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Abstract	

Ceramics have been used to deliver significant improvements in the wear properties of orthopaedic 

bearing materials, which has made it challenging to isolate wear debris from simulator lubricants. 

Ceramics such as silicon nitride, as well as ceramic-like surface coatings on metal substrates have 

been explored as potential alternatives to conventional implant materials. Current isolation methods 

were designed for isolating conventional metal, UHMWPE and ceramic wear debris. In this paper, 

we describe a methodology for isolation and recovery of ceramic or ceramic-like coating particles 

and metal wear particles from serum lubricants under ultra-low and low wear performance. 

Enzymatic digestion was used to digest the serum proteins and sodium polytungstate was used as a 

novel density gradient medium to isolate particles from proteins and other contaminants by 

ultracentrifugation. This method demonstrated over 80% recovery of particles and did not alter the 

size or morphology of ceramic and metal particles during the isolation process. 

1 Introduction	

Modern ceramic-on-ceramic (CoC) bearings generate wear rates which are approximately a hundred-

fold lower than the conventional UHMWPE-on-metal bearings in total hip replacements [1]. The 

motivation for developing low wearing biomaterials and bearing combinations originates from 

clinical and experimental evidence which has revealed the role that wear debris plays in implant-

associated osteolysis and adverse soft tissue reactions in patients implanted with devices [2–5]. 
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Particle concentration and size are considered to be important factors affecting cytotoxicity, 

inflammatory cytokine release and bone resorption activity in macrophages. Wear particles in a 

critical size range of 0.1 to 1 µm are believed to be more biologically active in terms of osteolytic 

cytokine release [2]. The systemic distribution of wear debris in patients is also found to be 

dependent on particle size [6–8]. Furthermore, a number of studies have demonstrated the effect of 

particle morphology on phagocytic capacity and release of inflammatory cytokines in macrophages 

[9–11]. As a consequence, there is a large body of work investigating wear testing of orthopaedic 

bearing materials and, the subsequent characterisation of wear debris. Newborn calf serum (NCS) 

diluted with deionised water (protein concentration from 17 g/l to 30 g/l) is the lubricant used within 

mechanical simulators to simulate physiological wear mechanisms and wear rates with a variety of 

materials.  

 

Prior to characterisation, wear particles are isolated from the serum proteins together with other 

contaminants. A number of techniques using acid, base, or enzymatic digestion to break down the 

proteins, followed by isolation of the wear particles by chemical extraction, density gradients, or 

direct filtration have been developed. However, these methods were designed for isolation of debris 

from conventional UHMWPE, metals and alumina ceramic materials [12–18].  

The latest generation of ceramic bearing materials such as silicon nitride (Si3N4) [19], as well as a 

number of surface engineered coatings have been explored as potential alternatives to UHMWPE 

and metal articulations [20–24]. 

Silicon nitride particles are found to slowly dissolve in aqueous fluids [25] and the wear debris 

released from silicon nitride articulating surfaces are predicted to slowly dissolve in biological fluids 

[23]. Current methods are not designed to isolate and recover wear debris in such situations. 
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As a very low wearing material, Si3N4-on- Si3N4 bearings have demonstrated wear rates comparable 

to alumina-on-alumina ceramic bearings [19]. Surface engineered coatings such as diamond-like 

carbon, chromium nitride, chromium carbonitride and silicon nitride coatings also demonstrated very 

low wear in comparison to their metal counterparts under standard conditions [20–23].  

The amount of wear produced by modern CoC bearings is found to be as low as 0.01 mm
3
/million 

cycles during hip simulator testing [26], whilst the volume of serum lubricant used in current wear 

simulators is usually several hundreds of millilitres. As a consequence, high sensitivity and high 

recovery have become critical for isolation of wear particles for these low wearing bearing 

combinations. For the same reason, it has been difficult to characterise wear debris and test the 

biocompatibility of very low wearing ceramic materials such as zirconia-toughened alumina (Biolox 

Delta, Ceramtec) and silicon nitride.  

This has created the need for development of methodologies to isolate wear debris from simulator 

lubricants used in wear testing of ultra-low wearing materials and coatings. In addition, the ability to 

recover particles for further analysis such as biocompatibility testing would also be beneficial. 

We have developed a novel method that is able to isolate any ceramic or metal wear particles denser 

than 1.6 g/cm
3 
(density suitable for separation of serum proteins from metal, ceramic, or ceramic-like 

coating particles) from serum lubricants. The isolation process maintains the original size and shape 

of particles and demonstrates high recovery of particles for further analysis. The effectiveness of the 

method was tested by recovering and characterising Si3N4 nanoparticles and Cobalt-chromium alloy 

(CoCr) wear debris at very low wear rates in the order of 0.01 mm
3
 per million cycles and low wear 

rates in the order of 0.1 mm
3
 per million cycles. 
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2 Materials	and	methods	

2.1	 Materials	

2.1.1 Particles	

Si3N4 nanoparticles were chosen to test the isolation and recovery of ceramic particles. This was 

based on a number of reasons. Firstly, as mentioned previously, silicon nitride has shown potential as 

a monolithic bearing material and also as ceramic-like coatings for total hip replacements. Secondly, 

a large consortium of public and private sector European organisations (LifeLongJoints
1
) is currently 

developing very low wearing silicon nitride coatings for articulating surfaces and total hip 

replacements. The method developed in the present study will be utilised for the isolation of silicon 

nitride wear debris produced during the wear testing of these coatings. Lastly, the isolation of silicon 

nitride particles that slowly dissolve will further test the robustness of the isolation method. 

Commercially available Si3N4 nanoparticles (<50 nm nanopowder, Sigma-Aldrich) were used in the 

present study to test the isolation and recovery of ceramic particles from serum lubricants. These 

particles were stored in sealed containers to minimise surface oxidation in the presence of oxygen 

from air. 

CoCr wear debris generated in a multidirectional pin-on-plate reciprocator were chosen to test the 

isolation and recovery of metal particles, as CoCr has been used consistently as an implant material 

and has recently been explored as a substrate for ceramic-like coatings [23]. 

2.1.2 Density	gradient	medium	

Sodium polytungstate (SPT) was used as a novel density gradient medium due to its properties, such 

as its high solubility in water, the fact that it is nontoxic [27] and acts as a protein denaturant [28], 

coupled with a large density range of 1.1 - 3.0 g/cm
3
 in water. 

2.1.3 Particle	characterisation	instruments	

                                                
1
 LifeLongJoints, Silicon nitride coatings for improved implant function. http://lifelongjoints.eu 
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A nanoparticle tracking analysis (NTA) based particle analyser (NanoSight LM10, Malvern 

Instruments UK) was used to measure particle size distribution and concentration (number of 

particles per ml) of Si3N4 particles dispersed in sterile water. NanoSight has been used to characterise 

polydisperse samples within the size range of 20 nm to 1000 nm and is able to perform 

measurements on ultra-low concentrations of particles [29]. In the present study, NanoSight was 

used to characterise Si3N4 nanoparticles at ultra-low (0.023 µg.ml
-1

) and low concentrations (0.23 

µg.ml
-1

).  

A dynamic light scattering (DLS) based size analyser (Zetasizer Nano ZS, Malvern Instruments UK) 

was used to measure overall size range of Si3N4 aggregates, owing to its large particle size detection 

range of 0.3 nm to 10 µm. This equipment required a minimum concentration of 0.1 mg.ml
-1

 of Si3N4 

nanoparticles in sterile water for accurate results.  

An Hitachi SU8230 high resolution cold-field emission scanning electron microscope (CFE-SEM) 

was used for high resolution imaging of Si3N4 nanoparticles and CoCr wear particles. Aztec Energy 

Energy-Dispersive X-ray (EDX) system integrated in the CFE-SEM, with a high resolution detector 

(80 mm
2
 X-Max SDD, Oxford Instruments), was used for elemental analysis of the samples. Digital 

image analysis (Image-Pro Plus version 6.1, Media Cybernetics UK) was used to measure the 

particle size and shape descriptors. 

2.2  Preparation of CoCr wear particles 

Metal pins and plates were manufactured from medical grade cobalt-chromium alloy (ASTM F1537) 

with high carbon content (>0.2 % wt) and their contact surfaces were polished to a smooth surface 

(Ra 0.01 - 0.02 µm). Subsequently, CoCr wear particles were generated in sterile water (Baxter, UK) 

in a six station multidirectional pin-on-plate tribometer as described previously [30]. The CoCr 

particle suspensions were collected after 330,000 cycles and frozen at -20°C, before being used for 

particle characterisation or isolation experiments. 



  

6 

 

2.3  Characterisation of particles  

Aggregates of Si3N4 nanoparticles were measured using a Malvern Zetasizer (Section 2.13). The 

Si3N4 nanoparticles were suspended in sterile water (Baxter, UK) at a concentration of 0.1 mg.ml
-1

 

and sonicated for 10 min in an ice-cooled ultrasonic bath (USC300T, VWR UK).  

Individual Si3N4 nanoparticles were assessed using a combination of NTA and SEM. Si3N4 

nanoparticles were added to sterile water at concentrations of 0.023 µg.ml
-1 

(6.66×10&' mm
3
.ml

-1
) 

and 0.229 µg.ml
-1 

(6.66×10&( mm
3
.ml

-1
). Based on hip simulator test lubricant volumes of 500 ml 

per 330,000 cycles, the above concentrations were equivalent to in-vitro volumetric wear rates of 

0.01 mm
3
/million cycles and 0.1 mm

3
/million cycles respectively. Particle suspensions were 

sonicated for 10 min in an ice-cooled ultrasonic bath (USC300T, VWR UK). Particle size 

distribution and concentration (1×10) particles.ml
-1

) were measured by NTA. For scanning electron 

microscopy analysis, 20µl of Si3N4 nanoparticles suspension (1 mg.ml
-1

) and 10µl CoCr wear debris 

suspension (1 mg.ml
-1

) were re-suspended separately in 10 ml sterile water, sonicated for 10 min in 

an ice-cooled ultrasonic bath and filtered through 0.015µm pore size polycarbonate membrane filters 

(Whatman, UK). The filters were then dried under an infrared lamp for two to three hours, mounted 

on aluminium stubs and sputter-coated with 3nm platinum (Agar Auto Sputter Coater, Agar 

Scientific UK) to minimise charging and contamination from the electron beam. 

Scanning electron micrographs of particles were captured at low magnifications of 1000x and high 

magnifications of 100,000× to 200,000×. A minimum of 150 particles of each sample were 

characterised. Major diameter (dmax), aspect ratio and roundness measurements were taken for each 

particle using Image-Pro Plus software in accordance with ASTM F1877-05(2010) [31].   

2.4  Preparation of particle doped serum lubricants  

Si3N4 nanoparticles and CoCr wear particles were added separately to 25% (v/v) calf serum 

(Seralabs, UK) at volumetric concentrations of 6.66×10&' mm
3
.ml

-1
 (equivalent to a wear rate of 
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0.01 mm
3
/million cycles) and 6.66×10&( mm

3
.ml

-1 
(equivalent to a wear rate of 0.1 mm

3
/million 

cycles). 

2.5  Isolation of particles 

Si3N4 nanoparticles and CoCr wear debris were isolated from serum lubricants by the newly 

developed method using SPT gradients. The particle isolation procedure is shown in Figure 1. All 

solutions except sterile water were filtered using 20nm Whatman® Anodisc membrane filters (GE 

Whatman, UK) to avoid introduction of any external impurities. All centrifuge tubes were coated 

with siliconizing fluid (Surfasil, Sigma UK) to minimise sticking of particles to the tube walls. 

Centrifugation was carried out using an Optima L80 ultracentrifuge (Beckman Coulter, USA). 

Centrifugation speeds and durations were calculated based on the particle sedimentation equations 

described previously [32,33]. 

Prior to the isolation, particle spiked lubricants were gently stirred and sonicated simultaneously for 

10 min in an ice-cooled ultrasonic bath to uniformly disperse the particles. Adapted from Billi et al. 

[12] the first step was to reduce the sample volume by centrifugation at 32,000 rpm (average RCF of 

125,755g in SW32Ti rotor, Beckman Coulter) for 3 hours at 20°C using 30ml Thickwall Polyallomer 

tubes (Beckman Coulter USA). A volume of 27ml of the supernatant was carefully removed by 

aspiration and examined by NTA to verify that no particles remained in the supernatant. Thereafter, 

the remaining supernatant and the pellet was re-suspended in HEPES buffer (working concentration 

0.1 M) and digested at 50°C by proteinase K (working concentration 0.5 mg/ml) for 18 h in the 

presence of 0.5% (w/v) sodium dodecyl sulphate (SDS) and 3mM calcium chloride.  After digestion, 

the digest was gently stirred and sonicated simultaneously for 10 minutes in an ice-cooled ultrasonic 

bath. The enzymatic digestion was repeated by the addition of proteinase K (working concentration 1 

mg.ml
-1

) and digestion at 50°C for 22 h. Subsequently, SPT density gradients were prepared by 

sequentially layering 60% SPT (Density 2.0 g.cm
-3

), 40% SPT (Density 1.6 g.cm
-3

) and 20% SPT 

(Density 1.2 g.cm
-3

) in a 13 ml tube (Thinwall Polyallomer, Beckman UK). The digest was gently 
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stirred and sonicated simultaneously for 10 min in an ice-cooled ultrasonic bath and loaded on top of 

the SPT gradients. The tubes were then filled to the top with sterile water. Particles were isolated 

from partially hydrolysed proteins and other contaminants by density gradient ultracentrifugation at 

40,000 rpm (average RCF of 202,048g in SW40Ti rotor, Beckman Coulter USA) for 4 h. At the end 

of the centrifugation step, particles were collected at the bottom of the centrifuge tube, leaving 

protein fragments and other impurities suspended higher up the tube. Supernatant layers were 

removed by aspiration and isolated particles were washed three times in sterile water at 35,000 rpm 

(average RCF of 154,693g in SW40Ti rotor, Beckman Coulter USA) for 1 h in the same centrifuge 

tube. The tube contents were gently stirred and sonicated simultaneously for 10 min in an ice-cooled 

ultrasonic bath between each washing step. Supernatants from washing steps were examined by NTA 

to verify that no particles were lost during washing steps.  

2.6  Characterisation of particles after isolation 

Isolated particles were re-suspended in sterile water and dispersed by sonic agitation for 10 min in an 

ice-cooled ultrasonic bath. NTA was used for the measurement of Si3N4 aggregate size distribution 

and particle concentration.  

For scanning electron microscopy analysis, Si3N4 nanoparticles and CoCr wear debris were dispersed 

in water, sonicated for 10 min in an ice-cooled ultrasonic bath and collected on to the 0.015 µm pore 

size membrane filters by vacuum filtration in a class II cabinet. Membrane filters were dried under 

infrared lamps for two to three hours and coated with 5 nm platinum (as described previously in 

Section 2.3). SEM images of particles were captured at low magnifications of 1000× and high 

magnifications of 100,000× to 200,000×. A minimum of 150 particles per sample were 

characterised using Image-Pro Plus software (as described above in Section 2.3). 
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2.7  Statistics 

Particle size and shape distributions were tested for normality using Shapiro-Wilk and Kolmogorov-

Smirnov tests. The distributions were not normally distributed. Statistical differences in the particles 

size distributions before and after isolation were tested using non parametric Kolmogorov-Smirnov Z 

test (SPSS Statistics Version 22, IBM Corp. USA). The tests were carried out on the original un-

binned data for higher accuracy. Statistical differences in the aspect ratio values and roundness 

values before and after isolation were tested using Mann-Whitney U test (SPSS Statistics Version 22, 

IBM Corp. USA).  

3 Results	

3.1  Isolation of Si3N4 nanoparticles and CoCr wear debris from serum 

lubricants 

Samples containing Si3N4 and CoCr particles were pelleted during the concentration step (Figure 2 

A). NTA did not detect any particles in the supernatants collected after the concentration step. The 

SPT gradients were prepared in centrifuge tubes and the digested Si3N4 and CoCr samples were 

loaded on top of the SPT gradient in each tube (Figure 2 B). At the end of the washing steps, Si3N4 

and CoCr particles were pelleted at the bottom of the centrifuge tubes as shown in Figure 2 C. NTA 

did not detect any particles in the supernatants collected during washing steps. Particles doped at 

ultra-low wear rates were barely visible to the naked eye after washing steps as shown in Figure 2 D.   

3.2  Characterisation of Si3N4 nanoparticles and CoCr wear debris 

Si3N4 nanoparticles were observed as aggregates in aqueous solution. Size distributions from DLS 

and NTA measurements indicated that the maximum size of Si3N4 particle aggregates was smaller 

than 500 nm (Figure 3). The mode size measured by NTA was 150 - 200 nm, while the mode size 

measured by DLS was 250 - 300 nm. The particle size range measured by NTA was 20 nm - 500 nm 

(Figure 3 and Figure 4). No statistically significant differences were observed between the size 

distributions of Si3N4 nanoparticle aggregates before and after particle isolation (Kolmogorov-
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Smirnov Z test, p>0.05) (Figure 4). Therefore, aggregation characteristics of Si3N4 nanoparticles 

were found to be unchanged by the isolation process.  

High resolution SEM images of Si3N4 and CoCr particles before and after isolation are shown in 

Figure 5. The morphology of the Si3N4 particles was round to oval and was not affected by the 

isolation process. This was further confirmed by statistical analysis, as no significant differences in 

the aspect ratio and roundness values of Si3N4 nanoparticles before and after isolation were observed 

(Mann-Whitney U Test, p>0.05) (Table 1). A comparison of the frequency (particle size) 

distributions for Si3N4 particles obtained by image analysis of high resolution SEM images before 

and after the isolation method is shown in Figure 6 A. The mode particle size for Si3N4 particles was 

30-40 nm and the frequency distributions were statistically similar (Kolmogorov-Smirnov Z test, 

p>0.05), indicating no significant effect of the isolation process on particle size.  

Particle morphology of CoCr wear debris was also unaffected by the isolation process (Figure 5). 

Moreover, no significant differences in the aspect ratio and roundness values were observed for 

CoCr particles before and after isolation (Mann-Whitney U Test, p>0.05) (Table 1). Frequency 

(particle size) distributions for CoCr particles before and after isolation were also statistically similar 

(Kolmogorov-Smirnov test, p>0.05). Mode size of primary CoCr particles was 10 - 20 nm         

(Figure 6 B). 

3.3  Particle isolation sensitivity and recovery rates 

Si3N4 nanoparticles isolated from serum lubricants were collected on membrane filters and elemental 

composition was assessed by EDX analysis. EDX spectra of particles and the background filter are 

shown in Figure 7. Silicon and nitrogen peaks were observed for nanoparticles, confirming the 

isolated particles as Si3N4 nanoparticles. The background was composed of carbon, oxygen and 

platinum peaks, originating from the polycarbonate filter and the platinum coating, respectively. No 

other elements were present, indicating the successful removal of impurities and contaminants. The 
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percentage recovery of Si3N4 nanoparticles from serum lubricants at concentrations equivalent to 

ultra-low wear rates of 0.01mm
3
 per million cycles and low wear rates of 0.1mm

3
 per million cycles 

are shown in Figure 8. Average recovery rates were above 80% for both particle concentrations. This 

demonstrated the high efficiency and high sensitivity of the novel isolation method.    

4 Discussion	

This is the first study to demonstrate the recovery of ceramic nanoparticles and metal wear debris 

from serum lubricants at very low volumetric concentrations of 6.66×10&' mm
3
.ml

-1
 and low 

volumetric concentrations of 6.66×10&( mm
3
.ml

-1
. These concentrations are comparable to wear 

rates of 0.01 mm
3
 per million cycles and 0.1 mm

3
 per million cycles in a hip simulator with 500 ml 

of lubricant used per station, where the lubricant is changed every 330,000 cycles. Such low 

concentrations of particles are likely to be present in the serum based lubricants collected during hip 

simulator testing of the latest generation of CoC bearings. Low particle concentrations result from 

very low wear of the bearing surfaces, coupled with large lubricant volumes used per station in a hip 

simulator. The majority of modern hip simulators hold 450 to 500 ml of lubricant per station and the 

lubricant is changed every 330,000 or 500,000 cycles [34–38]. The rationale behind using such large 

lubricant volumes is to reduce the possibility of overheating of serum-based lubricants. However, 

this significantly reduces the concentration of particles in serum lubricants and makes it more 

challenging to isolate them from serum proteins. During the wear of conventional materials in a 

simulator, despite the fact that wear particles are generated in a large lubricant volume, the amount of 

wear is sufficient for producing a reasonably higher particle concentration in serum lubricants. 

Considering the improvements in wear properties of bearing materials, recent studies have reported 

the sensitivity of novel isolation methods and compared the particle extraction efficiency of existing 

metal wear debris isolation methods [12,32]. However, current methods only isolated metals such as 
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CoCr and previous generation alumina ceramics from simulator lubricants [12,32,39], which wear at 

higher rates compared to the latest ceramics [26] and ceramic-like coatings [23].  

The novel wear debris isolation method introduced in this study used enzymatic digestion in 

combination with novel SPT gradients to isolate the latest generation of ceramic and metal particles. 

Enzymatic digestion was used to break-down serum proteins, instead of acid or base digestion, to 

minimise damage to the particles. The digestion was carried out in the presence of sodium dodecyl 

sulphate (SDS) to increase the efficiency of digestion by unfolding the majority of the secondary, 

tertiary and quaternary structure of serum proteins. Stabilisation of proteinase K by calcium has been 

established in the literature [12,40]. The present method stabilised proteinase K during digestion by 

including 3mM CaCl2 in the digestion buffer. The digestion was carried out at 50°C to maximise the 

proteolytic activity of the proteinase K, without significantly affecting its stability. The digestion 

time was chosen to be long enough to maximise proteolysis, without increasing the costs of adding 

more enzyme.  This method also introduced novel SPT gradients for the separation of nanoparticles 

from protein contaminants. Conventional gradient materials such as isopropanol, sucrose and 

caesium chloride have a limited density range, which is not suitable for separating metals and 

ceramics from protein contaminants. Billi et al. [12,13] used custom gradients composed of SDS and 

UREA for their denaturing properties, and used cesium trifluoroacetate solution as a barrier layer for 

its high density of 2.0 g/cm
3
. However, cesium trifluoroacetate is a toxic compound and for this 

reason its availability is also limited. Conversely, SPT is a non-toxic compound [27] with low 

viscosity [27] and a large density range of 1.1 to 3.0 g/cm
3
 in water. This allows SPT gradients to 

effectively separate metal and ceramic nanoparticles from serum proteins. Moreover, SPT is highly 

soluble in water, which allows its separation from isolated particles by centrifugal washing. 

Furthermore, SPT is non-flammable [27], odourless [27] and also has protein denaturing properties 

[28]. Therefore, SPT is a suitable alternative to the previously used gradient materials.  
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The present method used ultracentrifugation for concentration of the serum lubricants, isolation of 

particles using SPT density gradients and washing of particles. Previous studies have emphasised the 

importance of sufficient centrifugal forces and duration of centrifugation in effectively concentrating 

or separating nanoscale particles [12,32,41,42]. During centrifugation, the rate of sedimentation of 

particles is dependent on the balance between centrifugal field forces, and opposing buoyancy and 

friction forces. Based on Newton’s second law of motion, the kinetic equation for centrifugal 

sedimentation has been given as [32]: 

𝑑-𝑟

𝑑𝑡-
𝑚1 = 𝐹4 + 𝐹6 + 𝐹7 

          Eq. 1 

where  
789

7:8
 is the acceleration and 𝑚1 is the mass of a particle moving through the fluid. 𝐹4 is the 

centrifugal force, 𝐹6 is the buoyant force and 𝐹7 is the drag force experienced by the particle during 

motion. For rigid spherical particles, based on Stoke’s law, the time of sedimentation has been 

expressed as [33]: 

𝑡 =
;)<=

>87?
8 @?&@=

×𝑙𝑛
9=CDEF

9CDCGCEF
  

            Eq. 2 

where 𝜂I is the viscosity of fluid, 𝜔 is the angular velocity during centrifugation,𝑑𝑝 is diameter of 

the particle, 𝜌1 is density of the particle, 𝜌I is the fluid density, 𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙	is the distance between axis of 

rotation and the initial position of particle and 𝑟𝑓𝑖𝑛𝑎𝑙	is the distance between axis of rotation and the 

final position of particle.  

This equation was used to calculate the time taken by particles to move from one position to another 

position in the centrifuge tube. For instance during the washing steps, the serum lubricant was 
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centrifuged at 35,000rpm using a Beckman Coulter SW40Ti rotor. Based on the centrifugal 

sedimentation calculations, the time taken to cover the distance of 92.1 mm (maximum displacement 

of particles in SW40Ti rotor) for 10 nm sized particles in this step would have been 20 min. 

Centrifugation was carried out for 60 min, which was sufficient to completely sediment the particles 

larger than 6 nm. This was also verified by analysing supernatants collected at the end of the 

centrifugation steps using NanoSight for any detectable particles. Within the lower particle detection 

limit of NanoSight (approximately 10 - 20 nm), no particles were found in the supernatant. 

Although the present method uses high centrifugal forces (over 200,000g) to separate particles from 

serum proteins and other contaminants, SEM analysis confirmed that the particle size and 

morphology of hard inorganic (Si3N4 and CoCr) particles was unchanged during the isolation 

process. This is in agreement with a previous study by Zolotarevova et al. [43] who demonstrated no 

change in the morphology of much softer UHMWPE particles by ultracentrifugation. Moreover, 

ultracentrifugation is a technique routinely used in biology for separation of cell organelles without 

any significant change to them, as mentioned in the above cited paper.  

In addition to the centrifugal forces, the number of steps and transfer of contents from one tube to 

another could also adversely affect the recovery of particles [12,32,42]. Therefore, the present 

method combined the concentration and digestion steps in the first tube, followed by isolation and 

washing steps in a second tube. Adapted from Billi et al. [12] the centrifuge tubes were coated with 

siliconizing fluid (Surfasil, Sigma UK) to minimise sticking of particles to the tube walls. The loss of 

particles in the pipette tips while transferring the digest and purified particles in new tubes was 

minimised by aspirating the samples, while the contents of the tube were constantly shaken and 

sonicated. This kept the particles in an agitated state and minimised the sticking of particles to 

surfaces such as centrifuge tube walls or pipette tips. Moreover, the effect of heat on particles during 

sonication was minimised by carrying out all the sonication steps in an ice-cooled ultrasonic bath. 



  

15 

 

This was particularly important for Si3N4 particles as their dissolution is accelerated by an increase in 

temperature [25]. 

Another issue related to isolation of particles from serum lubricants has been the artificial clumping 

and aggregation of particles by the wear debris isolation methods. Billi et al. [12] has discussed in 

detail the limitations of previous methods in terms of artificial clumping of particles. No change in 

the particle size distribution of primary aggregates was found from NTA measurements before and 

after isolation using the novel method described here. Therefore, the isolation process did not cause 

any artificial clumping of the particles. The present study also investigated the aggregation 

characteristics of Si3N4 particles using DLS and NTA. Si3N4 aggregates were found to be smaller 

than 500 nm for particle concentrations up to 0.1 mg.ml
-1

. Although DLS was useful for 

determination of maximum size of aggregates, it did not detect any particles smaller than 142 nm. 

Conversely, NTA detected a noticeable fraction of particles in the 100 nm - 150 nm size range. This 

may have been due to the aggregation of Si3N4 nanoparticles at particle concentrations required for 

measuring size distribution by DLS. Both techniques also differ in their measurement accuracy 

depending on dispersity of the sample. NTA is found to have better peak resolution for polydisperse 

samples in 20 nm - 1000 nm size range in comparison to DLS [29].     

Even though the main purpose of a wear debris isolation method is to characterise particles for size, 

shape and chemical composition [12], the flexibility to recover particles for further analysis is 

becoming increasingly important [32,42]. This was demonstrated in the present method by 

recovering particles in sterile water and further analysing them for size, percentage recovery and 

aggregation characteristics using commercial particle analysers (NanoSight and Zetasizer).  

The present method has adapted a number of steps from previous studies [12,13]. However, 

implementation of these methods required the use of custom components, which may not be cost 

effective. Moreover, these methods were primarily developed for characterisation of wear debris 
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using electron microscopy and the recovery of particles for subsequent experiments is not 

straightforward. We have developed a highly sensitive method which uses cost effective 

commercially available reagents and components, and enables the particles to be collected while 

suspended in a liquid medium, which then could be readily analysed using commercial size 

analysers, prior to use in cell studies.  

 

5 Conclusions	

The new isolation method successfully isolated Si3N4 nanoparticles and CoCr wear debris from 

serum lubricants at low and ultra-low concentrations equivalent to wear rates of 0.01 mm
3
/million 

cycles and 0.01 mm
3
/million cycles respectively. The method also demonstrated over 80% recovery 

of particles and preserved the characteristics of ceramic and metal particles during digestion, 

isolation and characterisation steps.  Future work involves adaptation of the method for isolation of 

metal and the latest generation ceramic wear debris from peri-prosthetic tissues.  
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Figure 1 A scheme for the particle isolation procedure. The method is divided into concentration, 

enzymatic digestion and isolation steps.  

Figure 2 Isolation of Si3N4 and CoCr particles from 25% (v/v) bovine serum lubricant. A) Si3N4 (top) 

and CoCr (bottom) lubricant samples pelleted after concentration step as indicated by arrows. Pellets 

appear yellowish due to the presence of protein contaminants. B) Sodium polytungstate gradients 

prior to centrifugation (Left: Si3N4, Right: CoCr). C) Si3N4 (top) and CoCr (bottom) particles 

pelleted at the end of centrifugal washing as indicated by arrows. The colour of the digested lubricant 

layer in the right tube was darker due to the presence of CoCr particles. D) Si3N4 (top) particles 

doped at ultra-low wear rates were not visible to the naked eye after washing steps. CoCr (bottom) 

particles doped at ultra-low wear rates were hardly visible to the naked eye after washing steps as 

indicated by the arrow. 

Figure 3 Size distribution from NTA measurements of Si3N4 nanoparticles dispersed in water at 

ultra-low concentration (dotted line) and low concentration (solid line). Size distribution from DLS 

measurements of 0.1 mg.ml
-1

 Si3N4 nanoparticles (dashed line). Maximum aggregate size for Si3N4 

nanoparticles was approximately 500 nm with both NTA and DLS measurements.     

Figure 4 Particle size distribution of Si3N4 aggregates before and after the particle isolation procedure 

measured by NanoSight at ultra-low wear rates of 0.01mm
3
/million cycles. The size distribution of 

aggregates remained unaffected by the method. Error bars show standard deviation. No significant 

differences were observed in particle size before and after isolation (Kolmogorov-Smirnov Z test, 

P>0.05).   

Figure 5 Scanning electron micrographs of Si3N4 and CoCr particles. A) Before the isolation 

procedure. B) After the isolation procedure. The morphology of particles was similar in both cases 

indicating no noticeable effect of the novel isolation method on the particles.  
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Figure 6 A comparison of particle size distributions of primary particles before and after the isolation 

procedure. A) Si3N4 50nm model particles. B) CoCr wear debris. Particle size distributions before 

and after isolation were not significantly different (Kolmogorov-Smirnov Z test, P>0.05). 

Figure 7 Energy-dispersive X-ray analysis of Si3N4 particles collected on 0.015 µm Nucleopore 

membrane filters. High spatial resolution (less than 300 nm) was achieved by using a large area SDD
 

detector (80 mm
2
 X-Max SDD, Oxford Instruments) and an accelerating voltage of 5 kV. A) Particle 

(spectrum 1) and background areas (spectrum 2) used for EDX analysis. B) EDS spectrum of Si3N4 

particles showing silicon, nitrogen, carbon, oxygen and platinum peaks. C) EDS spectrum of 

background filter showing carbon, oxygen and platinum peaks. Membrane filters were composed of 

polycarbonate polymer and therefore showed carbon and oxygen peaks for both areas. Platinum 

peaks were due to the platinum coating applied to all samples. 

Figure 8 Percentage recovery of Si3N4 nanoparticles from 25% (v/v) NCS lubricant at ultra-low wear 

rates of 0.01 mm
3 
per million cycles and low wear rates of 0.1 mm

3 
per million cycles using the 

novel method. Error bars show standard deviation. 

Table 1 Comparison of major diameter (dmax), aspect ratio and roundness of Si3N4 nanoparticles and 

CoCr wear debris before and after isolation. 

 

 

Si3N4 

(Before isolation) 

Si3N4 

(After isolation) 

CoCr  

(Before isolation) 

CoCr  

(After isolation) 

Major diameter, dmax 

(nm) 

36.813±1.529 36.706±1.356 21.546±1.330 21.725±1.309 

Aspect ratio 1.306±0.026 1.319±0.022 1.319±0.030 1.293±0.027 

Roundness 0.796±0.016 0.790±0.013 0.677±0.012 0.690±0.012 

Note: All values expressed as mean ± 95% Confidence Interval. 

 


