schedule consists of m complete cycles
of length 2m each, containing operations of the jobs
{J1, J2, . . . , Jm} only, andm incomplete cycles with the sin-
gle actual job Jm+1 grouped with m − 1 dummy jobs, see
Fig. 3. The optimal makespan is Copt

max = 2m2 + m. In any
schedule with less thanm−1 dummy jobs, at least one oper-
ation of job Jm+1 is grouped with another operation of an
actual job, the length of such a cycle being 2m. Thus, a
schedule with less that m − 1 dummy jobs consists of at

123

J Sched

Fig. 3 An optimal schedule with 2m cycles, m of which are complete
and m are incomplete

least m + 1 cycles of length 2m, so that the makespan is at
least 2m(m + 1) > Copt

max.

Notice that since our paper focuses on scheduling aspects,
we have presented Theorem 3 in the scheduling language for
the sake of consistency and self-containment. Knowing that
O|synmv, rel|Cmax is equivalent to the max-weight edge
coloring problem on the complete bipartite graph Km,n , we
conclude this section by linking Theorem 3 to the results
known in the area of max-weight coloring. It is known that
an optimal max-weight edge coloring in an edge-weighted
graphG can always be obtained using at most 2Δ−1 colors,
whereΔ is themaximumvertex degree ofG, see for example
Demange et al. (2002); de Werra et al. (2009). This bound is
worse than the bound given in Theorem 3, as for a complete
bipartite graph G = Km,n with m < n we have Δ = n, and
therefore 2Δ − 1 = n + n − 1 > n + m − 1. However,
for the vertex coloring version of max-weight coloring on a
vertex-weighted graph G, Demange et al. (2002) show that
an optimalmax-weight vertex coloring can be obtained using
at mostΔ+1 colors. Note that the max-weight edge coloring
problem on a graph H can be seen viewed as the max-weight
vertex coloring problem on the line graph G = L(H) of H .
Then, since the line graph of Km,n has maximum degree
Δ = n + m − 2, the bound Δ + 1 on the number of colors
needed yields n + m − 1, which is equal to the maximum
number of cycles stated in Theorem 3.

3 Scheduling with deadlines

In this section, we consider problem O|synmv,C j ≤ Dj |−,
where each job J j , 1 ≤ j ≤ n, has a given deadline Dj by
which it has to be completed.We prove that finding a feasible
schedulewith all jobsmeeting their deadlines isNP-complete
in the strong sense even if there are only two machines and
each job has only one nonzero processing time. Further-
more, we show that problem O2|synmv,C j ≤ Dj , Dj ∈
{D′, D′′}|−, where the set of all deadlines is limited to two
values, is at least NP-complete in the ordinary sense. The
proofs presented below are based on the ideas of Brucker

et al. (1998) who established the complexity status of the
parallel batching problem with deadlines.

Consider the 3-PARTITION problem (3-PART) known
to be strongly NP-complete, cf. Garey and Johnson (1979).
Given a set Q = {1, . . . , 3q}, a bound E and natural numbers
ei for every i ∈ Q, satisfying

∑
i∈Q ei = qE and E

4 < ei <
E
2 , can Q be partitioned into q subsets Qk, 1 ≤ k ≤ q, such
that

∑
i∈Qk

ei = E?
Based on an instance of 3-PART, we construct an instance

I (q) of the two-machine synchronous open shop problem
O2|synmv,C j ≤ Dj |− with n = 6q2 jobs, q deadlines
and two machines, denoted by A and B. Each job J j,l has
two indices j and l to distinguish between jobs of different
types, j = 1, 2, . . . , 2q and l = 1, 2, . . . , 3q. We introduce
constants

T =
3q∑

i=1

i, Tj =
j∑

i=1

i, W = q3E .

For each l, 1 ≤ l ≤ 3q, the processing times a j,l and b j,l of
the jobs J j,l on machines A and B are defined as follows:

a j,l = lW + (q − j)el , b j,l = 0 for 1 ≤ j ≤ q;
aq+1,l = 0, bq+1,l = lW + qel;
a j,l = 0, b j,l = lW for q + 2 ≤ j ≤ 2q.

The deadlines Dj,l are set to

Dj,l = jTW + (jq2 − Tjq + Tj)E for 1 ≤ j ≤ q;
Dj,l = qTW + (q3 − Tqq + Tq)E for q + 1 ≤ j ≤ 2q.

Throughout the proof we use the following terms for dif-
ferent classes of jobs. Parameter l, 1 ≤ l ≤ 3q, characterizes
jobs of type l . For each value of l there are 2q jobs of type
l, q of which have nonzero A-operations (we call these A-
jobs) and the remaining q jobs have nonzero B-operations
(we call these B-jobs). Among the q B-jobs of type l, there
is one long B-job of type l, namely Jq+1,l with processing
time lW + qel , and there are q − 1 short B-jobs of type l,
namely Jq+2,l , Jq+3,l , . . . , J2q,l , each with processing time
lW . Overall, there are 3q long B-jobs, one of each type
l, 1 ≤ l ≤ 3q, and 3q (q − 1) short B-jobs, with q − 1
short jobs of each type l. Note that, independent of l, job J j,l
is an A-job if 1 ≤ j ≤ q, and a B-job if q + 1 ≤ j ≤ 2q.

With respect to the deadlines, the jobs with nonzero
B-operations are indistinguishable. The jobs with nonzero
A-operations have deadlines Dj,l depending on j ; we refer
to those jobs as component j A-jobs. For each j , there are 3q
jobs of that type.

Lemma 1 If there exists a solution Q1, Q2, . . . , Qq to an
instance of 3-PART, then there exists a feasible schedule for
the instance I (q) of the two-machine synchronous open shop
problem with q deadlines.

123

J Sched

Fig. 4 Schedule derived from a solution to 3-PART

Proof We construct a schedule S∗ consisting of q compo-
nentsΓ1, Γ2, . . . , Γq , each ofwhich consists of 3q cycles, not
counting zero-length cycles. In component Γk, 1 ≤ k ≤ q,
machine A processes 3q componentk A-jobs, one job of each
type l, l = 1, 2, . . . , 3q. Machine B processes 3 long B-
jobs and 3 (q − 1) short B-jobs, also one job of each type
l, l = 1, 2, . . . , 3q.

Within one component, every cycle combines an A-job
and a B-job of the same type l, 1 ≤ l ≤ 3q. The ordering
of cycles in each component is immaterial, but component
Γk precedes component Γk+1, 1 ≤ k ≤ q − 1. If Qk =
{l1, l2, l3} is one of the sets of the solution to 3-PART, then
the three long B-jobs Jq+1,l1 , Jq+1,l2 , Jq+1,l3 are assigned to
cycle Γk .

Finally, there are 3q2 cycles of length zero.Weassume that
each zero-length operation is scheduled immediately after the
nonzero operation of the same job.

The resulting schedule S∗ is shown in Fig. 4.
It is easy to verify that if Q1, Q2, . . . , Qq define a solution

to the instance of 3-PART, then the constructed schedule S∗
is feasible with all jobs meeting their deadlines. 	

We now prove the reverse statement. The proof is struc-
tured into a series of properties where the last one is the main
result of the lemma.

Lemma 2 If there exists a feasible schedule S for the
instance I (q) of the synchronous open shop problem with
q deadlines, then the following properties hold:

(1) each cycle of nonzero length contains an A-job of type l
and a B-job of the same type l, l = 1, 2, . . . , 3q; without
loss of generality we can assume that each zero-length
operation is scheduled in the cycle immediately after the
nonzero-length operation of the same job;

(2) no component j A-job is scheduled on machine A before
any componenti A-job, with 1 ≤ i ≤ j − 1; hence S
is splittable into components Γ1, Γ2, . . . , Γq in accor-
dance with A-jobs;

(3) each component Γ j , 1 ≤ j ≤ q, defines a set Q j of
indices that correspond to long B-jobs scheduled in Γ j ;
the resulting sets Q1, Q2, . . . , Qq define a solution to
the instance of 3-PART.

Proof (1) In a feasible schedule S satisfying thefirst property,
all cycles have a balanced workload on machines A and B:
in any component Γk, 1 ≤ k ≤ q, the cycle lengths are
W, 2W , …, 3qW , with the value qel or (q − k)el added.
Thus, the total length of such a schedule is at least q · TW .
For a schedule that does not satisfy the first property, the
machine load is not balanced in at least two cycles, so that
the lW -part of the processing time does not coincide in these
cycles. Thus, the total length of such a schedule is at least
qTW + W = qTW + q3E . Since q > 1, the latter value
exceeds the largest possible deadline

max
1≤ j≤2q,1≤l≤3q

{
Dj,l

} = qTW + (q3 − Tqq + Tq)E,

a contradiction.
Note that the above especially shows that zero-length

operations are only paired in cycles with other zero-length
operations. Therefore, we can assume without loss of gener-
ality that zero-length operations are scheduled immediately
after the nonzero-length operations of the same job. Indeed,
if this is not the case, we can change the order of cycles,
and possibly the assignment of zero-length operations to the
zero-length cycles in order to achieve the assumed structure,
without changing the feasibility of the schedule.

(2) Consider a schedule S inwhich all componentu A-jobs
precede componentu+1 A-jobs for u = 1, 2, . . . , i − 1, but
after that a sequence of componenti A-jobs is interrupted by
at least one component j A-job with j > i . Let the very last
componenti A-job scheduled in S be Ji,v for some 1 ≤ v ≤
3q. Then the completion time of the cycle associatedwith Ji,v
is at least iTW + W , where TW is a lower bound on the
total length of all componentu A-jobs, u = 1, 2, . . . , i , and
W is the smallest length of a cycle that contains the violating
component j A-job. Since W is large, job Ji,v does not meet
its deadline

Di,v = iTW + (iq2 − Tiq + Ti)E,

a contradiction.
The second property implies that on machine A all

component1 A-jobs are scheduled first, followed by all
component2 A-jobs, etc. Thus, the sequence of jobs on

123

J Sched

machine A defines a splitting of the schedule S into com-
ponents Γ1, Γ2, . . . , Γq .

(3) Given a schedule S satisfying the first two properties,
we first define sets Q1, Q2, . . . , Qq and then show that they
provide a solution to 3-PART.

Schedule S consists of components Γ j , 1 ≤ j ≤ q. In
each component Γ j machine A processes all component j
A-jobs J j,l(1 ≤ l ≤ 3q), each of which is paired with a
B-job of the same type l. Recall that a B-job Jq+1,l of type
l is long, with processing time lW + qel . All other B-jobs
J j,l , q+2 ≤ j ≤ 2q, of type l are short, with processing time
lW . Considering the long B-jobs of component Γ j , define a
set Q j of the associated indices, i.e., l ∈ Q j if and only if the
long B-job Jq+1,l is scheduled in component Γ j . Denote the
sum of the associated numbers in Q j by e(Q j) := ∑

l∈Q j
el .

The length of any cycle in component Γ j is either a j,l =
lW + (q − j)el if the component j A-job of type l is paired
with a short B-job of type l, or bq+1,l = lW + qel if it is
paired with the long B-job Jq+1,l . Then the completion time
CΓ j of component Γ j , 1 ≤ j ≤ q, can be calculated as

CΓ j =
j∑

h=1

⎛

⎝
∑

l∈Qh

[lW + qel] +
∑

l∈Q\Qh

[lW + (q − h)el]
⎞

⎠

=
j∑

h=1

(TW + (q − h)qE + he(Qh)),

which for a feasible schedule S does not exceed the common
deadline Dj,l of A-jobs in component Γ j , Dj,l = jTW +
jq2E − TjqE + Tj E = ∑ j

h=1 (TW + (q − h)qE + hE) .

Notice that the deadline of any B-job in component Γ j is not
less than Dj,l .

Thus, for any j, 1 ≤ j ≤ q we get

Dj,l − CΓ j =
j∑

h=1

(TW + (q − h)qE + hE)

−
j∑

h=1

(TW + (q − h)qE + he(Qh))

=
j∑

h=1

h (E − e(Qh)) ≥ 0. (8)

If all inequalities in (8) hold as equalities, i.e.,

j∑

h=1

h (E − e(Qh)) = 0, j = 1, 2, . . . , q,

then it is easy to prove by induction that E − e(Qh) =
0 for each h = 1, . . . , q and therefore the partition
Q1, Q2, . . . , Qq of Q defines a solution to 3-PART.

Assume the contrary, i.e., there is at least one strict
inequality in (8). Then a linear combination L of inequal-
ities (8) with strictly positive coefficients has to be strictly
positive. Using coefficients 1

j − 1
j+1 for j = 1, 2, . . . , q − 1

and 1
q for j = q we obtain:

L =
q−1∑

j=1

⎡

⎣
(
1

j
− 1

j + 1

) j∑

h=1

h (E − e(Qh))

⎤

⎦

+ 1

q

q∑

h=1

h (E − e(Qh)) > 0.

It follows that

0 < L =
q−1∑

h=1

⎡

⎣h (E − e(Qh))

q−1∑

j=h

(
1

j
− 1

j + 1

)
⎤

⎦

+ 1

q

q∑

h=1

h (E − e(Qh))

=
q−1∑

h=1

[

h (E − e(Qh))

(
1

h
− 1

q

)]

+ 1

q

q∑

h=1

h (E − e(Qh))

=
q∑

h=1

(E − e(Qh)) = 0,

where the last equality follows from the definition of E for
an instance of 3-PART. The obtained contradiction proves
the third property of the lemma. 	

Lemmas 1 and 2 together imply the following result.

Theorem 4 Problem O2|synmv,C j ≤ Dj |− is NP-
complete in the strong sense, even if each job has only one
nonzero operation.

Similar arguments can be used to formulate a reduction
from the PARTITION problem (PART) to the two-machine
synchronous open shop problem, instead of the reduction
from 3-PART. Notice that in the presented reduction from 3-
PART all B-jobs have the same deadline, while A-jobs have
q different deadlines, one for each component Γ j defining
a set Q j . In the reduction from PART we only require two
different deadlines D, D′, one for each of the two sets cor-
responding to the solution to PART. Similar to the reduction
from 3-PART, we define component1 A-jobs with deadline
D and component2 A-jobs with deadline D′ which define
a splitting of the schedule into two components Γ1, Γ2. For
each of the natural numbers of PART we define one long
B-job and one short B-job and show that the distribution of

123

J Sched

the long jobs within the two components of the open shop
schedule corresponds to a solution of PART. Omitting the
details of the reduction, we state the following result.

Theorem 5 Problem O2|synmv,C j ≤ Dj , Dj ∈ {D′,
D′′}|− with only two different deadlines is at least ordinary
NP-complete, even if each job has only one nonzero opera-
tion.

At the end of this section we note that the complex-
ity of the relaxed versions of the problems, which allow
incomplete cycles modeled via dummy jobs, remains the
same as stated in Theorems 4 and 5. Indeed, Property 1 of
Lemma 2 stating that each nonzero operation of some job
is paired with a nonzero operation of another job, still holds
for the version with dummy jobs. Therefore, in the presence
of dummy jobs a schedule meeting the deadlines has the
same component structure as in Lemmas 1 and 2, so that the
same reduction from 3-PART (PART) works for proving that
O2|synmv, rel,C j ≤ Dj |− is strongly NP-complete and
O2|synmv, rel,C j ≤ Dj , Dj ∈ {

D′, D′′} |− is at least
ordinary NP-complete.

4 Minimizing the total completion time

In this section, we prove that the synchronous open shop
problem with the total completion time objective is strongly
NP-hard even in the case of m = 2 machines. The proof
uses some ideas by Röck (1984) who proved NP-hardness
of problem F2|no − wait |∑C j . Note that the latter prob-
lem is equivalent to the synchronous flow shop problem
F2|synmv|∑C j .

For our problem O2|synmv|∑C j we construct a reduc-
tion from the auxiliary problem AUX, which can be treated
as a modification of the HAMILTONIAN PATH problem
known to be NP-hard in the strong sense (Garey and John-
son 1979).

Consider the HAMILTONIANPATH problem defined for
an arbitrary connected graph G ′ = (V ′, E ′) with n − 1
vertices V ′ = {1, 2, . . . , n − 1} and edge set E ′. It has to
be decided whether a path exists which visits every vertex
exactly once. To define the auxiliary problemAUX,we intro-
duce a directed graph

−→
G obtained from G ′ in two stages:

– first add toG ′ a universal vertex 0, i.e., a vertex connected
by an edge with every other vertex; denote the resulting
graph by G = (V, E);

– then replace each edge of graphG by two directed arcs in
opposite directions; denote the resulting directed graph
by

−→
G = (V,

−→
E).

For problemAUX it has to be decidedwhether an Eulerian
tour ε in

−→
G starting and ending at 0 exists where the last n

Fig. 5 Constructing the graph
−→
G for problem AUX

vertices constitute a Hamiltonian path, ending at 0. As shown
in Appendix 2, the two problems HAMILTONIAN PATH
and AUX have the same complexity status. An example that
illustrates graphs G ′,G and

−→
G is shown in Fig. 5; a possible

Eulerian tour in
−→
G is ε = (0, 1, 0, 2, 0, 3, 0, 4, 2, 4, 3, 2,

1,2,3,4,0),where the last n = 5 vertices formaHamiltonian
path.

Given an instance of AUXwith n vertices V = {0, 1, . . . ,
n − 1} and arcs −→

E , we introduce an instance of the synchro-
nous open shop problem SO using the constants

σ = |−→E |/2, K = 8n, ξ = 4Kσ 2, L = 2n9ξ.

Furthermore, for each vertex v ∈ V let d(v) = deg−(v) =
deg+(v) be the in-degree deg−−→

G
(v) (the number of arcs enter-

ing v), which here equals its out-degree deg+−→
G

(v) (the number

of arcs leaving v). Note that σ = ∑
v∈V ′ d(v)/2.

In a possible solution to AUX, if one exists, every vertex
v ∈ V \{0} has to be visited d(v) times and each arc (v,w) ∈−→
E has to be traversed exactly once. We introduce instance
SO for problem O2|synmv|∑C j . For each vertex v we

create d(v) vertex-jobs Ve1v,Ve
2
v, . . . ,Ve

d(v)
v , one for each

visit of vertex v in an Eulerian tour ε, and for each arc (v,w)

we create an arc-job Arvw. For vertex v = 0 we create d(0)
vertex-jobs, as described, and additionally one more vertex-
job Ve00 that corresponds to the origin of the Eulerian tour ε.
In addition to these 2σ + 1 vertex-jobs and 2σ arc-jobs, we
create 2n9 + 1 “forcing” jobs F0, F1, . . . , F2n9 to achieve a
special structure of a target schedule. We denote the set of
jobs N . Their processing times are given in Table 1.

We call each operation with a processing time of L a “long
operation” and each operation with a processing time of less
than L a “short operation.” Further, we refer to a job as a
long job if at least one of its operations is long and as a short
job if both of its operations are short.

The threshold value of the objective function is defined as
Θ = Θ1 + Θ2, where

Θ1 = (8σ 2 + 2σ)ξ + 4σ 2K − 2
∑

v∈V
vd(v) + n2,

123

J Sched

Table 1 Processing times of the jobs in instance SO

Θ2 = 2(n9 + 1)
((

n9 + 1
)
L + 4σξ + 2σK + n

)
.

As we show later, in a schedule with
∑

C j ≤ Θ , the total
completion time of the short jobs isΘ1 and the total comple-
tion time of the long jobs is Θ2.

Theorem 6 Problem O2|synmv|∑C j is stronglyNP-hard.

Proof Consider an instance AUX and the corresponding
scheduling instance SO. We prove that an instance of prob-
lem AUX has a solution, if and only if the instance SO has a
solution with

∑
C j ≤ Θ .

“⇒”: Let the solution to AUX be given by an Eulerian
tour ε = (v0, v1, . . . , v2σ) starting at v0 = 0 and ending at
v2σ = 0 such that the last n vertices form a Hamiltonian
path. The solution to problem SO consists of two parts and
it is constructed as follows:

– In Part 1, machine M1 processes 2σ + 1 vertex-jobs and
2σ arc-jobs in the order that corresponds to traversing ε.
Machine M2 starts with processing the forcing job F0 in
cycle 1 and then proceeds in cycles 2, 3, . . . , 4σ +1 with
the same sequence of vertex-jobs and arc-jobs as they
appear in cycles 1, 2, . . . , 4σ onmachineM1. Notice that
in Part 1 all vertex- and arc-jobs are fully processed on
both machines except for job Ved(v)

0 which is processed
only on M1 in the last cycle 4σ + 1.

– In Part 2, machine M1 processes the forcing jobs
F0, F1, . . . , F2n9 in the order of their numbering.
Machine M2 processes in the first cycle of Part 2 (cycle
4σ + 2) the vertex-job Ved(v)

0 which is left from Part 1.
Then in the remaining cycles 4σ + 3, . . . , 4σ + 2+ 2n9,
every job Fi (i = 1, . . . , 2n9) on M1 is paired with job
Fi+1 on M2 if i is odd, and with job Fi−1, otherwise.

In Fig. 6 we present an example of the described sched-
ule based on graph

−→
G of Fig. 5. Notice that there are

n = 5 vertices in
−→
G , and parameter σ equals 8. Travers-

ing the Eulerian tour ε = (0, 1, 0, 2, 0, 3, 0, 4, 2, 4, 3, 2,
1,2,3,4,0) incurs the sequence of vertex-jobs and arc-jobs

(Ve00,Ar01,Ve
1
1,Ar10,Ve

1
0,Ar02, . . . ,Ve

2
1,Ar12,Ve

4
2,Ar23,

Ve33,Ar34,Ve
4
3,Ar40,Ve

4
0). There are 2σ + 1 = 17 vertex-

jobs, 2σ = 16 arc-jobs, and 2n9 +1 = 2×59 +1 jobs Fi , so

that all jobs are allocated in 34+2×59 cycles. The schedule
is represented as a sequence of cycles, where the operations
on machines M1 and M2 are enframed and the lengths of the
corresponding operations are shown above or below. Opera-
tions of equal length in one cycle are shown as two boxes of
the same length; the sizes of the boxes of different cycles are
not to scale.

We demonstrate that the constructed schedule satisfies∑
C j = Θ . Observe that most cycles have equal workload

on both machines, except for the n cycles that correspond to
the vertex-jobs of the Hamiltonian path; in each such cycle
the operation on M1 is one unit longer than the operation on
M2.

First consider the short jobs. The initial vertex-jobVe00 that
corresponds to the origin v0 = 0 of ε = (v0, v1, . . . , v2σ)

completes at time ξ . Each subsequent vertex-job that cor-
responds to vi , 1 ≤ i ≤ 2σ − n, where we exclude the
last n vertices of the Hamiltonian path, completes at time
(2i + 1)ξ + i K . Consider the next n − 1 vertex-jobs vi with
2σ − n+ 1 ≤ i ≤ 2σ − 1 (excluding the very last vertex-job
Ved(0)

0 as it is a long job); every such job vi completes at time
(2i + 1)ξ + i K + (n + i − 2σ).

The remaining short jobs correspond to arc-jobs. The com-
pletion time of the i-th arc-job Arvi−1vi is 2iξ + i K − 2vi
for 1 ≤ i ≤ 2σ − n and 2iξ + i K − 2vi + (n + i − 2σ) for
2σ − n + 1 ≤ i ≤ 2σ .

Thus, the total completion time of all short jobs sums up
to

ξ +
2σ−n∑

i=1

[(2i + 1)ξ + i K]

+
2σ−1∑

i=2σ−n+1

[(2i + 1)ξ + i K + (n + i − 2σ)]

+
2σ−n∑

i=1

[2iξ + i K − 2vi]

+
2σ∑

i=2σ−n+1

[2iξ + i K − 2vi + (n + i − 2σ)]

=
[

ξ +
2σ−1∑

i=1

(2i + 1)ξ +
2σ∑

i=1

2iξ

]

123

J Sched

Fig. 6 An optimal solution to SO

+
[
2σ−1∑

i=1

i K +
2σ∑

i=1

i K

]

+
[
n−1∑

i=1

i +
n∑

i=1

i

]

− 2
2σ∑

i=1

vi

= (8σ 2 + 2σ)ξ + 4σ 2K + n2 − 2
∑

v∈V
vd(v) = Θ1.

Here we have used the equality

2σ∑

i=1

vi =
∑

v∈V
vd(v)

which holds for the Eulerian tour ε = (v0, v1, . . . , v2σ) with
vi ∈ V .

Next, consider the completion times of the long jobs. The
second operations of jobs Ved(0)

0 and F0 appear in cycle
4σ + 2; all other long operations are scheduled in cycles
4σ + 3, . . . , 4σ + 2 + 2n9. There is a common part of the
schedule, with cycles 1, 2, . . . , 4σ +1 that contributes to the
completion time of every long job; the length of that common
part is

Δ = 4σξ + 2σK + n.

Then the first two long jobs, F0 and Ved(0)
0 , are both com-

pleted at time Δ + L and for i = 1, . . . , n9 the completion
time of each pair of jobs F2i−1 and F2i is Δ + (2i + 1)L .
Thus, the total completion time of the long jobs sums up to

2 (Δ + L) + 2
n9∑

i=1

[Δ + (2i + 1)L] (9)

= 2Δ(n9 + 1) + 2(n9 + 1)2L (10)

= 2(n9 + 1)[(4σξ + 2σK + n) + (n9 + 1)L] = Θ2

(11)

and therefore the total completion time sums up to Θ =
Θ1 + Θ2.

“⇐”: Now we prove that if an instance of AUX does
not have a solution, then also SO does not have a solu-
tion with

∑
C j ≤ Θ . Suppose to the contrary that there

exists a schedule with
∑

C j ≤ Θ and let S be an optimal
schedule.

123

J Sched

Fig. 7 Structure of schedule S

Such a schedule satisfies the following structural proper-
ties, see Appendix 2 for a proof.

1. In each cycle in S, both operations are either short or
long.

2. All long operations are scheduled in the last 2n9 + 1
cycles. This defines the splitting of schedule S into Parts 1
and 2, with cycles 1, 2, . . . , 4σ +1 and 4σ +2, . . . , 4σ +
2 + 2n9.

3. The sum of completion times of all long jobs is at least
Θ2.

4. In S, machine M1 operates without idle times.
5. In Part 1 of S, job Ve00 is processed in the first two cycles

which are of the form
Ve00
F0

∗
Ve00

, where ∗
represents a short operation. While the order of these
two cycles is immaterial, without loss of generality we

assume that
Ve00
F0

precedes
∗
Ve00

; otherwise the

cycles can be swapped without changing the value of∑
C j .

6. The two operations of each vertex-job and the two oper-
ations of each arc-job are processed in two consecutive
cycles, first on M1 and then on M2.

7. In Part 1 of S, machine M1 alternates between process-
ing arc-jobs and vertex-jobs. Moreover, an operation of a
vertex-job corresponding to v is followed by an operation
of an arc-job corresponding to an arc leaving v. Similarly,
an operation of an arc-job for arc (v,w) is followed by
an operation of a vertex-job for vertex w.
By Property 6, the same is true for machine M2 in Part 1
and in the first cycle that follows it.

8. The first arc-job that appears in S corresponds to an arc
leaving 0. Among the vertex-jobs, the last one is Ved(0)

0 .

Using the above propertieswe demonstrate that if problem
AUX does not have a solution, then the value of

∑
C j in

the optimal schedule S exceeds Θ . Due to Property 3 it is
sufficient to show that the total completion time

∑μ
j=1 C j of

all short jobs exceeds Θ1. Let us assume that {1, 2, . . . , μ}
with μ = 4σ are the short jobs of the instance SO. This set
consists of 2σ short vertex-jobs (the long vertex-job Ved(0)

0
is excluded) and 2σ arc-jobs.

Properties 1–2 allow the splitting of S into two parts. Part 2
plays an auxiliary role. Part 1 is closely linked to problem
AUX.

The sequence of arc- and vertex-jobs in Part 1 of S defines
an Eulerian tour in

−→
G . Indeed, all arc-jobs appear in S and by

Property 7 the order of the arc- and vertex-jobs in S defines
an Eulerian trail in

−→
G . Since for every vertex v, its in-degree

equals its out-degree, an Eulerian trail must be an Eulerian
tour. Denote it by ε = (v0, v1, . . . , v2σ). Due to Property 8
and by the assumption of Property 5 the Eulerian tour ε starts
and ends at v0 = 0.

In Fig. 7 we present the structure of Part 1 of schedule
S, where Ve∗

v represents one of the vertex-jobs Ve1v , Ve
2
v ,…,

Ved(v)
v , with processing time ξ +K −2v+1 or ξ +K −2v on

machine M1, depending on whether the upper index is d(v)

or a smaller number. Part 2 is as in the proof of “ ⇒”.
Notice that all operations of the short jobs appear only in

Part 1 of the above schedule, with one short job complet-
ing in each cycle 2, 3, . . . , μ + 1. In each cycle of Part 1,
both operations are of the same length, except for the n − 1
cycles where the vertex-jobs Ved(v)

v , v ∈ {1, 2, . . . , n − 1},
are scheduled on machine M1, and the final cycle of Part 1
where Ved(0)

0 is scheduled. In these cycles the operation on
M1 is one unit longer than the operation on M2. Let

ϑ :=
{
Ved(v)

v | v = 1, 2, . . . , n − 1
}

be the set of the n− 1 jobs with one extra unit of processing.
Job Ved(0)

0 is not included in this set as its precise location is
known by Property 8.

We show that for any Eulerian tour ε = (v0, v1, . . . , v2σ),
the value of

∑μ
j=1 C j does not depend on the order of the

vertices in ε; it only depends on the positions of the n − 1
jobs from ϑ . In particular, we demonstrate that

μ∑

j=1

C j = Υ +
μ+1∑

�=2

(μ − � + 2) x�, (12)

where Υ = Θ1 − n2 is a constant, and x� ∈ {0, 1} indicates
whether some job from ϑ is allocated to cycle � or not.

The constant term Υ is a lower bound estimate for
∑μ

j=1 C j obtained under the assumption that one additional

123

J Sched

Table 2 Summary of the results

Problem Complexity References

O|synmv|Cmax str. NP-h. Weiß et al. (2016)

Om|synmv|Cmax O(n)∗ Weiß et al. (2016)

O2|synmv|Cmax O(n) Section 2

O2|synmv,C j ≤ Dj |− str. NP-c. Section 3

O2|synmv,C j ≤ Dj , Dj ∈ {D′, D′′}|− NP-c. Section 3

O2|synmv|∑C j str. NP-h. Section 4

∗ with a constant bounded by
(2m2

m2

)m

time unit for each job from ϑ and also for job Ved(0)
0 is

ignored. If we drop “+1” from the input data of the instance
SO, then both machines have equal workload in every cycle.
Job Ve00 contributes ξ to Υ . The job corresponding to vi ,

except for job Ved(0)
0 (which is a long job) contributes

(2i +1)ξ + i K . The arc-job corresponding to (vi , vi+1) con-
tributes 2iξ + i K − 2vi+1. Thus,

Υ = ξ +
2σ−1∑

i=1

[(2i + 1)ξ + i K] +
2σ∑

i=1

[
2iξ + i K − 2vi+1

]

= (8σ 2 + 2σ)ξ + 4σ 2K − 2
∑

v∈V
vd(v) = Θ1 − n2.

Consider now the effect of the additional time unit on
machine M1 for each job from ϑ and for job Ved(0)

0 . If some
ϑ-job is allocated to a cycle �, then the additional unit of
processing increases by one the completion time of every
short job finishing in cycles �, � + 1, . . . , μ + 1, and thus
contributes (μ + 1) − � + 1 to

∑μ
j=1 C j . This justifies for-

mula (12).
As shown in the above template, each of the n − 1

jobs j ∈ ϑ can be scheduled in any odd-numbered cycle
� ∈ {3, 5, . . . , μ − 1}. Also, by Property 8, an additional
time unit appears in cycle μ + 1 due to the allocation of
Ved(0)

0 to machine M1, which affects the completion time
of a short job in that cycle. Thus, the minimum value of∑μ

j=1 C j is achieved if all n−1 jobs from ϑ are allocated to
the latest possible odd-numbered positions, i.e., to positions
� = (μ − 1) − 2i for i = 0, 1, . . . , n − 2. Together with an
extra “1 ” related to the allocation of Ved(0)

0 to cycle μ + 1,
this results in

μ+1∑

�=2

(μ − � + 2) x� = 1 +
n−2∑

i=0

[μ − (μ − 1 − 2i) + 2]

= 1 + 3 + · · · + (2n − 1) = n2,

so that
∑μ

j=1 C j is equal to Θ1 if jobs ϑ are allocated to the
latest feasible positions. Due to (12), any other allocation of
jobs ϑ , which does not involve the last n − 1 odd-numbered
positions, results in a larger value of

∑μ
j=1 C j .

By the main assumption of the part “⇐”, AUX does not
have a solution where the last n vertices form a Hamiltonian
path. Therefore, the last n vertices of any Eulerian tour ε =
(v0, v1, . . . , v2σ) have at least two occurrences of the same
vertex v and therefore in the associated schedule, among the
last n vertex-jobs there are at least two vertex-jobs Veiv,Ve

j
v

associated with v. Thus, it is impossible to have n − 1 jobs
from ϑ allocated to the last n − 1 odd-numbered cycles and
to achieve the required threshold value Θ1. 	

At the end of this section we observe that the proof of
Properties 1–8 canbe adjusted to handle the casewith dummy
jobs. Indeed, in an optimal solution of the instance, even if
we allow dummy jobs, dummy operations are not allowed
to be paired with actual operations of nonzero length (see
Property 4).We conclude therefore that the complexity status
of the relaxed problem is the same as that for the standard
one.

Theorem 7 Problem O2|synmv, rel|∑C j is strongly NP-
hard.

5 Conclusions

In this paper we studied synchronous open shop scheduling
problems. The results are summarized in Table 2. Note that
the polynomial time results in lines 2 and 3 do not include
presorting of all jobs.

All results from Table 2 also hold for the relaxed versions
of the scheduling problems, in which cycles may consist of
less than m jobs.

For problem O2|synmv|Cmax we proved a new struc-
tural property, namely the small block property. Using it,
we formulated a much easier solution algorithm than pre-
viously known. Unfortunately, we were unable to prove
an improved structural property for any fixed m > 2. In
Table 2 we quote a previously known algorithm, which is
based on the corridor property. Our result for two machines
gives hope that this general result for fixed m may also be
improved and highlights possible approaches for such an
improvement.

123

J Sched

The NP-completeness results of Sect. 3 imply that if
instead of hard deadlines Dj soft due dates d j are given
(which are desirable to be met, but can be violated), then
the corresponding problems O|synmv| f with the traditional
regular due date-related objectives f such as the maximum
lateness Lmax = max1≤ j≤n{C j−d j }, the number of late jobs∑n

j=1Uj , or the total tardiness
∑n

j=1 Tj are NP-hard, even
if there are only two values of the due dates, d j ∈ {d, d ′}.
The corresponding problems become stronglyNP-hard in the
case of arbitrary due dates d j .

Finally, due to the symmetry known for problems with
due dates d j and those with release dates r j , we conclude
that problem O2|synmv, r j |Cmax is also strongly NP-hard
and remains at least ordinary NP-hard if there are only two
different values of release dates for the jobs.

In Sect. 4 we show that O2|synmv|∑C j and its relaxed
version are strongly NP-hard. Thus, due to the reducibil-
ity between scheduling problems with different objectives,
the open shop problem with synchronization is NP-hard
for any traditional scheduling objective function, except
for Cmax.

Overall the synchronized version of the open shop prob-
lem appears to be no harder than the classical version, with
two additional positive results for it: 1) Om|synmv|Cmax

is polynomially solvable for any fixed m while Om||Cmax

is NP-hard for m ≥ 3 (Gonzalez and Sahni 1976); 2)
O|synmv, n = n′|Cmax is polynomially solvable for any
fixed number of jobs n′ (due to the symmetry of jobs and
machines), while O|n = n′|Cmax is NP-hard for n′ ≥ 3.
Moreover, in a solution to O|synmv|Cmax with n ≤ m
all jobs have the same completion time, so that an optimal
schedule for Cmax is also optimal for any other nonde-
creasing objective f . It follows that we can solve problem
O|synmv, n = n′| f , with a fixed number of jobs n′, for any
such objective f .

Finally, comparing the open shop and flow shop mod-
els with synchronization, we also observe that the open
shop problem is no harder, with a positive result for
Om|synmv|Cmax with an arbitraryfixednumber ofmachines
m, while its flow shop counterpart Fm|synmv|Cmax is NP-
hard for m ≥ 3, see Waldherr and Knust (2015).

Acknowledgments The work of S. Knust and S. Waldherr was
supported by the Deutsche Forschungsgemeinschaft, KN 512/7-1.
The work of N.V. Shakhlevich was supported by the EPSRC grant
EP/K041274/1. We are very grateful for the comments of two anony-
mous reviewers who helped us to improve the presentation of the paper.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

6 Appendix 1: The proof of the small block
property (Theorem 1)

The general idea of the proof can be described as follows.
Startingwith an arbitrary optimal solutionwhichdoes not sat-
isfy the small block property, replace repeatedly each block
of size s ≥ 4 by two blocks of cumulative size s, one of
which is small. The replacement is performed for the relaxed
problem APF=∅, ignoring forbidden pairs F , but making
sure that the cost of the new solution (possibly infeasible in
terms of F) is not larger than that of its predecessor. Addi-
tionally, we keep 0-entries on the main diagonal unchanged,
so that no new blocks of size 1 are created. As a result a new
solution is constructed, feasible for APF=∅ , of no higher
cost than the original one, consisting of small blocks only.
If the constructed solution is infeasible for APF , then at the
next stage infeasible blocks of size 2 and 3 are replaced by
feasible blocks, also without increasing the cost, achieving
an optimal solution consisting of small blocks.

Firstweprove the possibility of block splitting (Lemma3),
and then explain how infeasible blocks can be converted into
feasible ones (Lemmas 4, 5 for blocks of size 2 and 3, respec-
tively). It leads to the main result (Theorem 1) - the existence
of an optimal solution consisting of small blocks of type (6).

For a block consisting of 1-entries in rows and
columns { j1, j1 + 1, . . . , j1 + s − 1}, renumber those rows
and columns as { j1, j2, . . . , js} with ji = j1 + i − 1, 1 ≤
i ≤ s. The cost associated with block Xh is defined as

w (Xh) =
s∑

u=1

s∑

v=1

w ju jv x ju jv ,

so that the total cost of solution X with blocks (5) is

w (X) =
z∑

h=1

w (Xh) .

Lemma 3 If an optimal solution to problem APF contains
a block Xy of size s > 3, defined over rows and columns
{ j1, j2, . . . , js}, then without increasing the cost it can be
replaced by two blocks, one block of size 2 or 3 defined
over rows and columns { j1, j2} or { j1, j2, j3}, and one block
defined over the remaining rows and columns. Furthermore,
if a diagonal entry x jk jk in the initial solution is 0, then in
the modified solution x jk jk is 0 as well.

Proof Given a solution, we identify the nonzero entries in
columns j1, j2, and j3, and denote the corresponding rows
by ja, jb, jc. For these indices we have

x ja j1 = 1, x jb j2 = 1, x jc j3 = 1. (13)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

J Sched

Fig. 8 Transformation of block Xy into X′
y

Furthermore, for nonzero entries in rows j1, j2, and j3, we
denote the corresponding columns by jt , ju, jv and have

x j1 jt = 1, x j2 ju = 1, x j3 jv = 1. (14)

The proof is presented for the case

x j1 j1 = x j2 j2 = x j3 j3 = 0. (15)

Notice that the case x j1, j1 = 1contradicts the assumption that
blockXy is large. In the case of x j2 j2 = 1we replace blockXy

by block X′
y as shown in Fig. 8. Here the 1-entries which are

subject to change are enclosed in boxes and * denotes an arbi-
trary entry, 0 or 1. This transformation involves 4 entries in
rows { j1, j2} and columns { j2, jt }. Notice that the marked 1-
entries in the initial blockXy belong to a diagonal of type �,
while the marked 1-entries in the resulting block X′

y belong

to a diagonal of type �, so that w
(
X′

y

)
≤ w

(
Xy

)
by the

Monge property.
In the case of x j1 j1 = x j2 j2 = 0, x j3 j3 = 1, at least one

of the values, a or t , is larger than 3 (a = 3 or t = 3 is
not possible for x j3 j3 = 1; a ≤ 2 and t ≤ 2 is not possible
since block Xy is large). If t > 3, then the transformation is
similar to that in Fig. 8: it involves 4 entries in rows { j1, j3}
and columns { j3, jt }. Alternatively, if a > 3, then the trans-
formation involves 4 entries in rows { j3, ja} and columns
{ j1, j3}. In either case, the 1-entries in the initial solution
belong to a diagonal of type � and to a diagonal of type �

after the transformation, so that the cost does not increase by
the Monge property.

Thus, in the following we assume that condition (15)
holds.

Case t = 2, or equivalently x j1 j2 = 1. This implies b = 1.
If a �= u, then the transformation from Xy to X̄y shown in
Fig. 9 creates a small block of size 2 without increasing the
cost.

Fig. 9 Transformation of block Xy into X̄y

(a) (b)

(c)

Fig. 10 Cases where t = 2 and a = u ≤ 3: (a) a = u = 1, (b) a =
u = 2, (c) a = u = 3

Consider the case a = u and notice that we can assume
a = u > 3. Indeed, cases a = u = 1 and a = u = 2 cannot
happen as the corresponding assignment is infeasible (see
Fig. 10a, b), and in case a = u = 3 the block is already small
(see Fig. 10c). For a = u > 3 the transformation illustrated
in Fig. 9 is not applicable as it results in a new diagonal entry
x ja ja = 1. Instead, we perform the two transformations from

Xy to X̃y and then to ˜̃Xy shown in Figs. 11 and 12, creating
eventually a small block of size 3.

Observe that both of the values, c and v, are different from
a = u. Note further that we have c �= 1 as t = 2, c �= 2 as
u > 3, and c �= 3 due to (15). Similarly v �= 1 as a > 3,
v �= 2 as t = 2, and v �= 3 due to (15). Thus c > 3 and v > 3.
The relationship between a = u and c is immaterial, as the
above transformations work in both cases, a = u < c and
a = u > c. Similarly, the relationship between a = u and v

is immaterial aswell.Moreover, the presented transformation
works for either case, c = v or c �= v.

Case a = 2 is similar to the case of t = 2 since the X-
matrices for these two cases are transposes of each other.
Recall that whenever the swaps are done in the case of t = 2,
the 1-entries on a diagonal of type� become 0-entries, while

123

J Sched

Fig. 11 Transformation from Xy to X̃y

Fig. 12 Transformation from X̃y to
˜̃Xy

the 0-entries on a diagonal of type�become1-entries, so that
the Monge inequality (3) is applicable. In the case of a = 2,
the initial 1-entries in the transpose matrix also belong to a
diagonal of type �, while the new 1-entries are created on a
diagonal of type �.

Case a > 2 and t > 2 with a < b and t < u. Consider
the transformation from Xy to X̂y shown in Fig. 13. It uses
the Monge property two times, once for the entries in rows
{ j2, ja} and columns { j1, ju}, and another time for the entries
in rows { j1, jb} and columns { j2, jt }.

Fig. 13 Transformation from Xy to X̂y

Fig. 14 Transformation from X̂y to
̂̂Xy

If a �= u and b �= t , then the resulting matrix X̂y satisfies
the conditions of the lemma and a matrix without changed
diagonal entries and with a small block of size 2 is obtained.

Consider the case a = u or b = t . By the definition of
the indices a, b, t, u, according to (13)–(14), we have a �= b
and t �= u. The latter two conditions, combined with either
a = u or b = t , imply a �= t and b �= u.

Then, after Xy is transformed into X̂y , we perform one

more transformation from X̂y to
̂̂Xy shown in Fig. 14. Then,

the resulting matrix ̂̂Xy satisfies the conditions of the lemma.

123

J Sched

Fig. 15 Transformation from Xy to X∗
y

Case a > 2 and t > 2 with a < b and t > u. We start
with an additional preprocessing step shown inFig. 15 replac-
ing x1t = x2u = 1 by 0-entries and x1u = x2t = 0 by
1-entries without increasing the cost.

In the resulting matrix X∗
y , we interchange the notation of

the columns jt and ju in accordance with definition (14) and
proceed as described above for the case t < u. Since a > 2
and therefore u �= 1, no new diagonal entry is produced in
the preprocessing.

Case a > 2 and t > 2 with a > b. This case corresponds
to the transposed of the picture in the previous case. We
undertake a similar preprocessing step as before, to transform
this case into one with a < b. 	

Lemma 4 If a solution X contains an infeasible block of
size 2, i.e., x j1, j2 = x j2, j1 = 1 with at least one of the entries
(j1, j2) or (j2, j1) belonging to F , then without increasing
the cost it can be replaced by two feasible blocks of size 1,
given by x j1, j1 = 1 and x j2, j2 = 1.

Proof For the above transformation the cost does not
increase due to the Monge property. As far as feasibility
is concerned, by the definition of set F , there is exactly
one forbidden entry in each row and each column. Thus, if
(j1, j2) ∈ F , then neither (j1, j1) nor (j2, j2) are forbidden.
Similar arguments hold for (j2, j1) ∈ F . 	

Lemma 5 If a solution X contains an infeasible block of
size 3, then that block can be replaced, without increasing
the cost, by three feasible blocks of size 1, or by two feasible
blocks, one of size 1 and another one of size 2.

Proof Let Xy be an infeasible block consisting of rows and
columns j1, j2 and j3. The proof is presented for the case

x j1 j1 = x j3 j3 = 0;

Fig. 16 Blocks X(I)
y ,X(I I)

y and X(I I I)
y

(a) (b)

(c)

Fig. 17 Blocks X(a)
y ,X(b)

y and X(c)
y

otherwiseXy can be decomposed into smaller blocks. Under
the above assumption, Xy is of one of the three types

X(I)
y ,X(I I)

y or X(I I I)
y , shown in Fig. 16.

Notice that X(I I I)
y can be replaced by X(I I)

y without
increasing the cost, using the Monge property, and so we
only have to deal with X(I)

y and X(I I)
y , which are symmet-

ric. We first demonstrate that each block, X(I)
y or X(I I)

y , can

be replaced by blocks X(a)
y ,X(b)

y or X(c)
y shown in Fig. 17,

without increasing the cost. Then we proof that at least one
of those blocks is feasible.

The transformation of X(I)
y into X(a)

y or X(b)
y involves a

quadruple of 1-entries, so that the cost does not increase due
to the Monge property. Transforming X(I)

y into the diagonal

solution X(c)
y we achieve a minimum cost assignment for

the Monge submatrix given by rows and columns { j1, j2, j3}
(see, e.g., Burkard et al. 1996). The same arguments hold for
the transformation of X(I I)

y into X(a)
y ,X(b)

y , or X(c)
y .

In the following, we deal with feasibility. If the initial
infeasible block is of type X(I)

y , then at least one of the pairs
(j1, j3), (j2, j1), or (j3, j2) is forbidden. Therefore, at least
one pair (j1, j1) or (j3, j3) is feasible. If (j1, j1) is feasible,
then block X(a)

y or X(c)
y is feasible. Similarly, if (j3, j3) is

feasible, then block X(b)
y or X(c)

y is feasible.
Similar arguments can be used if the initial infeasible

block is of type X(I I)
y . 	

Combining Lemmas 3–5 and using them repeatedly we
arrive at the main result of Theorem 1. Below we present the
formal proof.

123

J Sched

Proof of Theorem 1: Consider any optimal solution.
Apply Lemma 3 repeatedly until all blocks are of size 1, 2,
or 3. Since all diagonal 1-entries of the new solution are also
present in the original solution, those entries are feasible.
Therefore, all blocks of size 1 are feasible. By Lemmas 4–5
all blocks of size 2 or 3 are either feasible or can be con-
verted into feasible blocks without increasing the cost. Thus,
the resulting solution has blocks of size 1, 2, and 3, it is fea-
sible, and its cost is not larger than the cost of the original
optimal solution.

Finally, the only small blocks that are not of type (6), have
three 1’s on the secondary diagonal, since other configura-
tions of 0’s and 1’s combine blocks of type (6). Due to the
arguments used in the proof of Lemma5with respect to block
X(I I I)

y , such blocks can also be eliminated, which concludes
the proof.

7 Appendix 2: The proofs of the key statements
from Section 4

We start Appendix 2 by summarizing the notions from
graph theory required for Sect. 4. In an undirected graph
G = (V, E) we define a trail of length k as a sequence
of vertices (v0, v1, . . . , vk) with {vi , vi+1} ∈ E for i =
0, . . . , k − 1. A path of length k is a trail of length k in
which the vertices v0, . . . , vk are pairwise different. In a
directed graph

−→
G = (V,

−→
E), a directed trail of length k is

a sequence of vertices (v0, v1, . . . , vk) with (vi , vi+1) ∈ −→
E

for i = 0, . . . , k − 1. A directed path is then defined similar
to an undirected path. A Hamiltonian path (either directed
or undirected) is a path of length |V | such that each v ∈ V
is contained in the path. An Eulerian trail (either directed or
undirected) is a trail which uses every edge exactly once; it
may use vertices multiple times if needed. An Eulerian tour
is an Eulerian trail which starts and ends in the same vertex.

A graph G = (V, E) is connected if for any two different
vertices v,w ∈ V there exists a path from v to w in G. A
directed graph

−→
G = (V,

−→
E) is strongly connected if for each

pair of different vertices (v,w) ∈ V × V there is a directed
path from v to w in

−→
G .

In a graph G = (V, E) the number of edges incident with
a vertex v ∈ V is also called the degree of v, denoted by
degG(v). For a directed graph

−→
G , we distinguish between

the out-degree deg+−→
G

(v) of a vertex v (the number of arcs

leaving v) and the in-degree deg−−→
G

(v) (the number of arcs

entering v).
In Sect. 4 we are given a connected graph G ′ = (V ′, E ′)

with V ′ = {1, 2, . . . , n − 1}. To construct the graph
−→
G for

problem AUX, we first construct the graph G = (V, E) by
adding a universal vertex 0 which is connected by an edge
with every vertex. In a second step, we construct a directed

graph
−→
G = (V,

−→
E) by replacing each edge {v,w} ∈ E by

two directed edges (v,w) and (w, v), one in each direction.
Note that in

−→
G we have deg−−→

G
(v) = deg+−→

G
(v) for all v ∈ V

by construction.

Lemma 6 The following statements are equivalent.

(1) There exists a Hamiltonian path in G ′.
(2) There exists a Hamiltonian path in G ending in 0.
(3) There exists a directed Hamiltonian path in

−→
G ending in

0.
(4) There exists an Eulerian tour in

−→
G , starting and ending

in 0, such that the last n vertices form a Hamiltonian
path.

Proof The implications (1) ⇒ (2) ⇒ (3) are obvious. We
prove that (3) ⇒ (4). Suppose there exists a Hamiltonian
path h = (v0, v1, . . . , vn−1) in

−→
G with vn−1 = 0. Then cre-

ate a graph
−→
G∗ by removing from

−→
G all arcs that appear in h.

By the properties of vertex 0, graph
−→
G∗ is still strongly con-

nected. Furthermore, for each inner vertex v1, v2, . . . , vn−2

of h, its in-degree in
−→
G∗ still equals its out-degree, as

one entering and one leaving edge is removed for each of
them. Lastly note that for vn−1 = 0 we have deg+−→

G∗(0) =
deg−−→

G∗(0)+1, as an arc entering 0 is removed, but not a leav-

ing one. Similarly, for v0, deg
−−→
G∗(v0) = deg+−→

G∗(v0)+1, as an

arc leaving v0 is removed, but not the one entering v0.

We conclude that
−→
G∗ contains an Eulerian trail ε∗, that

starts in 0 and ends in v0. Then the concatenation ε = ε∗ ◦ h
starts and ends in 0 and its last n vertices form a Hamiltonian
path h.

It remains to prove (4) ⇒ (1). Let ε be an Eulerian tour in−→
G , starting and ending in 0, such that the lastn vertices forma
Hamiltonian path, and let that path be h = (v0, v1, ..., vn−1)

with vn−1 = 0. Notice that the vertex 0 appears only once
in h. Then h∗ = (v0, v1, ..., vn−2) is a path in G. Since h∗
consists of all n − 1 vertices of G, h∗ is a Hamiltonian path
in G ′. 	

The remainder of the appendix deals with Properties 1–8
from the proof of Theorem 6. These properties characterize
the structure of an optimal schedule S for instance SO, under
the assumption that

∑
C j ≤ Θ for that schedule.

Lemma 7 An optimal schedule S for instance SO with
∑

C j ≤ Θ satisfies Properties 1–8.

Proof Property 1 In each cycle in S, both operations are
either short or long.

Assume the opposite and let s be the first cycle that con-
tains a short and a long operation. Since the number of long
operations is even, there is at least one further cycle t which

123

J Sched

Fig. 18 Creating a cycle of long operations and a cycle of short oper-
ations if Js �= Jt and js �= jt

contains operations of both types and inwhich the longopera-
tion is on a differentmachine than in cycle s. In the following,
assume that long operations are on machine M2 in cycle s
and on machine M1 in cycle t ; the alternative case is similar.
Let Js and js be the jobs in cycle s, with the operation of Js
being long and the operation of js being short. Let Jt and jt
be the jobs in cycle t , with the operation of Jt being long and
the operation of jt being short.

Assume first that Js �= Jt and js �= jt . Construct a new
schedule S′ by swapping the operations on M2, see Fig. 18.
Then, the length of cycle s in S′ decreases by at least L−(ξ +
K + 1) while all other cycles keep their lengths unchanged.
The completion time of job Js either decreases, if its second
operation is in cycle after t , or it increases by at most (ξ +
K + 1) plus the total length of cycles s + 1, . . . , t . Thus,
C ′

Js
−CJs ≤ (t − s − 1)L + (ξ + K + 1). For all other jobs

that finish in cycle s or later, the completion times decrease
by at least L − (ξ + K + 1). As there are at least t − s + 1
cycles in the tail part of the schedule, starting from cycle s,
this affects at least t−s+1 jobs. Thus, the difference in total
completion time is

∑

j∈N
(C ′

j −C j)≤ (t−s−1)L+(ξ+K+1)

+
∑

j∈N\{Js }
(C ′

j − C j)

≤ (t − s − 1)L + (ξ + K + 1)

−(t − s + 1)(L − (ξ + K + 1))

<−2L + |N |(ξ + K + 1),

where |N | is the the number of jobs in the instance SO or
equivalently the number of cycles. To show that we get an
improved solution S′, we prove that

−2L + |N |(ξ + K + 1) < 0 (16)

using the estimate on σ = |−→E |/2,

n ≤ σ < n2 (for n > 2), (17)

(a)

(b)

Fig. 19 Creating a cycle of long operations and a cycle of short oper-
ations if Js = Jt , js �= jt and (a) there is a long operation in cycle
r, r < s, (b) there is no long operation in any cycle r, r < s, but there
is a long operation in cycle u, u > s

combined with the definitions of |N |, ξ, L and K :

K = 8n, (18)

|N | = 2n9 + 4σ + 2 ≤ 2n9 + 4n2 + 2, (19)

ξ = 4Kσ 2 = 32nσ 2 < 32n5, (20)

L = 2n9ξ = 2n9 · 32nσ 2 ≥ 64n12 > 576n10 (for n > 3).

(21)

Indeed,

−2L + |N |(ξ + K + 1) ≤
≤ −2n9ξ + 2n9(K + 1) + (4σ + 2)(ξ + K + 1)

< −576n10 + 2n9(8n + 1)

+ (4n2 + 4)(32n5 + 8n + 1)

< −576n10 + 18n10 + 8n2 · 41n5 < 0.

Thus, swapping the operations leads to a smaller total
completion time, contradicting that S has minimal total com-
pletion time.

Consider the case Js = Jt , js �= jt and assume first that
there are other long operations scheduled before s. The case
where there is no other long operation scheduled prior to
cycle s is discussed afterwards. Let r be the last cycle before
s in which a long operation is scheduled, r < s. Since s is the
first cycle that contains a short as well as a long operation,
both operations in cycle r are long. In this case construct S′
by exchanging in cycles r, s, and t the three operations on
machineM2 , as shown inFig. 19a.As a result, the completion
time of job Jr either decreases, if the last operation of that job
is in a cycle after cycle t , or it increases by at most (s−r)(ξ +
K +1)+(t−s)L , where the first term represents the estimate

123

J Sched

on the length of short cycles r+1, . . . , s in S′ and the second
term estimates the length of cycles s+1, . . . , t , whichmay be
short or long. For all other jobs, including job Js , that finish
in cycle s or later, their completion times decrease by at least
L−(ξ +K+1). Note that there are at least t−s+2 such jobs.
Thus,

∑

j∈N
(C ′

j − C j) ≤ [(s − r)(ξ + K + 1) + (t − s)L]

−(t − s + 2)(L − (ξ + K + 1))

= −2L + (t − r + 2)(ξ + K + 1) < 0,

where the last inequality can be proved as a slight modifica-
tion of (16).

Assume now that there is no long operation scheduled
prior to cycle s and let u > s be the first cycle that contains
a long operation of some job Ju on the same machine as the
long operation in cycle t . Construct S′ by swapping the M1-
operations in cycles t and u and theM2-operations in cycles s
and t , see Fig. 19b for an examplewith u > t . The completion
time of job Js (or job Ju if s < u < t) increases by at most
|u − t |L . For the remaining jobs scheduled in the tail part
of the schedule, starting from cycle s, their completion times
reduce by at least L−(ξ+K+1). Again, using the evaluation
from above, this leads to a decrease in the total completion
time,

∑

j∈N
(C ′

j − C j) ≤ |u − t |L − (max {u, t} − s + 1)

× (L − (ξ + K + 1))

= − (min {u, t} − s + 1) L

+ (max {u, t} − s + 1) (ξ + K + 1)

≤ −2L + |N | (ξ + K + 1)
(16)
< 0.

In all previous cases a better schedule S′ is constructed by
grouping two short operations js and jt in one cycle. Next,
consider js = jt and first assume that there are other short
operations scheduled in some cycle r < s. Since s is the
first cycle that contains a short as well as a long operation,
both operations in cycle r are short. Construct a schedule
S′ as illustrated in Fig. 20a. Then, the completion time of
job js decreases by at least 2(L − (ξ + K + 1)), as both its
operations were paired with long operations before and are
now paired with short ones. Further, the completion times of
all jobs that were completed in cycles r, r + 1, …, t − 1 in
S, increase by at most (ξ + K + 1) and the completion times
of all jobs that are completed in cycle t or later decrease by
at least L − (ξ + K + 1). Thus,

(a)

(b)

Fig. 20 Creating a cycle of long operations and a cycle of short opera-
tions if Js �= Jt , js = jt and there is a cycle r with two short operations,
(a) r < s, (b) r > s

∑

j∈N
(C ′

j − C j) ≤ −2(L − (ξ + K + 1))

+ (t − r)(ξ + K + 1)

− (L − (ξ + K + 1))

< −3L + (t − r + 3)(ξ + K + 1) < 0,

where the last inequality can be proved similar to (16).
Consider now the case where r > s and assume addition-

ally that both operations in cycle r are short (see Fig. 20(b)
for an example of r > t > s). In this case, the completion
times of job js and all jobs that finish in cycle s or later,
except for job Js , decrease by at least L − 2(ξ + K + 1).
The completion time of job js decreases further by the total
length Δ of cycles s + 1, …, t − 1, while the completion
time of job Js may increase by at most 2(ξ + K + 1) plus Δ,
again leading to a decrease in the total completion time:

∑

j∈N
(C ′

j − C j)

≤ −((max{t, r} − s) · (L − 2(ξ + K + 1)) − Δ

+2(ξ + K + 1) + Δ

≤ −2(L − 2(ξ + K + 1)) + 2(ξ + K + 1)

= −2L + 6(ξ + K + 1)
(16)
< 0,

where the last inequality follows from (16) since 6 < |N | =
2n9 + 4σ + 2.

The only remaining case with js = jt is where no cycle r
exists such that both operations in r are short, i.e., all short
operations are paired with long operations. In this case, for
cycle s with a short operation on M1 and a long operation on
M2, we select a cycle t ′ similar to t , with a short operation on
M2 and a long operation on M1, t ′ �= t (such a cycle always
exists for n > 2). Then the two short operations in cycles s

123

J Sched

Fig. 21 Moving long cycle s after a sequence of short cycles U =
{s + 1, . . . , t}

and t ′ belong to different jobs, and the case reduces to one
of the cases with js �= jt considered before.

In case that js = jt and Js = Jt we can first swap one of
the long operations with a long operation in another cycle,
as described for Js = Jt , and afterwards continue with mov-
ing the two short operations to the front of the schedule, as
described for js = jt , again leading to a decrease in the total
completion time. Therefore, in an optimal schedule there is
no cycle consisting of a long and a short operation.

Property 1 is proved. From now on we refer to cycles as
short or long assuming that there are no “mixed cycles” in
an optimal schedule.

Property 2 All long operations are scheduled in the last

2n9 + 1 cycles. This defines the splitting of schedule S
into Parts 1 and 2, with cycles 1, 2, . . . , 4σ + 1 and 4σ +
2, . . . , 4σ + 2 + 2n9.

LetU = (s+1, . . . , t) be the last sequence of short cycles
and let s be a long cycle that precedes U . Assume first that
|U | ≥ 2. Then, as cycles inU are the last short cycles, at least
|U | − 1 jobs finish within U (U may contain the two short
operations of jobs Ved(0)

0 and F0 for which their respective
second, long operations may be scheduled in later cycles).
Construct a schedule S′ by moving the long cycle s after U ,
see Fig. 21. Then the completion times of at least |U | − 1
jobs decrease by L while the completion times of the two jobs
scheduled in cycle s in S increase by at most |U | (ξ +K +1),

∑

j∈N
(C ′

j − C j) ≤ − (|U | − 1) L + 2 |U | (ξ + K + 1)

= L − |U | (L − 2(ξ + K + 1)) .

Using conditions |U | ≥ 2 and L −2(ξ + K +1) > 0 (which
can be proved in the same way as (16)) we deduce

∑

j∈N
(C ′

j − C j) ≤ L − 2 (L − 2(ξ + K + 1))

= −L + 4(ξ + K + 1).

The last expression is negative, again by the same arguments
as (16). Thus, we get a contradiction to the optimality of S.

If |U | = 1 and the short cycle in U is different from

ξ + K + 1

Ve
d(0)
0

F0
0

︸ ︷︷ ︸
ξ+K+1

(22)

then at least one job, different from Ved(0)
0 and F0, finishes

in U . In this case the previous transformation reduces the
completion timeof at least one job by L , while the completion
times of the two jobs scheduled in cycle s in S increase by
at most (ξ + K + 1),

∑

j∈N
(C ′

j − C j) ≤ −L + 2(ξ + K + 1) < 0,

where the last inequality can be proved in the same way as
(16).

Consider now the case withU consisting of only one short
cycle of the form (22). Notice that such a cycle is avoided in
the optimal solution presented in Fig. 6.

Let Ũ be the last sequence of short cycles before U and
assume first that Ũ is preceded by some long cycles. Clearly
Ũ does not contain short operations of jobs F0 and Ve

d(0)
0 , as

they appear in U . Since no other job consists of both, long
and short operations, at least |Ũ | short jobs finish within Ũ .
Then the arguments presented in the beginning of the proof of
Property 2 are applicable for the set of cycles Ũ used instead
of U .

Lastly, consider the remaining case with U consisting of
only one short cycle of the form (22) and there are no other
short cycles in the preceding part of the schedule that follow
a long cycle. Then, the first 4σ cycles are short and the cycle
(22) appears among the last 2(n9 + 1) cycles. Using pair-
wise interchange arguments it is easy to make sure that in an
optimal schedule, the latter cycles are of the form shown in
Fig. 22, where without loss of generality jobs Fi , except for
F0, are renumbered in the order they appear in schedule S on
machine M1.
In Fig. 22, τ is the number of jobs from the set {F1, F2, ...,
F2n9} completed before cycle (22), 1 ≤ τ ≤ 2n9. Let Δ be
the total length of the first 4σ short cycles. If the length of
cycle (22) was L , then the total completion time of all long
jobs would be

2(n9 + 1)Δ + 2L
n9+1∑

i=1

2i = 2(n9 + 1)
(
Δ + (n9 + 2)L

)
.

In reality, the length of cycle (22) is less than L by the amount
L − (ξ + K + 1), so that completion times of the jobs that
appear after Fτ−1, Fτ should be adjusted. The number of

123

J Sched

Fig. 22 A special short cycle appearing among the last 2(n9 + 1) cycles

jobs completed in the corresponding tail part of the schedule
is 2(n9 + 1) − τ , so that

∑

long jobs

C j = 2(n9 + 1)
(
Δ + (n9 + 2)L

)

− (2(n9 + 1) − τ)(L − ξ − K − 1)

= 2(n9 + 1)
(
(n9 + 1)L + Δ + ξ + K + 1

)

+ τ(L − ξ − K − 1).

We demonstrate that the objective value for schedule S
exceeds the given threshold Θ , using the estimate (17)
together with the following conditions:

Δ ≥ 4σξ + 2σK ,

L − ξ − K − 1 > 0,

where the first one is a lower bound on Δ calculated as the
sum of processing times on the second machine of the short
operations in the first 4σ cycles (which includes every oper-
ation except the zero-length operation of job F0), while the
second one can be proved in a similar way as (16). We have

∑

long jobs

C j >

2(n9 + 1)
(
(n9 + 1)L + (4σξ + 2σK) + ξ + K + 1

)
.

Recall that

Θ1 < (8σ 2 + 2σ)ξ + 4σ 2K + n2,

Θ2 = 2(n9 + 1)
((

n9 + 1
)
L + 4σξ + 2σK + n

)
,

Thus,

∑

j∈N
C j − Θ >

∑

long jobs
C j − Θ1 − Θ2

> 2n9 (ξ + K + 1 − n) − [
(8σ 2 + 2σ)ξ + 4σ 2K + n2

]

> 2n9 (ξ + K + 1 − n) − [
10n4ξ + 4n4K + n4

]
> 0,

where the last inequality holds as n ≥ 2. Thus, to achieve
∑

C j ≤ Θ cycle (22) should not appear among the last
2n9 +1 cycles. With the exchange arguments from above all
other cycles containing short operations have to be scheduled
prior to the long operations while the last 2n9+1 cycles only
contain long operations.

Property 3 The sum of completion times of all long jobs
is at least Θ2.

Due to Property 2, all long operations are scheduled in the
last 2n9+1 cycles. Again by interchange arguments, the long

cycle
F0

Ve
d(0)
0

should be the first one among all long cycles,

while other long cycles should be grouped in pairs, as shown
in Fig. 22. Following the arguments used in the proof of part
“⇒ ” for calculating the sum of completion times of the long
jobs, it is easy to verify that calculations (9)–(10) hold in the
current case as well. Instead of the precise value of Δ that
leads to (11), now we can only substitute an estimate of Δ,

Δ ≥ 4σξ + 2σK + n,

which corresponds to the total length of short operations on
machine M1 . Thus, we obtain:

∑

long jobs

C j
(10)= 2Δ(n9 + 1) + 2

(
n9 + 1

)2
L

≥ 2 (4σξ + 2σK + n) (n9 + 1) + 2
(
n9 + 1

)2
L = Θ2.

(23)

Property 4 In S, machine M1 operates without idle times.
If there is an idle time on machine M1, then Δ ≥ 4σξ +

2σK + n + 1 in Property 3 and thus

∑

j∈N
C j >

∑

long jobs

C j
(23)= 2Δ(n9 + 1) + 2

(
n9 + 1

)2
L

> 2 (4σξ + 2σK + n + 1) (n9 + 1) + 2
(
n9 + 1

)2
L

= Θ2 + 2(n9 + 1) > Θ2 + Θ1 = Θ.

Therefore, there should be no idle time on machine M1 to
achieve

∑
j∈N C j ≤ Θ .

Property 5 In Part 1 of S, job Ve00 is processed in the first

two cycles which are of the form
Ve00
F0

∗
Ve00

, where

∗ represents a short operation. While the order of
these two cycles is immaterial, without loss of generality

we assume that
Ve00
F0

precedes
∗
Ve00

; otherwise the

cycles can be swapped without changing the value of
∑

C j .

123

J Sched

Since the sum of completion times of all long jobs is at
least Θ2 , the remaining 4σ short jobs may only contribute a
total completion time of at mostΘ1 to obtain a schedule with
total completion time

∑
C j ≤ Θ . For all of these jobs, their

operations on machine M2 have length of at least ξ . Thus, it
is not possible for i + 1 short jobs to be completed at time iξ
and we can use the lower bound iξ for the completion time
C[i] of the i-th job:

C[i] ≥ iξ for 1 ≤ i ≤ 4σ. (24)

This implies that

∑

short jobs

C j ≥ ξ

4σ∑

i=1

i = 2σ(4σ + 1)ξ.

Notice that for i = 1 there is only one job that can be com-
pleted at time ξ , namely Ve00, and this happens only if the
first two cycles satisfy the statement of Property 5.

Suppose the statement of Property 5 does not hold for S.
Then the above estimate needs to be adjusted by ξ since in
that case the completion time of the first completed job is at
least 2ξ rather than ξ . It follows that

∑

short jobs

C j − Θ1 ≥ [2σ(4σ + 1)ξ + ξ]

−
[
(8σ 2 + 2σ)ξ + 4σ 2K − 2

∑

v∈V vd(v) + n2
]

= ξ − 4σ 2K + 2
∑

v∈V vd(v) − n2

= 2
∑

v∈V vd(v) − n2.

Notice that n > 2 and by construction d(v) ≥ 2 for each
vertex v (G ′ is connected). This leads to 2

∑
v∈V vd(v) −

n2 ≥ 2n(n − 1) − n2 = n2 − 2n > 0 for n > 2. Thus,
the total completion time of all jobs is greater than Θ , a
contradiction.

Property 6 The two operations of each vertex-job and the
two operations of each arc-job are processed in two consec-
utive cycles, first on M1 and then on M2.

We have demonstrated in the proof of Property 5 that
C[1] < 2ξ (with job Ve00 defining C[1]); otherwise the lower
boundΘ1 is violated. Similar arguments can be used to prove
(by induction) that the lower bound Θ1 is achievable only if
C[i] < (i + 1) ξ for 1 ≤ i ≤ 4σ . Combining this with (24)
we can limit our consideration to schedules satisfying

iξ ≤ C[i] < (i + 1) ξ for 1 ≤ i ≤ 4σ. (25)

Property 6 holds for the first job Ve00 due to Property 5.
Let job j be the short job that is processed on machine M1

in cycle 2. Then, as ξ ≤ p1 j < 2ξ , for Ve00 (25) is satisfied.

Suppose j does not satisfy the conditions of Property 6.
Then cycle 3 consists of two short jobs k and � that have not
been processed yet in the preceding cycles. The situation is
illustrated below.

In that case no job other thanVe00 can be finished in the first
three cycles, so C[2], corresponding to some job finishing no
earlier than cycle 4, is at least as big as the finishing time of
cycle 4. As the processing time of any short operation other
than Ve00 is at least ξ , cycles 2, 3, and 4 have a combined
length of at least 3ξ as illustrated above. Thus,wehaveC[2] ≥
3ξ in violation of (25).

Therefore j should be processed in cycles 2 and 3, first on
M1 and then on M2. The proof of Property 6 can be done by
induction using the above arguments.

Property 7 In Part 1 of S, machine M1 alternates between
processing arc-jobs and vertex-jobs. Moreover, an operation
of a vertex-job corresponding to v is followed by an operation
of an arc-job corresponding to an arc leaving v. Similarly,
an operation of an arc-job for arc (v,w) is followed by an
operation of a vertex-job for vertex w. By Property 6, the
same is true for machine M2 in Part 1 and in the first cycle
that follows it.

Note that due to the numbers and distributions of vertex-
and arc-jobs, if two vertex-jobs are scheduled consecutively,
then there should also be two arc-jobs scheduled consecu-
tively. Hence we can restrict our proof to the latter case. So
assume there are cycles s, s + 1, s + 2 in which two oper-
ations of arc-jobs are scheduled consecutively on the first
machine in cycles s, s + 1 (and thus their second operations
are scheduled in cycles s + 1, s + 2 by Property 6). Then,
because the processing times of the arc-jobs are chosen such
that they are no larger than ξ + 2n on machine M1 and no
smaller than ξ + 6n on machine M2, there is an idle time
on machine M1 in cycle s + 1, as illustrated below. How-
ever, this is a contradiction to Property 4 as Machine M1 has
to operate without idle time. Therefore this situation cannot
happen, which proves the first part of Property 7.

We now show that an operation of a vertex-job corre-
sponding to v is followed by an operation of an arc-job
corresponding to an arc leaving v. Note that due to Prop-
erty 6 a vertex- or arc-job processed on machine M1 in some
cycle s is processed on machine M2 in cycle s + 1. Assume
there is an operation of vertex-job Vei that is succeeded by

123

J Sched

an operation of an arc-job Ar jk for some i �= j in cycles
s, s + 1 on machine M1 and s + 1, s + 2 on machine M2.

Among all such pairs
(
Vei ,Ar jk

)
select the onewith i > j

(notice that the case that i < j for all pairs is not possible).
Then there is an idle time on machine M1 in cycle s + 1,
contradicting Property 4.

In a similar fashion it can be shown that an operation of
an arc-job corresponding to an arc entering a vertex w is
followed by a vertex-job corresponding to vertex w.

Property 8 The first arc-job that appears in S corresponds
to an arc leaving 0. Among the vertex-jobs, the last one is
Ved(0)

0 .
Due to Property 5, the first two cycles contain the two

operations of job Ve00. Thus, according to Property 7, both
operations of this job have to be succeeded by operations of
an arc-job leaving vertex 0. Further, as shown in the proof of
Property 6, the last vertex-job to be completed is Ved(0)

0 . 	

References

Bein, W. W., Brucker, P., Park, J. K., & Pathak, P. K. (1995). A Monge
property for the d-dimensional transportation problem. Discrete
Applied Mathematics, 58, 97–109.

Boysen,N., Fliedner,M.,&Scholl, A. (2008). Assembly line balancing:
Which model to use when? International Journal of Production
Economics, 111, 509–528.

Brucker, P., Gladky, A., Hoogeveen, H., Kovalyov, M. Y., Potts, C. N.,
& Tautenhahn, T. (1998). Scheduling a batching machine. Journal
of Scheduling, 1, 31–54.

Burkard, R. E., Klinz, B., & Rudolf, R. (1996). Perspectives of Monge
properties in optimization.Discrete Applied Mathematics, 70, 95–
161.

Chiang, W.-C., Urban, T. L., & Xu, X. (2012). A bi-objective
metaheuristic approach to unpaced synchronous production
line-balancing problems. International Journal of Production
Research, 50, 293–306.

Ćustić, A., Klinz, B., &Woeginger, G. J. (2014). Planar 3-dimensional
assignment problems with Monge-like cost arrays. E-print.
arXiv:1405.5210.

de Werra, D., Demange, M., Escoffier, B., Monnot, J., & Paschos, V.
T. (2009). Weighted coloring on planar, bipartite and split graphs:
Complexity and approximation. Discrete Applied Mathematics,
157, 819–832.

Deineko, V. G., Rudolf, R., & Woeginger, G. J. (1996). On the recog-
nition of permuted Supnick and incomplete Monge matrices. Acta
Informatica, 33, 559–569.

Demange, M., de Werra, D., Monnot, J., & Paschos, V. T. (2002).
Weighted node coloring: When stable sets are expensive. Lecture
Notes in Computer Science, 2573, 114–125.

Doerr, K. H., Klastorin, T. D., & Magazine, M. J. (2000). Synchro-
nous unpaced flow lines with worker differences and overtime
cost.Management Science, 46, 421–435.

Escoffier, B., Monnot, J., & Pashos, V. T. (2006). Weighted color-
ing: Further complexity and approximability results. Information
Processing Letters, 97, 98–103.

Garey, M. R., & Johnson, D. S. (1979).Computers and intractability: A
guide to the theory ofNP-completeness.NewYork:W.H.Freeman.

Gonzalez, T., & Sahni, S. (1976). Open shop scheduling to minimize
finish time. Journal of the ACM, 23, 665–679.

Gopal, I. S., & Wong, C. K. (1985). Minimising the number of
switchings in an SS/TDMA system. IEEE Transactions on Com-
munications, 33, 497–501.

Huang,K.-L. (2008).Flow shop schedulingwith synchronous and asyn-
chronous transportation times. Ph.D. Thesis, The Pennsylvania
State University.

Kesselman, A., & Kogan, K. (2007). Nonpreemtive scheduling of
optical switches. IEEE Transactions on Communications, 55,
1212–1219.

Kouvelis, P., & Karabati, S. (1999). Cyclic scheduling in synchronous
production lines. IIE Transactions, 31, 709–719.

Mestre, J., & Raman, R. (2013). Max-Coloring. In P.M. Pardalos, D.-Z.
Du,&R.L.Graham (Eds.),Handbook ofCombinatorialOptimiza-
tion (pp. 1871–1911). New York: Springer.

Queyranne, M., Spieksma, F., & Tardella, F. (1998). A general class
of greedily solvable linear programs. Mathematics of Operations
Research, 23, 892–908.

Rendl, F. (1985). On the complexity of decomposing matrices arising
in satellite communication. Operations Research Letters, 4, 5–8.

Röck, H. (1984). Some new results in flow shop scheduling.Mathemat-
ical Methods of Operations Research, 28, 1–16.

Soylu, B., Kirca, Ö., & Azizoğlu, M. (2007). Flow shop-sequencing
problem with synchronous transfers and makespan minimization.
International Journal of Production Research, 45, 3311–3331.

Urban, T. L., & Chiang,W.-C. (2016). Designing energy-efficient serial
production lines: The unpaced synchronous line-balancing prob-
lem. European Journal of Operational research, 248, 789–801.

Waldherr, S., & Knust, S. (2014). Two-stage scheduling in shelf-board
production: a case study. International Journal of Production
Research, 52, 4078–4092.

Waldherr, S., & Knust, S. (2015). Complexity results for flow shop
problems with synchronous movement. European Journal of
Operational Research, 242, 34–44.

Waldherr, S., Knust, S., & Briskorn, D. (2015). Synchronous flow shop
probles: How much can we gain by leaving machines idle? (under
submission).

Weiß, C., Knust, S., Shakhlevich, N. V., & Waldherr, S. (2016). The
assignment problem with nearly Monge arrays and incompatible
partner indices. Discrete Applied Mathematics, 211, 183–203.

123

http://arxiv.org/abs/1405.5210

	Open Shop Scheduling with Synchronization
	Abstract
	1 Introduction
	2 Minimizing the makespan
	2.1 Problem O2|synmv|Cmax
	2.2 Problem O|synmv,rel|Cmax

	3 Scheduling with deadlines
	4 Minimizing the total completion time
	5 Conclusions
	Acknowledgments
	6 Appendix 1: The proof of the small block property (Theorem 1)
	7 Appendix 2: The proofs of the key statements from Section 4
	References

