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Semi-varying coefficient multinomial logistic

regression for disease progression risk prediction

Yuan Ke,a Bo Fub,c∗† and Wenyang Zhangd

This paper proposes a risk prediction model using semi-varying coefficient multinomial logistic regression. We use

a penalized local likelihood method to do the model selection and estimate both functional and constant coefficients

in the selected model. The model can be used to improve predictive modelling when non-linear interactions between

predictors are present. We conduct a simulation study to assess our method’s performance and the results show

that the model selection procedure works well with small average numbers of wrong-selection or missing-selection.

We illustrate the use of our method by applying it to classify the patients with early rheumatoid arthritis at baseline

into different risk groups in future disease progression. We use a leave-one-out cross-validation method to assess

its correct prediction rate and propose a recalibration framework to evaluate how reliable are the predicted risks.

Copyright c© 2016 John Wiley & Sons, Ltd.

Keywords: model selection; multinomial logistic regression; penalized likelihood; risk prediction; varying

coefficients

1. Introduction

The motivation for this paper arose from a medical study, where the research interest is to classify the patients with early

inflammatory polyarthritis to three groups at different risk of progression to functional disability by using their baseline

information. The outcome of interest is a patient’s functional disability status at the end of a 5-year follow up, which is

a discrete variable having three levels (low risk, moderate risk, high risk) of disability. Such a risk prediction model is

important in medical application in order to identify a sub-group of patients at early stage of disease onset who are at
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higher risk to progress to a worse outcome so that more aggressive treatment strategies, such as use of biologic therapy,

could be matched to them [1, 2, 3].

Logistic regression models are widely used for developing predictive models where the outcome of interest is a

dichotomous or nominal-scaled variable. When the outcome variable can take more than two values, a multinomial

logistic regression is usually applied [4]. New multi-category classification methods in multinomial logistic regression

were recently discussed in Li et al. [5].

However usual logistic regression models assume that the effects of predictors on outcomes are constant. We relax

this assumption by incorporating a varying coefficient structure to allow the effects of the predictors to vary smoothly

with the change in a single continuous covariate U , such as baseline disease duration in our motivating example. Varying

coefficient models were introduced by Cleveland et al. [6] as a useful nonparametric tool to analyze complex dynamic data

[7, 8, 9, 10, 11, 12, 13, 14]. In particular, the use of such a nonparametric structure permits nonlinear interactions between

the predictors and a particular variable, which could be useful to improve the model fitting [7, 15, 16]. For example, in

Section 4 we will consider a relatively large number of candidate covariates at baseline for predicting future progression

to functional disability in early inflammatory polyarthritis patients. The set of candidate covariates may include patients’

demographic factors (e.g., age, gender), serological and genetic factors (e.g., rheumatic factor status, number of copies of

shared epitope), disease activity and severity measures (e.g., number of swollen or tender joints), social-economic factors

(e.g., index of multiple deprivation score), etc [3]. The number of potential predictors could be large if more biomarkers are

available at baseline. It is of interest to allow the effects of some baseline predictors to depend on the disease duration from

disease symptom onset to the baseline time when predictor variables were measured. By incorporating flexible interactions

between the effects of baseline predictors and disease duration in the prediction model, we account for influences due to

variations over time from disease onset to baseline between subjects. The research questions are then 1) which variables

among a large number of candidates should be selected in the predictive model; and 2) which variables have varying

effects among the selected predictors.

Variable selection is an essential part of statistical analysis to improve model predictability. Failing to select predictors

which are associated with an outcome will lead to bias. On the other hand, the prediction power may be reduced if we

include variables unrelated to the outcome. The coefficient estimates in a logistic regression could be biased if we include

too many unrelated covariates. Traditional methods, such as stepwise deletion and best-subset selection based on AIC

or BIC, are commonly used, but they tend to select an over-fitting model in a logistic regression, leading to inaccurate

scientific conclusion [17]. Also, traditional methods will be impractical if a large number of candidate predictors are

included. They are computationally intensive and might be unstable due to their inherited discreteness [18].

When the number of candidate covariates is large, the traditional statistical methods can easily fail due to the so called

“curse of dimensionality” [19]. The new generation of variable selection methods based on penalized functions, such

as ridge regression [20], the least absolute shrinkage and selection operator (LASSO) [21], smoothly clipped absolute

deviation (SCAD) [22], group LASSO [23], adaptive LASSO [24], Minimax Concave Penalty [25], as well as Bayesian

hierarchical models [26], have become particularly attractive in the analysis of high-dimensional data. These penalized

methods can do the model selection and the parameter estimation simultaneously through a constrained optimization. The

likelihood function and the constraints (usually expressed as penalties) together make a trade off between the goodness

of fit and the model complexity. Given an appropriate penalty function, the penalized methods can remove the unrelated

covariates and reduce the dimensionality.

The modern variable selection methods based on penalized functions have also been extended to nonparametric
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models such as varying coefficient models. For example, Wang and Xia [11] proposed a K-LASSO method based on

group penalization and quadratic approximation to handle the model selection for varying coefficient models. Lian [27]

considered the variable selection for high dimensional generalised varying coefficient models. Li et al.[28] proposed a

variable selection and structure identification method for generalised semi-varying coefficient models. Other recent related

work on variable selection includes Kong and Xia [29] for a single-index model, Tao and Xia [30] for an adaptive semi-

varying coefficient model, Kuk et al. [31] for predictive modelling based on logistic regression, Stefanski et al. [32] for

nonparametric classification methods.

In this paper, we consider variable selection for semi-varying coefficient multinomial logistic regression and introduce

a multi-category grouping method for risk prediction in chronic disease progression. An attractive feature of our method

is that it not only selects predictors but also select their coefficient types (constant or functional). It also allows the number

of potential covariates to increase with sample size and is able to handle the case where the number of potential variables

is large. This would be particularly useful in practice as we may include all available potential predictors to improve

prediction accuracy. Our method contains two steps:

1. Model selection and parameter estimation. We start with a full multinomial logistic regression model including

all candidate covariates and apply a penalized likelihood approach to select predictors and the types of their coefficients

(constant or functional). We then estimate both constant and functional coefficients for the selected model.

2. Prediction. For each subject, we calculate the conditional probabilities that this subject belongs to different risk

groups based on the selected model and its estimated coefficients. A subject is predictable if the maximum of the estimated

group-membership probabilities exceeds a given threshold and is then classified to the corresponding risk group with the

largest group-membership probability.

In the above procedures, Step 2 just involves some trivial calculations and the key step for our modelling is the model

selection part.

The rest of this paper is arranged as follows. In Section 2, we introduce the scientific motivation of this paper. In Section

3, we discuss the proposed risk prediction model in detail, which is based on the ideas of kernel smoothing, penalized

likelihood, local linear approximation and penalization on deviations. The selection of tuning parameters is presented in

Section 3.3. Section 4 focuses on an application to inflammatory polyarthritis data. In the end, Section 5 gives a brief

discussion.

2. Motivating data example

2.1. Scientific motivation

Our work was motivated by an analysis of a medical dataset from a primary care-based prospective cohort of patients

with recent onset inflammatory polyarthritis [33]. Rheumatoid arthritis (RA) is the most common inflammatory disease

of the joints, which is associated with progressive joint destruction resulting in severe disability. However, it is difficult

to identify RA at an early stage of disease onset because no tests or diagnostic criteria are available to define early RA

[34]. A lab test that often helps with diagnosis of RA at a follow up stage is anti-cyclic citrullinated peptide antibody test.

Early arthritis may be progressed into established RA or another definite arthritis disease or may remain undifferentiated.

To better manage the outcome in arthritis, it has been suggested by clinical researchers to first recognize inflammatory

arthritis and then estimate the risk of developing persistent and erosive irreversible arthritis such as RA in order to propose

an optimal treatment option [35].
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RA is a very heterogeneous disease in term of disease progression outcome. Some RA patients do not develop any severe

outcome, such as erosion, even after a long time, but the majority will have bone erosion and cartilage breakdown resulting

in joint destruction and functional disability. For the management of early inflammatory polyarthritis, the European League

against Rheumatism recommends that patients at risk of developing persistent and/or erosive arthritis should be started

with disease-modifying anti-rheumatic drugs (DMARDs) as early as possible, even if they do not yet fulfil established

classification criteria for RA [36]. Furthermore, the revolutionary introduction of biologic agents, such as anti-tumour

necrosis factor (TNF), in the past decade offers patients a new and very effective treatment option alternative to the

traditional DMARDs. Early treatment with biologic agents has been shown by published studies to improve clinical

outcomes, patients’ functional status and health-related quality of life [37]. However, biologic agents have potential to

leave the patients more vulnerable to severe adverse events such as infection or malignancy because TNF is involved in

many aspects of host immunity [38]. Also the drug costs of treatment with biologic agents are much higher compared to

DMARDs.

In order to achieve the goal of personalised treatment and optimal early use of biologic agents in the management of

RA, it is necessary to identify a sub group of patients at baseline who are at higher risk to progress into a worse functional

status in future or have better response to biologics treatment so that specific treatment strategies are matched to individual

patients. In this paper, our scientific interest focuses on a prediction model to classify the patients into groups with different

risk of progression to severe outcome rather than different responses to treatment. An ideal therapeutic strategy should

then be based on such an appropriate prediction of the disease progression risk [36]. The aim of this study is to improve

the predictive modelling by identifying significant prognostic factors (or predictors) associated with disease progression

together with their significant interactions.

2.2. HAQ progression data

The data sample we study comprises 290 patients, who were recruited to the arthritis register cohort between 1990-

1994 and have disease duration from symptom onset to registration less than 3 years. The disease outcome of interest is

functional disability status, which is an important clinical measure in RA as it has been shown to be predictive of crucial

RA-related outcomes, such as mortality. This measure was assessed using the modified British version of the Health

Assessment Questionnaire (HAQ) score. The questionnaire comprises 20 questions in 8 categories. Each question is given

a score of 0 (no difficulty), 1 (some difficulty), 2 (much difficulty or need of assistance), or 3 (unable to perform). The

score for each category is determined by the highest score in that category, and the sum of scores is then divided by the

number of categories, yielding a total HAQ score ranging from 0 (best) to 3 (worst). All patients in our study sample have

mild disease outcome at registration (baseline) with baseline HAQ scores between 0 and 1 and were followed for at least

5 years. The response variable Y is the functional disability status at the end of a 5-year follow up since registration. Y = 1

if the functional disability status at the end of follow up is at low risk (HAQ score between 0 and 1); 2 if the functional

disability status is at moderate risk (HAQ score between 1 and 2); and 3 if the functional disability status is at high risk

(HAQ score between 2 and 3). Such a classification into 3 groups based on HAQ score was suggested by Wolfe et al

[39] and it provides important and clinically useful current and predictive information regarding RA status, utilization of

services, and mortality [39].

In the predictive model, the candidate predictors include age at registration, gender, number of swollen joints out

of 51 joints, number of tender joints of 51 joints, rheumatic factor (1=positive or 0= negative), smoking status (three

categories: non-smoker, current smoker or ex-smoker), socio-economic status defined as a area-level category variable
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based on the nationally-determined quartiles of the index of multiple deprivation score used in the UK (four categories:

least deprived group, two middle deprived groups, most deprived group) [3], number of copies of the shared epitope

which is an established genetic biomarker in RA, fulfilment of the American College of Rheumatology 1987 classification

criteria for rheumatoid arthritis (RA: 1= yes or 0 = no), season of birth (four categories: spring, summer, autumn or winter),

DMARDs treatment duration (in days), baseline HAQ score and their functional interactions with disease duration from

symptom onset (in months).

The first scientific question is which of the above baseline covariates are good predictors of the disease progression

outcome Y at the end of a 5-year follow up. Second, as patients have various disease duration at registration (baseline),

it is of interest to know whether the effects of any of selected predictors on the outcome Y have interactions with the

change of disease duration from disease symptom onset to the baseline time when these covariates were measured. Our

assumption is that such interactions may not be fully modelled by adding linear interaction terms and this motivates us to

consider a semi-varying coefficient logistic regression to allow non-linear interactions.

3. Methodology

3.1. A semi-varying coefficient multinomial logistic regression model

Suppose we have a sample (yi, Ui, xi1, · · · , xidn
), i = 1, · · · , n, from (y, U, x1, · · · , xdn

). y is a categorical disease

outcome variable of S levels of risk; U is a given continuous variable, such as baseline disease duration in the motivating

example in Section 2; and x j, j = 1, · · · , dn, are either continuous or discrete covariates whose effects may be constant or

vary with the level of U . Throughout this paper, without loss of generality, we assume y ∈ {1, · · · , S}, and take level S as

reference.

Assume the conditional probability that the ith subject belongs to the risk category s is psi = P(yi = s |Ui, xi1, . . . ,xidn
),

where i = 1, . . . ,n and s = 1, . . . ,S. To incorporate nonlinear interactions between x j and U into the modelling, we specify

all psis through a semi-varying coefficient multinomial logistic regression, i.e.

psi =
exp(∑

dn
j=1 xi jas j(Ui))

1+∑S−1
k=1 exp(∑

dn
j=1 xi jak j(Ui))

, s = 1, . . . , S−1,

pSi =
1

1+∑S−1
k=1 exp(∑

dn
j=1 xi jak j(Ui))

, (3.1)

where ak j(·) are unknown coefficients that are either constant or functional and ∑S
s=1 psi = 1. A constant coefficient ak j(·)

means that there is no interaction between xi j and Ui. It follows that the logit of category s versus the reference category S

is ln
(

psi
pSi

)
= ∑

dn
j=1 xi jas j(Ui).

3.2. Model selection, estimation and prediction

Throughout this section, for any function f (·), we use ḟ (·) to denote its first derivative and f̈ (·) to denote its second

derivative.

3.2.1. Model selection We now describe how to select the predictor variables in (3.1) and identify which coefficients are

constant and which are functional. This is basically a model selection problem. Based on the penalized likelihood idea,

the model selection problem is transformed to an estimation problem of the unknown coefficients, ak j(·)s, in (3.1). In the

following, we are going to apply the penalized local maximum likelihood estimation to estimate ak j(·)s in (3.1).

Statist. Med. 2016, 00 1–15 Copyright c© 2016 John Wiley & Sons, Ltd. www.sim.org 5
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It is easy to see the conditional log likelihood function of ak j(·)s, given all potential predictors, in (3.1) is

n

∑
i=1

{
S−1

∑
s=1

I(yi = s)
dn

∑
j=1

xi jas j(Ui)− log

(
1+

S−1

∑
l=1

exp

{
dn

∑
j=1

xi jal j(Ui)

})}
(3.2)

For each given k, k = 1, . . .,n, within a small neighbourhood of Uk, a Taylor’s expansion gives

as j(Ui)≈ as j(Uk)+ ȧs j(Uk)(Ui −Uk),

where i = 1, . . . ,n, and j = 1, . . .,dn. This leads to the following local conditional log-likelihood function

ℓk(ak, dk) =
n

∑
i=1

Kh(Ui −Uk)

{
S−1

∑
s=1

I(yi = s)
dn

∑
j=1

xi j

{
αs jk +βs jk(Ui −Uk)

}
−

log

(
1+

S−1

∑
l=1

exp

[
dn

∑
j=1

xi j

{
αl jk +βl jk(Ui −Uk)

}
])}

where αs jk corresponds to as j(Uk) and βs jk corresponds to ȧs j(Uk), K(·) is a kernel function, h is a bandwidth,

Kh(·) =
1
h
K(·/h),

ak = (α11k, . . . , α1dnk, . . . , α(S−1)1k, . . . , α(S−1)dnk)
T,

dk = (β11k, . . . , β1dnk, . . . , β(S−1)1k, . . . , β(S−1)dnk)
T.

Adding all ℓk(ak, dk), k = 1, · · · , n, together, we have

Ln(A , B) =
n

∑
k=1

ℓk(ak, dk), (3.3)

where

A = (aT
1 , . . . , aT

n )
T, B = (dT

1 , . . . , dT
n )

T.

Denote

‖u‖= (uTu)1/2, αs j = (αs j1, · · · , αs jn)
T,

Ds j =

{
n

∑
k=1

(αs jk − ᾱs j)
2

}1/2

, and ᾱs j =
1

n

n

∑
k=1

αs jk.

This leads to the following penalized local conditional log-likelihood function for the model selection

Qn(A , B) = Ln(A , B)−
S−1

∑
s=1

dn

∑
j=1

pλ1s j
(Ds j)−

S−1

∑
s=1

dn

∑
j=1

pλ2s j
(
∥∥αs j

∥∥), (3.4)

where pλ (·) is the SCAD penalty function with tuning parameter λ , which is defined through its derivative

ṗλ (z) = λ
[
I(z ≤ λ )+

(a0λ − z)+
(a0 −1)λ

I(z > λ )
]
,

where a0 = 3.7 as suggested in Fan and Li [22].

To directly maximise Qn(A , B) can be very challenging. We are going to find a quadratic function and use its

maximiser to approximate the maximiser of Qn(A , B), thereby simplifying the maximisation.

Let (Ãn, B̃n) be the maximiser of Ln(A , B), α̃s jk the component of Ãn which corresponds to αs jk. α̃s j is αs j with

αs jk replaced by α̃s jk. D̃s j is Ds j with αs jk replaced by α̃s jk.
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Noticing L̇n(Ãn, B̃n) = 0, by the Taylor’s expansion, we have

Ln(A , B)≈ Ln(Ãn, B̃n)

+
1

2

((
A − Ãn

)T

, h
(
B− B̃n

)T
)

L̈n(Ãn, B̃n)


 A − Ãn

h
(
B− B̃n

)

 ,

and for s = 1, · · · , S−1, j = 1, · · · , dn,

pλ1s j
(Ds j)≈ pλ1s j

(D̃s j)− ṗλ1s j
(D̃s j)D̃s j + ṗλ1s j

(D̃s j)Ds j,

pλ2s j
(
∥∥αs j

∥∥)≈ pλ2s j
(
∥∥α̃s j

∥∥)− ṗλ2s j
(
∥∥α̃s j

∥∥)
∥∥α̃s j

∥∥+ ṗλ2s j
(
∥∥α̃s j

∥∥)
∥∥αs j

∥∥ .

Let

Ln∗(A , B) =
1

2

(
(A − Ãn)

T, h(B− B̃n)
T
)

L̈n(Ãn, B̃n)

(
A − Ãn

h(B− B̃n)

)
,

and

P1n,s j(Ds j) = ṗλ1s j
(D̃s j)Ds j, P2n,s j(

∥∥α j

∥∥) = ṗλ2s j
(
∥∥α̃s j

∥∥)
∥∥αs j

∥∥

We define

Qn∗(A , B) = Ln∗(A , B)−
S−1

∑
s=1

dn

∑
j=1

P1n,s j(Ds j)−
S−1

∑
s=1

dn

∑
j=1

P2n,s j(
∥∥α s j

∥∥),

and use the maximiser of Qn∗(A , B) to approximate the maximiser of Qn(A , B) and estimate the corresponding

unknown parameters.

By the local linear approximation, the maximisation of Qn∗(A , B) can be considered as an iterative re-weighted

LASSO problem. Hence given an initial estimator, Qn∗(A , B) can be maximised through an iterative algorithm similar

as in Li et al.[28]. The computational cost is moderate.

Let (α̂s j, β̂ s j), s = 1, · · · , S− 1, j = 1, · · · , dn, be the maximiser of Qn∗(A , B). For the penalty functions which

enjoy sparsity property, such as SCAD or L1 penalty, our feature selection and model specification procedure works as

follows: if ‖α̂s j‖ = 0, then the corresponding variable x j is not significant and should be removed from modelling the

conditional probability P(y = s|U,x1, · · · ,xdn
) of y falling in level s. Let D̂s j be Ds j with αs j replaced by α̂s j. If D̂s j = 0,

the coefficient of x j is constant when modelling P(y = s|U,x1, · · · ,xdn
).

3.2.2. Estimation After the model is selected, we apply the standard local maximum likelihood estimation to estimate the

coefficients based on the selected model. The details are as follows.

Suppose the set of the subscripts of the variables with functional coefficients, in the selected model for P(y =

s|U, x1, · · · , xdn
), is Ωs, with constant coefficients is ∆s. For any given u, by simple calculation, we have the following

local conditional log likelihood function

n

∑
i=1

Kh(Ui −u)

{
S−1

∑
s=1

I(yi = s)

[

∑
j∈Ωs

xi j

{
αs j +βs j(Ui −u)

}
+ ∑

l∈∆s

xilαsl

]

− log

(
1+

S−1

∑
k=1

exp

[

∑
j∈Ωk

xi j

{
αk j +βk j(Ui −u)

}
+ ∑

l∈∆k

xilαkl

])}
.

Let (α̂s j(u), β̂s j(u)), j ∈ Ωs∪∆s, s = 1, · · · , S−1, be the maximiser of this local conditional log likelihood function at u.

Statist. Med. 2016, 00 1–15 Copyright c© 2016 John Wiley & Sons, Ltd. www.sim.org 7

Prepared using simauth.cls



Statistics

in Medicine Y. KE, B. FU AND W. ZHANG

For any j ∈ Ωs, the estimator âs j(u) of the functional coefficient as j(u) is taken to be α̂s j(u). For any l ∈ ∆s, the

coefficient asl(·) is constant which is denoted by Csl , and can be estimated by

Ĉsl =
1

n

n

∑
i=1

α̂sl(Ui).

Remark. The Taylor’s expansion based local maximum likelihood estimation used in this paper is an important

nonparametric estimation method. Theoretically speaking, the estimation error due to the linear approximation is of order

Op(h
2), see Li et al. [28]. Practically, this would be very small as long as the sample size is reasonable. The limitation of

the local maximum likelihood estimation is that all functions, which are approximated by linear functions, are required to

have continuous second derivative.

3.2.3. Prediction Once the model is specified and the coefficients in the selected model are estimated, the risk prediction

becomes straightforward: for a new subject, if the observation of the predictor is (Ul, xl1, . . . , xldn
), the conditional

probability of this subject falling in risk level s, s ∈ {1, · · · , S−1}, given (Ul , xl1, . . . , xldn
) can be estimated by

p̂sl =

exp

(
∑

j∈Ωs

xl jâs j(Ul)+ ∑
j∈∆s

xl jĈs j

)

1+
S−1

∑
k=1

exp

(
∑

j∈Ωk

xl jâk j(Ul)+ ∑
j∈∆k

xl jĈk j

) . (3.5)

Let

p̂Sl = 1−
S−1

∑
s=1

psl

and ŝ maximise p̂sl with respect to s on {1, · · · , S}. If p̂ŝl is greater than a given threshold, this new subject is predictable

under this threshold. Then we classify it into risk level ŝ.

3.3. Selection of tuning parameters

The tuning parameters λ1s j and λ2s j, j = 1, · · · , dn, s = 1, · · · ,S− 1, involved in the proposed estimation and model

selection procedure play a very important role. In this subsection, we will address how to choose these tuning parameters.

If we use a proper penalty function, such as SCAD, it would be reasonable to set all λ1s j’s to have the same value and

all λ2s j’s to have the same value. This is because the need of different tuning parameters for different coefficients would

be met by the use of a proper penalty function. From now on, we use λ1 and λ2 to denote the common value of λ1s j’s and

λ2s j’s respectively, and select λ1 and λ2 by the generalized information criterion (GIC) proposed by Fan and Tang [40].

As the model concerned involves both unknown constant parameters and unknown functional parameters, to use GIC,

we first need to figure out how many unknown constant parameters an unknown functional parameter amounts to. Cheng

et al.[10] suggested that an unknown functional parameter would amount to 1.028571h−1 unknown constant parameters

when Epanechnikov kernel K(t) = 0.75(1− t2)+ was used. Taking their suggestion, we construct the GIC for model (3.3)

as

GIC(λ1, λ2) =−2
n

∑
k=1

ℓk(âk, d̂k),

+2ln{ln(n)}ln{1.028571(S−1)dnh−1}(k1 +1.028571k2h−1),

where âk and d̂k are the estimators of ak and dk obtained based on the tuning parameters λ1 and λ2. k1 is the number of

significant covariates with constant coefficients obtained based on the tuning parameters λ1 and λ2, and k2 is the number
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of significant covariates with functional coefficients obtained based on the tuning parameters λ1 and λ2. The minimiser of

GIC(λ1, λ2) is the selected λ1 and λ2.

4. Application to the HAQ progression data

4.1. Data analysis

We fitted model (3.1) to the HAQ data and considered the disease duration variable as the covariate U . One of the

advantages of the proposed semi-varying coefficient multinomial logistic regression model is to allow us to incorporate

potentially varying effects of baseline covariates with the change of U . It is more flexible and more general than the

one including linear interaction terms between baseline covariates and U . Without loss of generality, we re-scaled the

covariate U to [0,1]. The response category Y = 1 was chosen as the reference and the other two categories were

compared against the reference category. We considered 18 candidate covariates including all numerical or dummy

variables listed in Section 2.2. We used the proposed risk prediction methods discussed in Section 3.2 to do the model

selection, estimation and prediction. The kernel function was chosen as the Epanechnikov kernel, and the bandwidth was

chosen as h = 0.6[(S−1)dn/n]0.2. The tuning parameters λ1 and λ2 were selected by GIC [28, 40] as discussed in Section

3.3.

The selected predictors together with their estimated coefficients (constant or functional) are presented in Table 1 and

Table 2. For those functional coefficients, we report their estimates and associated standard errors at given U values with

the disease duration being 1, 3, 6, 12 or 24 months. The standard errors of the coefficient estimates were calculated by

a bootstrap method. Among the list of candidate covariates, twelve were selected to be significantly associated with the

multinomial logit of the response group Y = 2 (moderate risk) relative to the reference group Y = 1 (low risk). Three of

them (RA, female, current smoker) have constant coefficients and are associated with increased probability of being in

the higher risk groups. The others (baseline HAQ score, number of swollen joints, number of tender joints, DMARDs

treatment duration, age at onset, copies of genetic biomarker, previous smoker, upper middle deprived group, and most

deprived group) have functional coefficients, which means that their effects are varying with the change of baseline disease

duration. For the multinomial logit of the response group Y = 3 (high risk) relative to the low risk group, eight covariates

together with a functional intercept were selected in the model. Two of them (baseline HAQ, rheumatic factor) have

constant coefficients and six (number of swollen joints, number of tender joints, DMARDs treatment duration, age at onset,

copies of genetic biomarker, upper middle deprived group) have functional coefficients. All of the selected covariates in

Table 1 and Table 2 are indeed well acknowledged predictors in HAQ progression (see for example, Combe et al. [41]).

Fewer predictors were identified in Table 2 due to the smaller sample size of 23 in Group Y = 3 comparing to 74 in Group

Y = 2. It is interesting but not surprising to see that the effects of smoking status and genetic biomarker with short baseline

disease duration (1 or 3 months) contribute more toward higher risk, while the effects of clinical variables (i.e., baseline

HAQ sore, number of tender joints) with long baseline disease duration (24 months) contribute more toward higher risk.

The scientific aim of this study is to classify the patients at baseline into different risk groups to predict their outcomes

at the end of follow up. Hence we assess the performance of our methods by comparing the correct prediction rate

with other existing methods. The calculation of the correct prediction rate is based on a leave-one-out cross-validation

approach. For each subject, we used the rest of the data (289 subjects) to select covariates and obtain their coefficient

estimates. We then calculated the estimated conditional probability of belonging to low, moderate or high risk levels for

this subject. If one of the estimated conditional group-membership probabilities is higher than a threshold, say 80% or
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70%, we classify this subject into the corresponding group and compare the prediction result with the true value of Y . By

repeating this procedure to all subjects, we calculated correct prediction rates for those subjects who have a maximum of

the estimated group-membership probabilities greater than the threshold. The results are shown in Table 3, where the ”Total

prediction No.” means the numbers of subjects with a maximum group-membership probability greater than the threshold

(80% or 70%) and the ”Correct prediction No.” means the numbers of subjects correctly grouped. The correct prediction

rates, which are ratios between the correct prediction numbers and the total prediction numbers, are compared between

our method and alternative competitors. The alternative competitors include “SCAD constant coefficient model”, “Full

varying coefficient model” and “Full constant coefficient model”. The “SCAD constant coefficient model” is selected by a

SCAD penalized multinomial logistic regression with constant coefficients. The “Full varying coefficient model” means a

varying coefficient multinomial logistic regression including all covariates with functional coefficients. The “Full constant

coefficient model” means a multinomial logistic regression including all covariates with constant coefficients. We see

that our selected model always gives better correct prediction rates comparing to all the competitors by reducing false

prediction numbers significantly. Its correct prediction rate could reach as high as 85.2% when the threshold probability

is 0.8. The SCAD constant coefficient model performs better than the two full models. The above results justified

the motivation of the proposed method as both varying coefficient assumption and model selection are crucial to the

improvement of prediction performance. The total computation time for this subsection is about 2 hours.

4.2. Reliability of prediction

To evaluate the reliability of the proposed risk prediction model, we consider a recalibration framework in this subsection.

Recalibration methods that involve the estimation of calibration intercept and calibration slope are well-recognized

approaches to assess the reliability of prediction models [42, 43]. The logistic recalibration framework for the risk

prediction models with binary outcomes has been proposed in existing literature [44, 45]. Recently Van Hoorde et al. [46]

extended this recalibration tool for nominal polytomous outcomes. In this paper, we extend the recalibration framework

proposed by Van Hoorde et al. [46] to propose new calibration tools, including calibration intercept and calibration slope,

to assess the reliability of the proposed prediction model based on semi-varying coefficient multinomial logistic regression.

The calibration intercept, calibration slope and their confidence intervals were calculated as follows.

We divided the HAQ data sample into two datasets: a prediction dataset including 200 subjects and a validation dataset

including 90 subjects. First we used the prediction data to do the model selection. Based on the selected model and the

estimated coefficients, we used the validation data to estimate the intercept and the slope of a recalibration multinomial

regression model as follows.

Denote Ωs and ∆s the set of the subscripts of the variables with functional and constant coefficients in the selected model

for category s respectively, s = 2,3. We fitted the following recalibration model to the validation data for l = 1, · · · ,90:





log
[

P(Yl=2)
P(Yl=1)

]
= γ20 + γ21

(
∑

j∈Ω2

xl jâ2 j(Ul)+ ∑
j∈∆2

xl jĈ2 j

)
, for Yl = 2,

log
[

P(Yl=3)
P(Yl=1)

]
= γ30 + γ31

(
∑

j∈Ω3

xl jâ3 j(Ul)+ ∑
j∈∆3

xl jĈ3 j

)
, for Yl = 3,

(4.1)

where â2 j(.), â3 j(.), Ĉ2 j and Ĉ3 j were obtained by applying the method proposed in Section 3.2.2 to the prediction data; γs0

and γs1 are the intercept and the slope for the sth category, s = 2,3. We estimated the calibration slopes γ̂s1 and calculated

their 95% Wald-type confidence intervals. Similarly, we calculated the calibration intercepts and their 95% Wald-type

confidence intervals except that all γ̂s0s were obtained by fixing the corresponding slopes γs1 equal to 1 [46].
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The calibration slope and the calibration intercept are important aspects of calibration, assessing the amount of model

overfitting and difference between observed outcome versus predicted outcome respectively [42, 43]. When the risks

are perfectly calibrated, the calibration slope is 1 and the calibration intercept is 0 [46]. In addition, their confidence

intervals should be reasonably small. Comparisons of the estimated calibration slopes and calibration intercepts between

our method, the “SCAD constant coefficient model” and the “Full varying coefficient model” are presented in Table 4. It

shows clearly that the model selected by our method is more reliable because its calibration intercept is more close to 0

(observed outcomes agree more with predicted risks) and its calibration slope is more close to 1. The calibration slopes

for the “SCAD constant coefficient model” (i.e., 0.83 and 0.86) and for the “Full varying coefficient model” (i.e., 0.76 and

0.78) suggest more overfitting in both models. The total computation time for this subsection is about 1 hour.

4.3. Simulation study

To examine the performance of the proposed method in Section 3, we conduct a simulation study to answer two questions:

1) whether the proposed model selection procedure works well to select correct predictors and the types of their coefficients

(constant or functional); 2) whether the developed prediction model works well to classify subjects into different risk

groups using baseline information.

We generated a simulated dataset which mimics the real HAQ progression data. The covariates x j’s were generated

independently as follows. If the jth covariate in the HAQ progression data is continuous, x j was generated from a normal

distribution with its mean and variance being equal to the sample mean and the sample variance of the jth covariate. If the

jth covariate is discrete, then x j was generated from a discrete distribution taking the same values with probabilities being

equal to the sample probabilities estimated from the HAQ progression data. The covariate U was generated independently

from Uni f orm [0, 1]. The response variable Y ∈ {1, 2, 3} was generated from the following multinomial logistic

regression model:





log
[

P(Y=2)
P(Y=1)

]
= ∑

j∈Ω2

x ja2 j(U)+ ∑
j∈∆2

x jC2 j, for Y = 2,

log
[

P(Y=3)
P(Y=1)

]
= ∑

k∈Ω3

xka3 j(U)+ ∑
k∈∆3

xkC3 j, for Y = 3,
(4.2)

where Ω2, Ω3, ∆2 and ∆3 refer to the model selected in Section 4.1; a2 j(·), a3 j(·), C2 j and C3 j are the same as the estimated

coefficients in Section 4.1. In Section 4.3, model (4.2) is considered as the true model and a2 j(·), a3 j(·), C2 j and C3 j are

considered as the true coefficients.

We considered different scenarios with sample sizes n being equal to 200, 300 or 400. For each scenario, we generated

a training dataset of sample size n from (4.2). The simulation was conducted in the following steps:

(i) Select the model and estimate a2 j(·), a3 j(·), C2 j and C3 j using the training data;

(ii) Generate a separate testing dataset such that there are 100 subjects in each response category; apply the estimated

model obtained in Step (i) to predict the response Y for each subject in this testing dataset;

(iii) Generate a second testing dataset such that there is one response category into which subjects are classified with

conditional probabilities of 90%-100%, 80%-90% and 70%-80% respectively; keep simulating until each response

category has a sample size of 100; apply the estimated model obtained in Step (i) to predict the response Y for each

subject in the second testing dataset.

By repeating the above procedure for 200 realizations, we assess the model selection performance by reporting the

average numbers of correct-selection, wrong-selection and missing-selection for the logit of Y = 2 vs Y = 1 and the logit
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of Y = 3 vs Y = 1 respectively. The results are presented in Table 5, where “Correct-selection” means that the selected

covariates are true predictors and the procedure correctly selects their coefficient types (constant or functional); “Wrong-

selection” means that some selected covariates are false predictors or the procedure wrongly selects their coefficient types;

“Missing-selection” means that some true predictors are not selected in the procedure. It is seen that our proposed method

performs well in the model selection with small average numbers of wrong-selection and missing-selection. For example,

when selecting 13 (or 10) true predictors for the logit of Y = 2 (or Y = 3) vs Y = 1 among 21 candidate covariates, there

is about one covariate wrongly selected on average for n = 300, mainly due to wrong selection for its coefficient type. It

is less likely to miss a true predictor with an average number of missing-selection being 0.23 (or 0.20) for n = 300. When

the sample size is reduced to 200, the average numbers of wrong-selection and missing-selection slightly increase to 2 and

1 respectively.

In addition, we assess the out-of-sample performance of the estimated prediction model by applying it to separate

testing datasets. The average proportions of correct prediction in each category in Step (ii) and the average proportions of

subjects being classified into a correct category in Step (iii) are reported in the Panels (ii) and (iii) of Table 5 respectively.

In order to make a comparison, we report the simulation results from the “Oracle model”, which means that we know

the true model and the true coefficients, and a number of competitor methods available to be implemented, including the

“SCAD constant coefficient model” and the “Full constant coefficient model”, as explained in Section 4.1. We see that

the prediction performance of the estimated model is obviously better than those the two competitor methods and is close

to that of the “Oracle model” when n = 400. The computation of the simulation was performed using a small number of

computer clusters and the execution time is about 8 hours.

5. Discussion

In the management of chronic diseases, it is of interest to identify a sub-group of subjects at baseline who are at high

risk in future progression to a severe disease outcome and hence specific therapeutic strategies could be matched.

Many prognostic markers (predictors) are often taken into account in risk prediction modelling and the interactions

between predictor variables can be complicated. In this paper, we presented a semi-varying coefficient regression model

for improving the prediction modelling and conducted the model selection by a penalised likelihood approach. Based

on the ideas of penalization on deviation, kernel smoothing and quadratic function approximation, our method selects

significant predictors, determines whether each selected predictor has a constant or functional coefficient and estimates

their coefficients simultaneously. Another attractive feature of the proposed method is that it allows the number of

potential covariates to increase with the sample size. With rapid development of laboratory medicine, more potential

prognostic markers, including clinical and demographic features, environmental factors, serological factors, genetic

factors, epigenetic factors and their interactions, are considered as candidates predicting future disease outcome or

response to treatment in stratified medicine and the number of potential predictors could be very large. This paper focuses

on nonparametric risk prediction modelling and future work would be focussing on treatment-specific consideration in

stratified medicine and methods to predict response to treatment.

We consider the multinomial logistic regression as it is widely used in medical research for categorical outcomes. It

would be a topic of future work to extend the proposed method to an ordinal logistic regression context for the ordinal

outcome HAQ. For example, one could extend the current method by penalizing the likelihood of a proportional odds

logistic regression [47] for ordinal outcomes in a similar way. However a different algorithm may be required to handle
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the optimization of its penalized likelihood with constrained parameterization.

Our model allows non-linear interactions which include the usual type of interactions, such as product of x and U , as

special cases. For example, if the function a(U) in model (3.1) is linear, such as a(U)x = aUx, the model is specialized

to one with an usual type of linear interaction. From a modelling point of view, one can also entertain other potential

interactions between other covariates by including extra non-linear interaction terms (or other transformation) of the

covariates concerned in the model.
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Table 1. HAQ progression data: selected covariates for the logit of Y = 2 (moderate risk) vs Y = 1 (low risk) and their

coefficient estimates (standard errors) that are either constant or varying at selected disease durations.

Variable Type 1 month 3 months 6 months 12 months 24 months

RA constant 0.091 - - - - -

(yes or no) (0.051)

Female constant 0.144 - - - - -

(yes or no) (0.010)

Current smoker constant 0.093 - - - - -

(yes or no) (0.002)

Baseline HAQ score functional - 0.147 0.084 0.044 0.089 0.576

- (0.041) (0.019) (0.017) (0.023) (0.153)

Number of swollen joints functional - -0.011 -0.005 0.001 0.001 -0.028

- (0.004) (0.002) (0.0003) (0.0004) (0.007)

Number of tender joints functional - -0.007 -0.004 -0.0004 0.007 0.013

- (0.003) (0.001) (0.0001) (0.002) (0.005)

Treatment duration functional - -0.0002 -0.0001 0.0001 0.0002 0.0002

(days) - (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Age at onset functional - -0.002 -0.001 -0.0004 0.000 -0.0002

- (0.0005) (0.0002) (0.0001) (0.0001) (0.0001)

Copies of genetic biomarker functional - 0.078 0.054 0.038 0.006 -0.104

- (0.028) (0.021) (0.015) (0.002) (0.033)

Previous smoker functional - 0.107 0.080 0.030 -0.032 -0.173

(yes or no) - (0.027) (0.019) (0.009) (0.007) (0.057)

Upper middle deprived group functional - 0.291 0.241 0.194 0.083 -0.184

(yes or no) - (0.086) (0.089) (0.046) (0.032) (0.053)

Most deprived group functional - 0.309 0.290 0.264 0.174 -0.176

(yes or no) - (0.101) (0.093) (0.088) (0.067) (0.068)

RA: fulfilment of the ACR 1987 classification criteria for rheumatoid arthritis; HAQ: Health Assessment

Questionnaire.
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Table 2. HAQ progression data: selected covariates for the logit of Y = 3 (high risk) vs Y = 1 (low risk) and their coefficient

estimates (standard errors) that are either constant or varying at selected disease durations.

Variable Type 1 month 3 months 6 months 12 months 24 months

Baseline HAQ score constant 0.052 - - - - -

(0.0004)

Rheumatic factor constant 0.077 - - - - -

(positive or negative) (0.0008)

Intercept functional - -0.159 -0.149 -0.138 -0.098 0.025

- (0.043) (0.039) (0.052) (0.034) (0.007)

Number of swollen joints functional - 0.005 0.004 0.003 0.004 0.010

- (0.002) (0.001) (0.001) (0.001) (0.003)

Number of tender joints functional - -0.006 -0.004 -0.001 0.002 0.015

- (0.002) (0.001) (0.0003) (0.001) (0.007)

Treatment duration functional - 0.001 0.0004 0.0001 -0.0002 -0.0001

(days) - (0.0002) (0.0002) (0.0001) (0.0002) (0.0001)

Age at onset functional - 0.003 0.002 0.002 0.001 -0.001

- (0.001) (0.001) (0.0004) (0.0002) (0.0003)

Copies of genetic biomarker functional - 0.057 0.053 0.038 0.003 -0.054

- (0.018) (0.016) (0.015) (0.001) (0.021)

Upper middle deprived group functional - -0.095 -0.045 0.020 0.117 0.165

(yes or no) - (0.019) (0.016) (0.008) (0.044) (0.038)

HAQ: Health Assessment Questionnaire.

Table 3. HAQ progression data: comparison of the total prediction numbers, the correct prediction numbers and the correct

prediction rates among models.

Estimated conditional probability ≥ 80%

Model Total prediction No. Correct prediction No. Correct prediction rate

Our method 61 52 85.2%

SCAD constant coefficient model 72 51 70.8%

Full varying coefficient model 77 51 66.2%

Full constant coefficient model 81 50 61.7%

Estimated conditional probability ≥ 70%

Model Total prediction No. Correct prediction No. Correct prediction rate

Our method 120 93 77.5%

SCAD constant coefficient model 130 89 68.5%

Full varying coefficient model 138 88 63.7%

Full constant coefficient model 143 90 62.9%
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Table 4. HAQ progression data: estimated calibration intercepts and calibration slopes together with their 95% Wald-type

confidence intervals (in the brackets); the category Y = 1 is the reference.

Calibration intercept Calibration slope

Our method

Y = 2 -0.16 [-0.22; -0.06] 1.06 [0.93; 1.23]

Y = 3 0.23 [0.07; 0.38] 1.08 [0.88; 1.32]

SCAD constant coefficient model

Y = 2 -0.55 [-0.86; -0.22] 0.83 [0.70; 1.09]

Y = 3 0.44 [0.15; 0.81] 0.86 [0.72; 1.13]

Full varying coefficient model

Y = 2 -0.65 [-0.84; -0.34] 0.76 [0.47; 1.07]

Y = 3 1.04 [0.66; 1.32] 0.78 [0.53; 1.04]
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Table 5. Simulation study: comparison of the performances of our method, the SCAD constant coefficient model and the

full constant coefficient model.

(i) Average number of correct, wrong or missing-selection

Sample size Category Correct-selection Wrong-selection Missing-selection

n = 200
Y = 2 10.35 2.12 1.63

Y = 3 7.95 1.82 1.05

n = 300
Y = 2 11.77 1.12 0.23

Y = 3 8.80 1.06 0.20

n = 400
Y = 2 11.90 0.95 0.10

Y = 3 8.86 0.91 0.14

(ii) Average proportion of correct prediction within each category

Sample size Model Y = 1 Y = 2 Y = 3

n = 200

Our method 0.68 0.62 0.56

SCAD constant coefficient model 0.55 0.53 0.50

Full constant coefficient model 0.31 0.30 0.27

Oracle model 0.79 0.74 0.67

n = 300

Our method 0.74 0.69 0.60

SCAD constant coefficient model 0.55 0.53 0.50

Full constant coefficient model 0.38 0.36 0.32

Oracle model 0.79 0.74 0.67

n = 400

Our method 0.78 0.75 0.71

SCAD constant coefficient model 0.63 0.60 0.59

Full constant coefficient model 0.44 0.41 0.38

Oracle model 0.79 0.74 0.67

(iii) Average proportion of subjects being classified into a correct category

Sample size Model 90%−100% 80%−90% 70%−80%

n = 200

Our method 0.88 0.76 0.65

SCAD constant coefficient model 0.74 0.62 0.51

Full constant coefficient model 0.69 0.54 0.41

Oracle model 0.94 0.83 0.73

n = 300

Our method 0.92 0.80 0.69

SCAD constant coefficient model 0.77 0.68 0.56

Full constant coefficient model 0.72 0.58 0.45

Oracle model 0.94 0.83 0.73

n = 400

Our method 0.93 0.82 0.70

SCAD constant coefficient model 0.78 0.70 0.59

Full constant coefficient model 0.74 0.60 0.49

Oracle model 0.94 0.83 0.73
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