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Abstract. OH reactivity (k′
OH) is the total pseudo-first-order

loss rate coefficient describing the removal of OH radicals to

all sinks in the atmosphere, and is the inverse of the chem-

ical lifetime of OH. Measurements of ambient OH reactiv-

ity can be used to discover the extent to which measured

OH sinks contribute to the total OH loss rate. Thus, OH re-

activity measurements enable determination of the compre-

hensiveness of measurements used in models to predict air

quality and ozone production, and, in conjunction with mea-

surements of OH radical concentrations, to assess our under-

standing of OH production rates. In this work, we describe

the design and characterisation of an instrument to measure

OH reactivity using laser flash photolysis coupled to laser-

induced fluorescence (LFP-LIF) spectroscopy. The LFP-LIF

technique produces OH radicals in isolation, and thus min-

imises potential interferences in OH reactivity measurements

owing to the reaction of HO2 with NO which can occur if

HO2 is co-produced with OH in the instrument. Capabilities

of the instrument for ambient OH reactivity measurements

are illustrated by data collected during field campaigns in

London, UK, and York, UK. The instrumental limit of detec-

tion for k′
OH was determined to be 1.0 s−1 for the campaign in

London and 0.4 s−1 for the campaign in York. The precision,

determined by laboratory experiment, is typically < 1 s−1 for

most ambient measurements of OH reactivity. Total uncer-

tainty in ambient measurements of OH reactivity is ∼ 6 %.

We also present the coupling and characterisation of the LFP-

LIF instrument to an atmospheric chamber for measurements

of OH reactivity during simulated experiments, and provide

suggestions for future improvements to OH reactivity LFP-

LIF instruments.

1 Introduction

OH radicals dominate atmospheric oxidation chemistry, con-

trolling the lifetimes of most primary pollutants and green-

house gases emitted into the atmosphere, including methane,

CO, volatile organic compounds (VOCs), NO2 and SO2,

whilst also contributing to the production of secondary pol-

lutants such as ozone, sulphuric acid and secondary organic

aerosol (SOA) (Stone et al., 2012). Appreciation of the fac-

tors controlling atmospheric OH radical concentrations is

thus essential to understanding the processing and fate of

trace species in the atmosphere, and to our ability to under-

stand and predict air quality and climate change. Moreover,

the short chemical lifetimes of the OH radical and the closely

related HO2 radical make OH and HO2 ideal species for test-

ing the chemical mechanisms used in atmospheric models

since their concentrations are controlled by in situ chemistry

alone and are not influenced by transport processes. How-

ever, model simulations of OH concentrations require cal-

culation of both OH production and loss rates, and there

is potential for agreement between modelled and observed

OH concentrations based on opposing errors in the produc-

tion and loss terms. Similarly, when model calculations show

poor agreement with observations, it can be problematic to

determine whether the model discrepancies result from in-
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complete knowledge of the total production rate or of the to-

tal loss rate.

Observations of OH radical concentrations made in con-

junction with measurements of OH reactivity (k′
OH), the to-

tal loss rate of OH and the inverse of the OH chemical life-

time (τOH) thus provide a means to separate the production

and loss terms for OH, enabling a more robust test of our

understanding of OH radical concentrations and of atmo-

spheric oxidation chemistry. In addition, comparison of mea-

sured OH reactivity with calculated OH reactivity, based on

observed concentrations of OH sinks and known rate coef-

ficients for their reactions with OH (Eq. 3), also provides an

indication of the presence and importance of unmeasured OH

sinks:

− d[OH]/dt = 6kx[X][OH] (1)

= k′
OH[OH] (2)

k′
OH = 6kx[X], (3)

where kx is the rate coefficient for reaction of OH with

species X and k′
OH is the OH reactivity (the pseudo-first-

order rate coefficient for reaction of OH with all reaction

partners present). Finally, using both [OH] and k′
OH to de-

termine −d[OH]/dt experimentally, it is possible to evaluate

the completeness of our knowledge of OH sources, which

when added together should equal +d[OH]/dt if the steady-

state budget is closed (Martinez et al., 2003; Whalley et al.,

2011; Fuchs et al., 2013; Lu et al., 2013).

Measurements of OH reactivity in the atmosphere have

been made by three different techniques – the flow tube tech-

nique, the laser flash photolysis technique and the compar-

ative reactivity method, with all three methods relying on

production of above ambient concentrations of OH radicals

and monitoring of the OH decay rate, either directly or indi-

rectly. The flow tube method (Kovacs and Brune, 2001) typ-

ically generates OH radicals at the tip of a sliding injector by

photolysis of water vapour (Reaction R1) using a mercury

vapour lamp, also resulting in production of HO2 radicals

(Reaction R2).

H2O + hν → H + OH (R1)

H + O2(+M) → HO2(+M) (R2)

The OH radical signal is monitored downstream of the injec-

tor after mixing with a flow of ambient air in the main tube.

By changing the position of the sliding injector relative to the

point at which OH is detected it is possible to vary the con-

tact time of OH with the ambient air, and thus to determine

the total loss rate for OH in the flow tube. However, the tech-

nique has a number of disadvantages. The time resolution

of measurements made by the flow tube method is relatively

poor, owing to the need to measure OH signals at a number of

different injector positions to obtain a kinetic profile, during

which time the ambient OH reactivity could show significant

variability, although Mao et al. (2009) overcome this issue

for airborne measurements of OH reactivity by reducing the

number of time points used to determine the OH decay rate.

The flow rates of sampled air in the flow tube method are

relatively high (∼ 300–900 standard L min−1), with turbulent

flow conditions leading to high wall loss rates of OH in the

flow tube and relatively high uncertainties in determinations

of OH reactivity owing to uncertainties in the wall loss rates.

Knowledge of the flow velocity in the flow tube, requiring di-

rect measurement or knowledge of the flow regime, total flow

rate and cross-section of the flow tube, is also needed to con-

vert the distance over which OH and ambient air are mixed

to reaction time, and can lead to uncertainties in the contact

time between OH and reactants in ambient air. A significant

disadvantage of the flow tube method is the generation of

equal concentrations of OH and HO2 following photolysis of

water vapour at the tip of the sliding injector (Reactions R1–

R2), leading to the potential for production of OH in the flow

tube on the timescale of the experiment owing to the reaction

of HO2 with ambient NO (Reactions R3).

HO2 + NO → OH + NO2 (R3)

The production of OH from Reaction (R3) reduces the ob-

served decay rate of OH in the flow tube, and measurements

of OH reactivity using the flow tube method thus also require

simultaneous measurements of ambient NO concentrations

in order to correct for interferences from HO2+ NO, which

can be quite significant. For example, for 75 ppb NO, a typi-

cal rush hour mixing ratio in Mexico City, a correction factor

of ∼ 1.7 was required to account for the production of OH

from HO2+ NO within the flow tube (Shirley et al., 2006).

In the comparative reactivity technique, a reactive

molecule not usually present in air, typically pyrrole, is en-

trained in a gas flow and the rate of its decay owing to reac-

tion with artificially high concentrations of OH is measured

in “zero” air and ambient air by proton transfer quadrupole

mass spectrometry (PTR-QMS) (Sinha et al., 2008), proton

transfer time of flight mass spectrometry (PTR-ToFMS) (Mi-

choud et al., 2015) or photoionisation detection (GC-PID)

(Nölscher et al., 2012). Comparison of the rates of decay of

the molecule in “zero” air and ambient air enables determina-

tion of the competition between the reaction of OH with the

known concentration of the reactive molecule and the reac-

tion of OH with sinks in ambient air, thus enabling measure-

ment of the ambient OH reactivity. Absolute measurement of

the physical loss rate of OH is not required for the technique,

and the limit of detection of comparative reactivity instru-

ments is determined by the sensitivity to changes in the signal

corresponding to the concentration of the reactive species.

However, OH radicals are typically produced in comparative

reactivity instruments through Reactions (R1–R2), in a simi-

lar manner to that used in flow tube instruments and thus also

producing high concentrations of HO2. Interferences result-

ing from OH production from HO2+ NO are thus also poten-

tially problematic for comparative reactivity instruments and

knowledge of NO concentrations are required to correct for
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any interferences. In addition, the amount of OH produced

is dependent on humidity, and it is essential to ensure con-

stant humidity between measurements made in “zero” air and

those made in ambient air, with significant corrections of-

ten necessary to account for any differences (Michoud et al.,

2015).

The laser flash photolysis technique (Sadanaga et al.,

2004a) produces OH in isolation (i.e. with no simultaneous

production of HO2) via laser photolysis of O3, typically at a

wavelength of 266 nm, followed by reaction of O(1D) with

ambient H2O (Reactions R4–R5):

O3 + hν(λ = 266nm) → O2 + O(1D) (R4)

O(1D) + H2O → 2OH. (R5)

The production of OH without initial co-production of HO2

minimises potential interferences from HO2+ NO and ren-

ders the flash photolysis technique more suitable to high NOx

(NOx = NO + NO2) environments. The laser flash photoly-

sis method also has the advantage that the production of OH

radicals is uniform throughout the reaction cell, minimising

the risk of poor mixing which is potentially problematic for

the flow tube and comparative reactivity techniques. Flow

rates of sampled air are typically lower for the laser flash pho-

tolysis instruments (∼ 12–20 standard L min−1) (Sadanaga

et al., 2004a) than for those using flow tubes (∼ 300–

900 standard L min−1) (Kovacs and Brune, 2001; Kovacs et

al., 2003; Ingham et al., 2009; Hansen et al., 2014), and the

resulting laminar flow of gas reduces contact of the gas with

the walls of the instrument, thus reducing the physical loss

rate of OH and associated uncertainties. Although averaging

of data is often required to improve signal-to-noise, a sig-

nificant advantage of the laser flash photolysis technique is

the ability to measure ambient OH reactivity in “real-time”

through time-resolved measurements of the OH decay fol-

lowing photolysis. The technique has the potential for signif-

icantly enhanced time resolution, both in terms of the number

of time points obtained during the decay of OH, and the av-

eraging time over which the data are reported, compared to

the flow tube or comparative reactivity methods.

The first atmospheric measurements of total OH reactiv-

ity were made at an urban background site in Nashville, TN,

USA, in summer 1999 using the flow tube technique (Ko-

vacs and Brune, 2001; Kovacs et al., 2003). Calculations of

OH reactivity, using VOC measurements co-located with the

reactivity measurements, underestimated the total observed

reactivity by ∼ 30 % on average owing to unmeasured or un-

known VOCs and VOC oxidation products (Kovacs et al.,

2003). Subsequent measurements at an urban background

site in New York, NY, USA, were, on average, within 10 %

of the calculated reactivity in summer 2001 (Ren et al.,

2003), but were underestimated by 30–40 % during morn-

ing and evening rush hours in winter (Ren et al., 2006a).

Significant underestimation of the measured OH reactivity

in the morning rush hour was also reported for observations

in the Mexico City Metropolitan Area (MCMA), with the

observed reactivity reaching 120 s−1 (Shirley et al., 2006).

High OH reactivity has also been observed in Paris dur-

ing the MEGAPOLI campaign in 2010, with kOH reaching

130 s−1 for continental air masses and calculations based on

measured VOC concentrations underestimating the reactiv-

ity by up to 75 % (Dolgorouky et al., 2012). Reactivity mea-

surements in Tokyo were underestimated in summer, spring

and autumn, but reproduced to within 5 % in winter, with

the reactivity correlating well with NOx throughout the year

(Sadanaga et al., 2004b; Yoshino et al., 2006; Chatani et al.,

2009; Yoshino et al., 2012). Aircraft measurements of OH

reactivity have also shown that reactivity tends to decrease

with altitude, with discrepancies between observed and cal-

culated reactivity most pronounced at altitudes up to 2 km

and tending towards agreement at altitudes above 4 km (Mao

et al., 2009).

Flow tube measurements at an urban site in Houston,

US, during the TEXAQS2000 and TRAMP2006 campaigns

(Mao et al., 2010) and at a forested site at Whiteface Moun-

tain, NY, USA (Ren et al., 2006b), were well reproduced

by model calculations. However, measurements made at a

coastal site in Norfolk, UK, typically characterised by rela-

tively “clean” air were significantly underestimated and at-

tributed to the presence of numerous high molecular mass

VOCs at low concentrations which were not included in the

VOC measurement suite (Lee et al., 2009; Ingham et al.,

2009). The presence of unmeasured VOCs was also indicated

for the PROPHET 2000 campaign at a forested site in Michi-

gan, USA, during which the measured OH reactivity was un-

derestimated by ∼ 50 % on average, with the “missing” OH

reactivity exhibiting a strong temperature dependence poten-

tially resulting from temperature-dependent emissions of un-

measured biogenic VOCs (Di Carlo et al., 2004). Uncertain-

ties in emissions and chemistry of biogenic VOCs, particu-

larly in the oxidation chemistry of isoprene and its oxida-

tion products, have also been responsible for underpredic-

tions of observed OH reactivity in forested regions in Suri-

name (Sinha et al., 2008) and Borneo (Whalley et al., 2011;

Edwards et al., 2013). Model calculations of OH reactivity

in Borneo underestimated the observed diurnal mean reactiv-

ity by 30 %, and indicated that uncertainties in the chemistry

and deposition rates of secondary oxidation products could

potentially explain the observed reactivity without the need

for additional primary VOC emissions, and that at least 50 %

of the carbon-containing compounds which react with OH

were not measured (Edwards et al., 2013). Biogenic VOCs

also dominated the daytime OH reactivity in the Pearl River

Delta region, China, with isoprene and its oxidation prod-

ucts comprising ∼ 40 % of the total OH reactivity in the af-

ternoon and observed reactivity underestimated by ∼ 50 %

when calculated from measured OH sinks but reproduced by

model calculations considering the contributions from sec-

ondary oxidation products (Lou et al., 2010). However, ob-

servations of OH reactivity in a forested region in Colorado,

www.atmos-meas-tech.net/9/2827/2016/ Atmos. Meas. Tech., 9, 2827–2844, 2016
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USA, during the BEACHON-SRM08 campaign were under-

estimated by model calculations (∼ 30 %), with the domi-

nant VOCs found to be 2-methyl-3-buten-2-ol (MBO) and

monoterpenes (Nakashima et al., 2014).

Using a branch enclosure technique, Kim et al. (2011)

demonstrated that underestimations of observed OH reactiv-

ity at the PROPHET field site, Michigan, USA, during the

2009 CABINEX campaign were related to oxidation prod-

ucts of known and measured biogenic VOCs, rather than

to unknown or unmeasured primary VOC emissions. Model

calculations were able to reproduce the CABINEX OH re-

activity observations below the forest canopy, but discrepan-

cies were apparent above the canopy, indicating the presence

of unmeasured trace gases above the forest canopy (Hansen

et al., 2014). Model calculations and experiments using the

comparative reactivity method at a forested site in Finland

also observed differences between OH reactivity measured

in the forest canopy and above the canopy (Mogensen et

al., 2011; Nölscher et al., 2012). While the in-canopy re-

activity was typically higher than the above-canopy reactiv-

ity, transport of wildfire plumes to the site significantly in-

creased the above-canopy reactivity, increasing it above the

in-canopy level and increasing the “missing” reactivity above

the canopy from 58 % for “normal” conditions to 73 % for

periods impacted by transported pollution (Nölscher et al.,

2012).

OH reactivity measurements have also been used to de-

termine ozone production rates in southwestern Spain dur-

ing the DOMINO campaign (Sinha et al., 2012) and in Lon-

don during the ClearfLo campaign (Whalley et al., 2016),

and have been used in laboratory studies to assess our under-

standing of combustion systems (Nakashima et al., 2010) and

atmospheric isoprene oxidation mechanisms (Nakashima et

al., 2012; Nölscher et al., 2014).

Measurements of OH reactivity thus have a number of ap-

plications, and can be used to improve our understanding

of atmospheric composition and chemistry. In this work we

present the design and characterisation of an instrument us-

ing laser flash photolysis coupled with laser-induced fluores-

cence (LFP-LIF) to measure OH reactivity in the field and in

chamber experiments.

2 Experimental

A schematic of the OH reactivity instrument is given in

Fig. 1. The instrument comprises a reaction cell (described

in Sect. 2.1) and a detection cell (described in Sect. 2.2),

with the two cells typically situated approximately 5 m above

ground level on the roof of a shipping container housing the

FAGE (fluorescence assay by gas expansion) mobile labo-

ratory during ambient measurements. During laboratory and

chamber measurements, the instrument is configured within

the laboratory. Thus, for ambient measurements, and labora-

tory and chamber measurements made at room temperature,

the temperature in the OH reactivity instrument is the same

as the source of the air being sampled.

2.1 Reaction cell

The reaction cell consists of a cylindrical stainless steel tube

of 50 mm internal diameter and 85 cm in length. Ambient

air is drawn through a stainless steel sampling line (50 mm

internal diameter and 20 cm in length), enters the reaction

cell at 90◦ to the air flow in the tube, and is drawn along the

tube by an extractor fan (612F, DC Axial Fan, EBM-Papst)

mounted on the exit arm situated immediately prior to the

OH detection cell (Sect. 2.2), as shown in Fig. 1. More re-

cently, the connection between the reaction cell and the ex-

haust has been replaced with an exhaust that draws air out

of the cell over the full circumference of the cell. Although

the data recorded with the new exhaust are not reported in

this paper, we do not see any significant change in results be-

tween the different exhaust designs, but this will be discussed

in future publications.

The fan speed determines the flow rate of gas in the reac-

tion cell, and is set to ensure a laminar flow of air through

the cell with a Reynold’s number less than 2300. The flow

rate of gas, determined by measurement of the flow veloc-

ity using a hot-wire anemometer (TSI Air velocity trans-

ducer 8455-150) or set by calibrated mass flow controllers

during laboratory experiments (Sects. 4, 6, and 7) and mea-

surements of instrument zeroes (Sect. 3.1), is in the range 12

to 14 standard L min−1, giving a residence time of 7 to 8 s in

the reaction cell and a Reynold’s number of ∼ 360, which is

below that required for laminar flow.

Production of OH radicals within the reaction cell is

achieved by the 266 nm laser photolysis of O3 in the presence

of water vapour (Reactions R4–R5). A flashlamp pumped

Nd : YAG laser (Big Sky Laser CFR 200, Quantel USA)

is used to generate laser light at 1064 nm, which is fre-

quency doubled to 532 nm (lithium triborate, LiB3O5, dou-

bling crystal) and then frequency doubled to generate the

fourth harmonic 266 nm radiation (caesium lithium tribo-

rate, CsLiB6O10, doubling crystal) with pulse energies of

∼ 50 mJ, pulse length 8 ns, and beam diameter of 6.35 mm.

The pulse repetition frequency is typically 1 Hz, and has been

varied in experiments between 0.1 and 1 Hz with no signifi-

cant impact observed. The laser is operated with a Q-switch

to modulate the intracavity losses and maximise the pulse en-

ergy.

The 266 nm laser head is situated adjacent to the reac-

tion cell in order to minimise the footprint of the instrument

when used in the field. The laser head is powered, controlled

and water cooled by an Integrated Cooler and Electronics

unit (Big Sky Laser ICE450, Quantel USA) which is housed

within the FAGE shipping container and powered via an un-

interruptible power supply (APC 1000VA, American Power

Conversion by Schneider Electric).

Atmos. Meas. Tech., 9, 2827–2844, 2016 www.atmos-meas-tech.net/9/2827/2016/
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Figure 1. Schematic of the laser flash photolysis laser-induced fluorescence OH reactivity instrument for experiments and field measurements

in which the FAGE detection cell was situated at the end of the reaction cell and sampled from the centre of the photolysed volume, leading

to OH decays described by a single exponential. All laboratory and field measurements shown in this work were obtained with the instrument

configuration as shown here. See text for further details.

Laser light exiting the laser head is directed into the reac-

tion cell using two dielectrically coated 266 nm turning mir-

rors of 1′′ diameter (Thorlabs, NB1-K04). Immediately prior

to the reaction cell, the 266 nm beam is expanded to a diame-

ter of ∼ 10 mm by a telescope incorporating a plano-concave

lens (Thorlabs LC4252, focal length = −30 mm) and a

plano-convex lens (Thorlabs LA4148, focal length = 50 mm)

housed in a lens tube (SM1M20, Thorlabs) to increase the

photolysis volume within the reaction cell. The photolysis

laser enters the reaction cell through a fused silica window,

initiating OH radical production.

Typically, there is sufficient production of OH in the in-

strument from Reactions (R4–R5) at ambient concentrations

of O3 and water vapour in order to measure a temporal de-

cay of OH. At low ambient concentrations of O3 (< 10 ppb)

or during laboratory tests (Sects. 4, 6 and 7) and measure-

ment of instrument zeroes (Sect. 3), the OH radical concen-

tration in the reaction cell is increased by passing a small

flow (0.5 standard L min−1) of humidified ultra-high purity

air (BTCA 178, BOC Special Gases) across a low pressure

Hg vapour lamp and mixed with the main sampled air flow

(12–14 standard L min−1) in the inlet to the reaction cell.

The mixing ratio of ozone in the reaction cell is increased

by ∼ 50 ppb by this method (measured by an ozone anal-

yser (Thermo Environmental Instruments Inc., 49C O3 Anal-

yser) situated at the end of the reaction cell during laboratory

tests). Given knowledge of the rate coefficient for reaction

of OH with O3 (kOH + O3
= 7.3×10−14 cm3 s−1, Atkinson et

al., 2004), the chemical loss of OH resulting from the addi-

tion of 50 ppb O3 is < 0.1 s−1 at 298 K, and any loss of VOCs

in the reaction cell through reaction with ozone is extremely

small given the reaction times involved.

2.2 OH detection cell

OH radicals in the reaction cell are monitored by laser-

induced fluorescence (LIF) using the FAGE technique. The

LIF-FAGE detection cell has been described previously in

detail (Ingham et al., 2009), thus only a brief description will

be given here.

Initial experiments were conducted with the detection cell

situated midway along the reaction cell, and sampling at 90◦

to the direction of air flow along the reaction cell, in a similar

design to that described by Sadanaga et al. (2004a) and Lou

et al. (2010). However, the observed OH decays in such a

configuration displayed biexponential behaviour, comprising

a fast initial decay followed by a slower decay representa-

tive of the expected OH reactivity, as observed in previously

described instruments (Sadanaga et al., 2004a; Lou et al.,

2010). In this configuration, the photolysis laser is aligned

such that the beam passes across the inlet to the detection cell

without hitting the inlet. The air sampled in to the detection

cell thus likely contains air that has experienced the photoly-

sis laser (containing elevated OH concentrations) and air that

has not experienced the photolysis laser (which will have sig-

nificantly lower or zero OH concentrations), with this mixing

of air potentially leading to an apparent increase in the initial

OH decay rate owing to dilution of the air containing ele-

vated OH concentrations with air containing lower (or zero)

concentrations. Once mixing of the air having experienced

the photolysis laser with that outside the beam diameter has

www.atmos-meas-tech.net/9/2827/2016/ Atmos. Meas. Tech., 9, 2827–2844, 2016
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occurred sufficiently to give uniform OH concentrations in

the reaction cell the observed OH decay will result from the

chemical losses in the instrument, leading to biexponential

decays. Such biexponential behaviour has been attributed to

similar effects of non-homogeneous spatial distributions of

OH near the inlet to the detection cell (Lou et al., 2010) and

to local heating and turbulence of the gas flow caused by the

photolysis laser (Sadanaga et al., 2004a). A comparison be-

tween sampling at 90◦ to the direction of air flow along the

reaction cell and sampling along the axis of the direction of

air flow from the centre of the reaction cell has been reported

previously (Amedro et al., 2012), with different fitting pro-

cedures required to extract the OH reactivity for the different

instrument configurations attributed to differences in phys-

ical effects such as diffusion which were more significant

when sampling at 90◦ (Amedro et al., 2012).

Subsequent experiments in this work (including all those

described below) were performed with the detection cell sit-

uated at the end of the reaction cell along the same axis as

the direction of air flow to sample air directly from the cen-

tre of the reaction cell. This configuration reduces the chance

of sampling air into the detection cell that has not experi-

enced the photolysis laser beam, and thus reduces the impact

of physical effects such as diffusion. The observed OH sig-

nals in this instrument configuration are described by a single

exponential decay, although biexponential decays can still be

obtained if the photolysis laser is not correctly aligned along

the axis of the reaction cell.

Air is sampled from the centre of the reaction cell through

a pinhole of 0.8 mm diameter and 0.5 mm thickness into the

aluminium detection cell, which consists of three orthogo-

nal axes and is black anodised to minimise light scattering

within the cell. The pressure in the cell is measured by a ca-

pacitance manometer (Sensotec Z/606-01ZA) and is main-

tained at ∼ 1.5 Torr by a roots blower backed by a rotary

pump (Leybold Vacuum SV200/WAU1001), resulting in an

air flow of approximately 4 standard L min−1 and a super-

sonic expansion of the air as it is drawn through the pinhole.

The probe laser consists of a Nd : YAG pumped

Ti : sapphire laser (Photonics Industries) which generates

broadband radiation in the range 690–1000 nm. A diffraction

grating is used to select radiation with λ = 924 nm, which

is frequency tripled through generation of the second har-

monic at 462 nm followed by sum-frequency mixing of the

462 nm radiation with that at 924 nm to produce the 308 nm

light with a pulse repetition frequency (PRF) of 5 kHz, pulse

length (full width half maximum (FWHM)) of 35 ns, laser

line width (FWHM) of 0.065 cm−1 and beam diameter of

∼ 3 mm (Bloss et al., 2003).

A reference fluorescence cell, containing a heated

nichrome wire filament and humidified air at ∼ 2 Torr to pro-

duce a constant stable source of OH radicals from dissoci-

ation of water vapour, is used to facilitate tuning the probe

laser to the precise wavelength required for the desired OH

transition. Approximately 1 mW of the 308 nm laser light is

used for this purpose, with ∼ 9 mW used to make measure-

ments of OH reactivity and a further ∼ 13 mW remaining to

make measurements of ambient OH, HO2 and RO2 concen-

trations in a separate instrument (see, for example, Whalley

et al., 2016).

The probe laser, reference cell and pumps are all situated

inside the shipping container. The ∼ 9 mW of the 308 nm

laser light used to measure OH reactivity is passed to the de-

tection cell on the roof of the shipping container via an anti-

reflective coated optical fibre with an angled and polished

end (Oz Optics, QMMJ-55-UVVIS-200/240-3-30-AR2-SP,

length = 30 m) through a baffled side-arm at 90◦ to the air

flow. The probe laser light exits the detection cell through

a baffled side-arm and is directed onto a photodiode (New

Focus Large Area Photoreceiver 2032) to measure the laser

power to enable normalisation of fluorescence signals for

fluctuations in laser power. For a recent intercomparison at

the SAPHIR chamber, the OH reactivity instrument, com-

prising the reactor flowtube and OH fluorescence and associ-

ated equipment was placed in the shipping container itself.

Fluorescence from electronically excited OH radicals re-

sulting from excitation of the Q1(1) A26+ (v′ = 0) –

X253/2 (v′′ = 0) transition at 308 nm is collimated by a

symmetrical biconvex collimating lens (Melles-Griot, fo-

cal length = 50 mm at λ = 546.1 nm, diameter = 50 mm) and

focused onto the photocathode of a channeltron photo-

multiplier tube (PMT) (Perkin Elmer C 943P) by two

plano-convex focusing lenses (UQG Optics Ltd., focal

length = 75 mm at λ = 250 nm, diameter = 50 mm). A nar-

row band UV interference filter (Barr Associates Inc.,

FWHM bandwidth of 8 ± 1.6 nm centred at 309 ± 1 nm with

a peak transmission of > 50 % at 308 nm and a blocking fac-

tor of 106 at other wavelengths) is situated between the ex-

citation region in the detection cell and the PMT to min-

imise detection of scattered solar photons. The solid angle

from which fluorescence is collected is effectively doubled

through the use of a spherical concave mirror coated for high

UV reflectance which is mounted in the detection cell oppo-

site the side-arm bearing the PMT. Discrete photon signals

on the PMT are processed using a multi-channel scaler pho-

ton counting card (Becker and Hickl, PMS 400, minimum

bin width of 250 ns) in the computer used to control the in-

strument.

2.3 Instrument control

A digital delay pulse generator (Stanford Research Systems

DG535) produces a 5 kHz TTL (transistor-transistor logic)

pulse to trigger the Ti : sapphire laser and a second delay

generator (Stanford Research Systems DG535) which sub-

sequently triggers the gating of the PMT detector for the re-

activity instrument and a third digital delay pulse generator

(Berkeley Nucleonics Corporation 555) to trigger the 266 nm

photolysis laser and the photon counting card at the speci-

fied pulse repetition frequency in synchronisation with the
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308 nm probe laser. A personal computer is used to automate

data collection, with analogue signals from measurements of

the pressure in the detection cell and the power of the 308 nm

probe laser at the photodiode attached to the detection cell

digitised by an A/D card (Measurement Computing, PCI-

DAS 1200). Electrical power to all parts of the instrument is

supplied via an uninterruptible power supply (APC 1000VA).

2.4 Data acquisition

Data acquisition is initiated by triggering of the photon

counting card, with a background signal measured for 100 ms

before triggering of the 266 nm photolysis laser and produc-

tion of OH in the reaction cell. To avoid saturation of the

PMT resulting from detection of the 308 nm laser pulse itself,

the PMT is gated off at the onset of the 308 nm laser pulse

(35 ns FWHM) until ∼ 100 ns after the laser pulse, thereby

preventing detection of any reflected or scattered laser light.

The fluorescence signal is typically collected for 1 µs fol-

lowing each 308 nm probe laser pulse. Repeated measure-

ments of the OH fluorescence signal are taken for 900 ms

following each 266 nm photolysis laser pulse, during which

time the OH concentration and hence the fluorescence sig-

nal will decay to the background level. Under normal con-

ditions this occurs within ∼ 300 ms of the photolysis laser

pulse, although this is of course dependent upon the magni-

tude of the OH reactivity, and may be longer. The pulse rep-

etition frequency of the 308 nm probe laser (5 kHz) results

in measurement of the OH fluorescence signal every 200 µs

throughout the measurement period. The data collection cy-

cle, as illustrated in Fig. 2 is typically repeated every 1 s (i.e.

with the photolysis laser having a pulse repetition frequency

of 1 Hz). Experiments, both in the laboratory and in the field,

in which the PRF of the photolysis laser was varied between

0.1 and 1 Hz showed no effect on the observed OH reactivity

(Sect. 8).

When measurements of OH reactivity are made alongside

those of ambient OH concentrations, the acquisition of OH

reactivity data is linked to measurements of ambient OH con-

centrations owing to the dual use of the 308 nm excitation

laser. Under such circumstances, measurements are taken on

an approximate 7 min cycle, with a 5 min “online” period

during which the 308 nm laser is at the precise wavelength to

excite the OH transition, followed by a 1 min “offline” period

during which the wavelength of the laser is moved to a nearby

wavelength at which the OH transition is not excited in order

to enable measurement of a background signal for determina-

tion of ambient OH concentrations (see, for example, Whal-

ley et al. 2010). Approximately 1 min is then required to scan

the laser wavelength over the OH transition to find the maxi-

mum OH fluorescence signal in the reference cell (Sect. 2.2).

OH reactivity measurements are thus taken during the 5 min

online period, and data from successive measurement cy-

cles during each online period are co-added to improve the

signal-to-noise ratio. Figure 3 shows typical OH decays de-

Figure 2. (a) Schematic to illustrate the Stanford Research Sys-

tems delay generator controlled gate timing of the PMT detector

and photon counting card in the OH reactivity instrument. The blue

hatched region indicates the overlap between the OH fluorescence

signal and the photon counting gates; (b) Schematic to illustrate

the photon counting bin structure used to collect OH fluorescence

photons after each 308 nm probe laser pulse (5 kHz pulse repetition

frequency). Four 50 µs wide photon counting bins cover the time pe-

riod between each 308 nm laser pulse, but only the bins immediately

after the laser pulse collect any fluorescence photons (shaded bins),

and only the photon counts from these bins are used to construct the

OH decay.

rived from the co-addition of data recorded throughout 5 min

online periods during the Clean Air for London (ClearfLo)

campaign in summer 2012.

Measurements of OH reactivity may also be made inde-

pendently of any other use of the 308 nm probe laser, in

which case the timescale over which successive measure-

ment cycles are co-added may be selected as desired, with

the laser periodically scanned over the OH transition to en-

sure that the maximum OH signal is obtained.
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Figure 3. Typical OH time profiles following photolysis of ambient

air (mixed with a small flow of N2 / O2 / O3 / H2O) observed dur-

ing the Clean Air for London (ClearfLo) campaign (black points)

with fits of Eq. (5) (red lines) to the LIF data to determine k′
OH

for data recorded (a) during a polluted period on 25 July 2012

(k′
OH

= (46.6 ± 3.2) s−1) and (b) during a cleaner period on 7 Au-

gust 2012 (k′
OH

= (13.9 ± 0.9) s−1). Time zero is defined as the

time at which photolysis occurs. Decays represent data co-added

throughout 5 min periods.

2.5 Calibration of the FAGE detection cell

Calibration of the detection cell, although not strictly nec-

essary for measurements of OH reactivity, is required to en-

sure that pseudo-first-order conditions are met in the reaction

cell (i.e. combined concentrations of OH sinks are in excess

over the OH concentration) and provides a means to deter-

mine any potential interferences from production of OH via

ambient HO2+ NO in the reaction cell (from ambient HO2

which may survive the sampling inlet, and any HO2 gener-

ated following oxidation of OH sinks in the instrument) and

to monitor potential changes in instrument sensitivity with

time.

The calibration procedure has been described in detail by

Commane et al. (2010). Production of OH (and HO2) is

achieved through Reaction (R1) (and HO2 through Reac-

tion R2) by passing a turbulent flow of humidified ultra-high

purity air (BTCA 178, BOC Special Gases) across a low

pressure mercury vapour lamp to photolyse water vapour at

λ = 184.9 nm.

H2O + hν(λ = 184.9nm) → H + OH (R6)

The concentration of OH is given by Eq. (4):

[OH] = [H2O]σH2OϕOHFδt, (4)

where σH2O is the absorption cross-section of H2O at

184.9 nm (7.1 ± 0.2) × 10−20 cm2 (Cantrell et al., 1997;

Creasey et al., 2000), ϕOH is the quantum yield for OH pro-

duction (ϕOH = 1), F is the photon flux of the mercury lamp

at 184.9 nm and δt is the residence time in the photolysis

region. The product Fδt is determined by N2O actinom-

etry (Commane et al., 2010), with F varied by changing

the current supplied to the lamp, and δt controlled by the

flow rate of the gas used in the calibration. The concentra-

tion of water vapour in the flow is determined by diverting

a small known flow of the air to a dew point hygrometer

(CR4, Buck Research Instruments), and was varied between

300 and 10 000 ppm during calibration experiments.

The calibration for OH was conducted over a range of

mercury lamp fluxes and water vapour mixing ratios (be-

tween 300 and 10 000 ppm), giving a calibration factor (COH)

of (2.13 ± 0.27) × 10−8 counts s−1 molecule−1 cm3 mW−1.

The 1 σ instrumental limit of detection for OH radicals was

determined to be ∼ 107 cm−3 for a 5 min integration period,

enabling observation of sufficient changes in OH radical con-

centrations in the reaction cell to allow measurements of am-

bient OH reactivity.

For a minimum ambient O3 mixing ratio of 10 ppb (below

which ∼ 50 ppb is added to the instrument (Sect. 2.1), an ab-

sorption cross-section for O3 of 9.65 × 10−18 cm2 at 266 nm

(Atkinson et al., 2004), typical laser fluence of ∼ 50 mJ cm−2

and a quantum yield of 0.9 for production of O(1D) (Mat-

sumi et al., 2002), the initial O(1D) number density following

photolysis is ∼ 1.6 × 1011 cm−3. For a water vapour concen-

tration of 5 × 1017 cm−3 (∼ 2 %), competition between reac-

tion of O(1D) with water (kO1D + H2O = 2.1 × 10−10 cm3 s−1,

Atkinson et al., 2004), leading to 2 OH, and quenching

of O(1D) by N2 (kO1D + N2
= 3.1 × 10−11 cm3 s−1, Atkin-

son et al., 2004) or O2 (kO1D + O2
= 4.0 × 10−11 cm3 s−1,

Atkinson et al., 2004), to produce O(3P), typically leads

to an initial OH concentration in the reactivity instrument

of > 3 × 1010 cm−3, in agreement with the calibration re-

sults. At higher ambient mixing ratios of O3, the initial

OH concentration in the reactivity is increased, whilst main-

taining pseudo-first-order conditions for OH. For example,

an ambient O3 mixing ratio of 100 ppb, as observed in

some polluted environments, would be expected to gener-

ate > 3 × 1011 cm−3 OH (at 2 % humidity), leading to im-

provements in the signal-to-noise ratio and minimisation of

any potential interferences in measurements of OH reactivity

(Sect. 6).
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3 Determination of OH reactivity

The observed pseudo-first-order rate coefficient for OH loss

(kloss) is determined by least-squares fitting Eq. (5) to the

time-resolved OH decay:

SOH,t = SOH,0 exp(−klosst) + b, (5)

where SOH,t is the fluorescence signal at time t after firing of

the 266 nm photolysis laser, SOH,0 is the fluorescence signal

at time zero (i.e. immediately following firing of the 266 nm

laser and production of OH in the reaction cell), kloss is the

observed rate coefficient for loss of the fluorescence signal, t

is the time since firing of the 266 nm photolysis laser and b

is the background fluorescence signal measured by the PMT

averaged for the 100 ms prior to firing of the photolysis laser

(typically zero). Fits are typically started within 5 ms of the

peak in the OH signal, and data are fitted until the OH signal

is essentially back to the background level by the end of the

fit. Values for SOH,0 and kloss are permitted to vary in the

fitting process. Since the OH decays are well described by

first-order kinetics, the fitted values for SOH,0 and kloss do

not depend in any way on the time period over which the

decays are fitted. Figure 3 shows typical fits of Eq. (5) to

measurements of OH reactivity made in ambient air.

The value for kloss determined from the fit contains a con-

tribution from k′
OH,obs, the rate coefficient for OH loss owing

to chemical losses of OH in the reaction cell (the OH reac-

tivity), and kphys, the instrument “zero” corresponding to the

rate coefficient for physical losses of OH owing to diffusion

out of the sampling volume and heterogeneous losses on the

walls on the reaction cell. The chemical loss of OH in the re-

action cell is thus given by Eq. (6), and in order to determine

the OH reactivity from measurements of kloss it is therefore

essential to characterise kphys (Sect. 3.1).

k′
OH,obs = kloss − kphys (6)

At low ambient concentrations of ozone (< 10 ppb) and in

laboratory experiments (Sects. 4, 6 and 7) and measurements

of kphys, it was necessary to add a small flow of humidified air

containing a constant mixing ratio of ozone (∼ 50 ppb) to the

main air flow sampled in order to produce sufficient OH rad-

icals in the reaction cell. This “non-ambient” ozone added to

the reaction cell results in a small loss of OH owing to the re-

action of O3 with OH, but is expected to be < 0.1 s−1 at 298 K

(Sect. 2.1). However, addition of the small ozone-containing

air flow (0.5 standard L min−1) to the sampled flow of ambi-

ent air (12 standard L min−1) does require a correction for the

dilution of the ambient air flow, such that the OH reactivity

(k′
OH) is given by Eq. (7):

k′
OH = k′

OH,obs(1 + f ), (7)

where f is the dilution factor of the ambient air flow, given

by the ratio of the small ozone-containing flow rate to the

total flow rate of the air in the reaction cell (∼ 0.04 for the

conditions used in this work). Potential errors arising from

errors in measurements of kphys and f have been included in

overall reported errors for k′
OH, and contribute, on average,

70 and 25 %, respectively, to the total uncertainty in k′
OH.

3.1 Determination of kphys

Determination of kphys is critical to the evaluation of the true

OH reactivity from observations of the total OH loss rate

in the instrument (Eqs. 7 and 8), and requires the measure-

ment of the OH loss rate in the absence of any chemical re-

moval processes such that kloss is equal to kphys. A single

value for kphys is determined (from several experiments) in-

dependently of any measurements of kobs, and is fitted over

as much of the observed OH decay as possible using the pro-

cedure described above in order to obtain the best possible

determination of kphys since fitting kphys over as much of

the decay as possible reduces the uncertainty in the fit. As

described above, determinations of kphys (and kobs) are in-

dependent of the time period over which the data are fitted

since the observed OH decays follow first-order kinetics and

can be described with a single exponential function.

To minimise the chemical losses of OH in the reaction

cell (and thus to minimise k′
OH,obs) the loss of OH in the

instrument is measured in ultra-high purity air (BTCA 178,

BOC Special Gases) passed through scrubbers (Gatekeeper

Gas Purifiers) to remove H2, CO and CO2 to sub-ppb levels.

Despite the use of scrubbed ultra-high purity air, low levels

of residual VOCs can remain in the air, leading to chemical

losses. Such residual VOCs in the scrubbed ultra-high purity

air have been quantified by gas-chromatography and their

contributions (< 1 s−1) to the observed OH loss subtracted.

Furthermore, humidification and addition of a small

amount of O3 to the ultra-high purity air are necessary for

the production of OH in the instrument during experiments to

determine kphys. Approximately 50 ppb of O3 is added to en-

sure production of sufficient OH, leading to a chemical loss

of < 0.1 s−1 at 298 K through the reaction of OH with O3.

Moreover, despite the use of purified water for humidifica-

tion, obtained using a water purification system (PURELAB

flex PRIPLB0163, Elga LabWater, Veolia Water Solutions &

Technologies), impurities in the water can lead to significant

chemical losses for OH and the components in the purifica-

tion system must remain uncontaminated in order to ensure

accurate determinations of kphys.

Determination of kphys in the laboratory and in the field

for the ClearfLo campaign in London in 2012 gave an

average value (1.1 ± 1.0) s−1 (precision of 0.4 s−1) and

(1.25 ± 0.42) s−1 (precision of 0.2 s−1) for the campaign in

York in 2014 (Sect. 7).
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4 Instrumental validation via measurements of

kOH + CO and kOH + CH4

As a real-time technique, the accuracy of the time axis dur-

ing which the OH decay is obtained is determined by the

accuracy of the delay generators used to trigger the lasers

and other delays (as described in Sect. 2.4 and shown in

Fig. 2), which should be absolute within 1 ps. Hence the

method should be absolute in terms of the time separation

between points in the decay. However, owing to various rea-

sons, for example the appropriateness of the function used to

fit the decay, or any recycling of OH from oxidation products

(for example the reaction of HO2 with NO), it is prudent to

characterise the instrument through the use of known con-

centrations of reactants for which the rate coefficient with

OH is also well known. In order to validate measurements

of ambient OH reactivity, the well-known rate coefficients

for reactions of OH with CO and CH4 were both measured

under pseudo-first-order conditions using the instrumental

setup described above. Ultra-high purity air (BTCA 178,

BOC Special Gases) was mixed with an excess of either CO

(5 % in N2, BOC Special Gases) or CH4 (BOC, CP grade,

99.5 %), producing a main flow of 11.5 standard L min−1

with known concentrations of CO or CH4, prior to mixing

with a small flow of humidified air (0.5 standard L min−1)

containing ∼ 50 ppb O3 generated by passing the air flow

across a mercury vapour lamp.

Figure 4 shows the OH reactivity, determined by fit-

ting Eq. (5) to the OH decay and subtracting kphys

(Sect. 3), for a series of CO and CH4 concentra-

tions. The bimolecular rate coefficients for OH + CO

(kOH + CO) and OH + CH4 (kOH + CH4), determined at

298 K from the relationships k′
OH = kOH + CO[CO] and

k′
OH = kOH + CH4[CH4], were found to be (2.4 ± 0.2) × 10−13

and (6.4 ± 0.6) × 10−15 cm3 s−1, respectively (errors are

1 σ). The values for kOH + CO and kOH + CH4 determined

here are in agreement with the literature values of

(2.3+0.6
−0.5

) × 10−13 and (6.4+1.3
−1.1

) × 10−15 cm3 s−1 at 298 K

(Atkinson et al., 2004), respectively, providing confidence in

measurements of ambient OH reactivity.

5 Limit of detection, precision and total uncertainty

The instrumental limit of detection for measurements of k′
OH

is determined by the fit error in kloss (Eq. 5), the determina-

tion of kphys, and its associated uncertainty, and the number

of measurements used to determined kphys. For the ClearfLo

campaign, kphys was determined to be (1.1 ± 1.0) s−1, with a

precision of 0.4 s−1 and a 1 σ limit of detection for k′
OH of

1.0 s−1. During the York campaign (Sect. 7), kphys was de-

termined to be (1.25 ± 0.42) s−1, with a precision of 0.2 s−1

and a 1 σ limit of detection for k′
OH of 0.4 s−1.

Experiments described in Sect. 4 indicate that OH reac-

tivities of up to ∼ 150 s−1 can be measured reliably with

the instrument described in this work, with the possibility

for measurements of higher reactivities described in Sect. 9.

Replicates of k′
OH measurements at fixed concentrations of

CO and CH4 (Sect. 4 and Fig. 4) also enable determina-

tion of the instrument precision. The majority of ambient

k′
OH measurements are < 35 s−1, for which the measurements

under controlled conditions using known concentrations of

CO and CH4 indicate a precision of ∼ 1 s−1. For reactiv-

ities of ∼ 110 s−1, which were observed in London during

the ClearfLo campaign (Sect. 7, Whalley et al., 2016), mea-

surements using known concentrations of CO and CH4 in-

dicated a precision of ∼ 5 s−1. In the field, reactivities of

up to ∼ 140 s−1 have also been measured, with fit errors of

∼ 6 s−1, although the precision at higher reactivities is worse

compared to lower reactivities.

On average, the total uncertainty in measurements of k′
OH

is 6 %, with the uncertainty in kphys comprising ∼ 70 % of

the total uncertainty. When addition of O3 to the instrument is

necessary to improve the OH signal (at ambient mixing ratios

of O3 of less than 10 ppb and during laboratory experiments

and measurements of kphys), the uncertainty associated with

the dilution of the main flow contributes ∼ 25 % to the total

uncertainty in k′
OH.

6 Potential interferences

Potential interferences in measurements of k′
OH were inves-

tigated through model simulations of OH decay traces under

various scenarios to investigate the possible effects of OH

recycling, and subsequent impacts on measurements of k′
OH,

through the reaction of ambient NO with any HO2 or RO2

radicals that may be generated within the instrument.

The initial OH concentration in the instrument, follow-

ing photolysis of O3 by the 266 nm laser, is estimated at

> 3 × 1010 cm−3 (Sect. 2.5), with no co-production of HO2

following photolysis of O3. However, there is production

of HO2 from the reaction of OH with CO in the instru-

ment, and of RO2 radicals from the reactions of OH with

VOCs. The HO2 radicals produced have the potential to re-

cycle OH through reactions with NO, which would lead to

an apparent reduction in the observed OH reactivity. In addi-

tion, there is potential for production of HO2 from the pho-

tolysis of oxygenated volatile organic compounds (oVOCs)

in the instrument, with previous studies indicating signifi-

cant radical production following photolysis of oVOCs in

urban environments (Volkamer et al., 2010; Sheehy et al.,

2010). During the ClearfLo campaign in London (Sect. 7),

the mean observed HCHO mixing ratio was 9.3 ppb, poten-

tially leading to production of ∼ 1 × 108 cm−3 HO2 follow-

ing the photolysis of HCHO at 266 nm within the reactiv-

ity instrument. Other oVOCs, notably CH3CHO, C3H7CHO,

IPRCHO ((CH3)2CHO), C4H9CHO, methacrolein (MACR)

and methyl vinyl ketone (MVK) during the ClearfLo cam-

paign, are also potentially photolysed by the 266 nm laser
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Figure 4. Bimolecular plots of pseudo-first-order rate coefficients describing OH loss (k′
OH

) against known concentrations of reactive gases

during laboratory tests (black points) with best fit lines (blue) and literature values (red) for (a) CO at 298 K (intercept = 1.1 s−1); (b) CH4

at 298 K (intercept = 1.3 s−1); (c) n-butanol (n-C4H9OH, sampling from the chamber) at 298 K (intercept = 1.1 s−1). Literature values are

taken from Atkinson et al. (2004). Corrections for dilution have been applied (Eq. 7). Errors are 1 σ from the fits to the observed OH decays.

Note the change in vertical scale between the three panels.

in the OH reactivity instrument, leading to production of

HO2. For the mean oVOC mixing ratios observed during

ClearfLo, and literature absorption cross-sections at 266 nm

(Atkinson et al., 2004), there is potential for production of

∼ 2.5 × 108 cm−3 HO2 in the reactivity instrument, includ-

ing that produced by photolysis of HCHO, with CH3CHO

representing the dominant oVOC photolysed. The effects of

HO2 and RO2 radicals produced by OH reactions within the

instrument, and of HO2 production following oVOC photol-

ysis, were therefore investigated over a range of NO mixing

ratios.

Model simulations, using the numerical integration pack-

age Kintecus (Ianni, 2002), were initiated with a conser-

vative estimate of the initial OH radical concentration of

1 × 1010 cm−3 and a total OH reactivity of 25 s−1 comprised

of losses to CO (producing HO2), VOCs (producing RO2)

and NO2 (leading to loss of radicals from the system). The

relative contributions of CO and VOCs to the total OH re-

activity (7 and 68 %, respectively) were set to the average

values determined by Whalley et al. (2016) for field mea-

surements in London (Sect. 7). The contribution from NO2

was set to increase with increasing NO in the model with the

NO2 : NO ratio set to the average ratio observed during mea-

surements in London (Bohnenstengel et al., 2015; Whalley

et al., 2016), and the model includes the reaction between

HO2 and NO2 to form HO2NO2, and the reverse reaction

(which is slow and negligible on the timescale of the reactiv-

ity measurement). Initial concentrations of HO2 were, in sep-

arate model simulations, set to 0, 1 × 108 and 2.5 × 108 cm−3

to investigate the potential effects of oVOC photolysis. Ini-

tial mixing ratios of NO were varied from zero to 75 ppb,

the maximum observed during field measurements of k′
OH in

London in 2012 (Whalley et al., 2016). The model was run

forwards in time and output for OH was analysed in an iden-

tical manner to that applied to the OH decays measured by

the reactivity instrument to determine k′
OH. Comparison of

the values for k′
OH determined by fitting to the simulated OH

decays to the total reactivity input to the model thus enables

assessment of any potential interferences.

Figure 5 shows the impact of NO on the OH reactivity de-

termined by fitting to the model output for OH. For model

simulations with the initial concentration of HO2 set to zero

(i.e. no photolytic sources of HO2), but with subsequent gen-

eration of HO2 following reaction of OH with CO, it can

be seen that the OH reactivity determined by fitting to the

model output for OH shows only a small deviation of from

the true OH reactivity in the model, through the recycling of

OH through HO2+ NO. At 75 ppb of NO, the deviation from

the true OH reactivity is ∼ 4 %, which is less than the overall

uncertainty in measurements of k′
OH. For model runs which

simulate photolytic production of HO2 from oVOCs, with

initial HO2 concentrations of 1.0 × 108 or 2.5 × 108 cm−3,

it can be seen that the impact of OH recycling through

HO2+ NO is dependent on the initial OH concentration. For

initial OH concentrations of 109 cm−3, the impact of pho-

tolytic HO2 production is potentially large, with a deviation

of 18 % from the true reactivity for an initial HO2 concen-

tration of 1.0 × 108 cm−3 and a deviation of 10 % for an ini-

tial HO2 concentration of 2.5 × 108 cm−3 at 75 ppb of NO.

However, as discussed in Sect. 2.5, the initial OH concen-

tration produced in the instrument is expected to be signifi-

cantly higher than 109 cm−3. For an initial OH concentration

of 1010 cm−3, which is still a conservative estimate of the

initial OH concentration, the impact of any photolytically

generated HO2 is minimal, with the deviation from the ex-

pected OH reactivity at 75 ppb of NO similar to that deter-

mined in the absence of any photolytically produced HO2 at

∼ 5 %. However, we note that it is not possible to fully as-

sess the impact of unmeasured or unknown oVOCs, and rec-

ommend maintaining high initial OH concentrations in the

reactivity instrument in order to maximise the OH : HO2 ra-
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Figure 5. Impact of NO on the ratio of the k′
OH

fitted to model

simulations for OH to the k′
OH

used as input for the model (i.e.

the equivalent of k′
observed

/k′
true). Black points show results for

model simulations with the initial HO2 concentration set to zero;

blue data points show results for model simulations with the initial

HO2 concentration set to 1 × 108 cm−3; red data points show re-

sults for model simulations with the initial HO2 concentration set

to 2.5 × 108 cm−3; circles represent data points with an initial OH

concentration of 109 cm−3; diamonds represent data points with an

initial OH concentration of 1010 cm−3; filled data points represent

simulations with the initial RO2 concentration set to zero; open data

points represent simulations with an initial RO2 concentration of

1 × 1010 cm−3.

tio and thereby minimise any potential interferences arising

from production of HO2 in the instrument.

Model simulations were also performed with an initial

RO2 concentration of 1 × 1010 cm−3 to investigate the pos-

sible effects of incompletely refreshing the gas sample in

the reactivity instrument between photolysis pulses, which

could potentially lead to increased RO2 concentrations in

the reaction cell through OH + VOC reactions. A reaction

between RO2 and OH was also added to the model, with

a rate coefficient of 1 × 10−10 cm3 s−1, as observed for

CH3O2+ OH (Bossolasco et al., 2014) and C2H5O2 + OH

(Farago et al., 2015). Figure 5 shows that the impact of

RO2 chemistry within the instrument is not expected to have

a significant impact on the observed OH reactivity, with

the potential increase in observed OH reactivity of 1 s−1

from an initial RO2 concentration of 1 × 1010 cm−3 and

kRO2 + OH = 1 × 10−10 cm3 s−1, being less than the total un-

certainty in ambient measurements of k′
OH. In addition, ex-

periments in which the pulse repetition frequency of the pho-

tolysis laser was varied between 0.1 and 1 Hz, thus varying

the extent to which the gas sample was replaced between

laser pulses, did not show any significant change in the ob-

served OH reactivity. Despite the expectation that the im-

pact of OH + RO2 chemistry on observations of k′
OH will be

minimal, we include an additional 1 s−1 uncertainty in ambi-

ent measurements of k′
OH to reflect the potential for interfer-

ences owing to RO2 production in the reactivity instrument.

We note that the contribution to the uncertainty in the total

OH reactivity from RO2+ OH chemistry is itself subject to

significant uncertainty and the additional 1 s−1 uncertainty

applied to the total OH reactivity represents an upper limit

which is included in order to be thorough and complete.

We thus conclude that the reactivity instrument described

in this work does not suffer from significant interferences as-

sociated with potential production of HO2 or RO2 within the

instrument. We do note, however, that measurements of OH

reactivity using this instrument in environments which may

contain significant concentrations of oVOCs would benefit

from high initial concentrations of OH. We also note that any

OH decays observed during field or laboratory experiments

that cannot be reliably fitted by a single exponential function

describing a first-order loss for OH (Eq. 5) would be treated

with caution and, where appropriate, other fitting functions

would be applied.

7 Field measurements

The laser flash photolysis OH reactivity instrument was de-

ployed at the North Kensington measurement site (51◦ 31′ N,

0◦ 12′ W) during the Clean Air for London (ClearfLo) sum-

mer campaign in July and August 2012 (Bohnenstengel et al.,

2014), with near-continuous measurements made from the

21 July to 18 August 2012, alongside FAGE measurements

of OH, HO2 and RO2 radical concentrations. Measurements

of O3, CO, NO, NO2, HONO, VOCs and aerosol mass and

composition were also made at the site during the campaign.

Figure 6 shows the full time series of measured OH reac-

tivity for the campaign. The observed reactivity was highest

for air masses that had previously passed over central Lon-

don (24–27 July (Julian days 206–209) and 8–10 August (Ju-

lian days 221–223)), with a maximum reactivity of 116 s−1

recorded during rush hour on 24 July 2012. Measurements

taken on the 25 July 2012 (Julian day 207) are shown in

Fig. 7 to highlight the capability of the instrument, and the

average diurnal profile for the campaign is shown in Fig. 8.

A peak reactivity, on average, of ∼ 27 s−1 was observed dur-

ing morning rush hour, with a minimum of ∼ 15 s−1 during

the afternoon and a second peak during evening rush hour.

Detailed analysis of these data, including model calculations

using the Master Chemical Mechanism constrained to ob-

served concentrations of long-lived species, is described by

Whalley et al. (2016). The modelling study shows that the

observed OH reactivity can be reproduced by the model (to

within 6 %) when larger VOCs than those typically measured

are included in the model, and demonstrates the importance

of oxidation intermediates and the role of heavy VOCs, par-

ticularly biogenics, in controlling the total OH reactivity and

the oxidation budget in a megacity such as London.

Field measurements of OH reactivity have also been made

at a site at the University of York (53◦ 56′ N, 1◦ 02′ W) from

the 19 May to 16 June 2014, approximately 3 km south-

east of the centre of York and 2 km west of a major road,
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Figure 6. Time series of OH reactivity observed during the Clean

Air for London (ClearfLo) campaign (21 July to 18 August 2012).

Uncertainties (represented by the shaded area) represent 1 σ com-

bined uncertainties from the fits to observed OH decays (Eq. 5), de-

terminations of kphys (Eq. 6) and uncertainties in the dilution factor,

f (Eq. 7).

Figure 7. Time series of OH reactivity observed during the Clean

Air for London (ClearfLo) campaign on the 25 July 2012 (Julian

day 207). Error bars represent 1 σ combined uncertainties from the

fits to observed OH decays (Eq. 5), determinations of kphys (Eq. 6)

and uncertainties in the dilution factor, f (Eq. 7).

with a small wooded area immediately to the east, and thus

subject to anthropogenic emissions and local biogenic emis-

sions. Figure 9 shows the average diurnal during this period.

The observed OH reactivity was typically lower than that ob-

served during the ClearfLo campaign, with a maximum in the

diurnal average of ∼ 6 s−1. Measurements of O3, CO, NO,

NO2, VOCs and were also made at the site during this pe-

riod, alongside measurements by a new instrument coupling

an OH reactor to measurements of VOCs by gas chromatog-

raphy with time of flight mass spectrometry (GC-ToFMS) to

aid identification of any “missing” OH reactivity. Detailed

analysis of the results will be given in future publications.

Figure 8. Diurnal average for observed OH reactivity (15 min av-

erages) during the Clean Air for London (ClearfLo) campaign

(21 July to 18 August). Shaded areas represent the measurement

variability from day to day during the campaign.

Figure 9. Diurnal average for observed OH reactivity (15 min av-

erages) during in York (19 May to 16 June 2014). Shaded areas

represent the measurement variability from day to day.

8 Chamber measurements

The field instrument described above has also been modified

in order to interface to the Highly Instrumented Reactor for

Atmospheric Chemistry (HIRAC) to enable measurements of

OH reactivity during VOC oxidation under controlled condi-

tions. For complex reaction mechanisms, the oxidation path-

way followed will have a characteristic time-evolution of the

reactivity as secondary products are generated, and measure-

ment of OH reactivity and comparison with a model predic-

tion provides greater constraint for experimental determina-

tion of the mechanism.

HIRAC is a 2.25 m3 stainless steel chamber equipped

with UV photolysis lamps to initiate photochemistry and a

comprehensive suite of analytical instrumentation, includ-

ing gas chromatography (GC), Fourier transform infrared

(FT-IR) spectroscopy, cavity ringdown spectroscopy (CRDS)

and LIF-FAGE for radical measurements. Photolysis lamps

within the chamber enable initiation of photochemistry, and

experiments can be conducted at temperatures between 203

www.atmos-meas-tech.net/9/2827/2016/ Atmos. Meas. Tech., 9, 2827–2844, 2016



2840 D. Stone et al.: Measurement of OH reactivity by laser flash photolysis

Figure 10. Observed OH reactivities for a fixed gas composition (for which the expected OH reactivity is shown in red) (a) as a function of

the total flow rate through the reaction cell (slm = standard L min−1) and (b) as a function of the pulse repetition frequency of the photolysis

laser.

and 343 K and pressures up to 760 Torr (Glowacki et al.,

2007; Malkin et al., 2010; Winiberg et al., 2015).

Gas is sampled from HIRAC through 1/2′′ PTFE tub-

ing at a flow rate of 1 standard L min−1 and diluted

with 5 standard L min−1 of ultra-high purity air immedi-

ately on exiting the chamber, then diluted further with

9 standard L min−1 of humidified ultra-high purity air and

1 standard L min−1 of ultra-high purity air passed over a low

pressure Hg lamp in order to generate O3, giving a total flow

of 16 standard L min−1 and hence a dilution factor of 1 : 16.

The diluted gas flow, containing ∼ 45 ppb O3, is then directed

into the reaction cell of the OH reactivity instrument, with

instrument operation and analysis as described in Sects. 2

and 3 (including the correction of observed reactivity for di-

lution of sampled gas from the chamber using Eq. (7), which

is significant for these experiments in order to avoid mea-

surement of high reactivities (Sect. 9) and to reduce the vol-

ume of gas removed from the chamber for the reactivity mea-

surements). The uncertainty associated with the dilution con-

tributes ∼ 25 % to the total uncertainty in k′
OH, which is ap-

proximately 6–8 %.

Experiments were conducted to verify the sampling pro-

cedure by filling HIRAC with air containing known con-

centrations of a reactive gas, with a well-characterised rate

coefficient for reaction with OH, followed by measure-

ment of the OH reactivity in the chamber. Determination

of the pseudo-first-order rate coefficients describing the OH

loss for each of the given reactive gas concentrations in

the chamber enabled determination of the bimolecular rate

coefficient for reaction of the reactive gas with OH for

comparison with literature values, as for experiments de-

scribed in Sect. 4. Figure 4c shows the bimolecular plots

for experiments in which the chamber was filled with n-

butanol (n-C4H9OH) in air at total pressures of 760 Torr

and temperatures of 298 K. A bimolecular rate coefficient of

(8.5 ± 0.1) × 10−12 cm3 s−1 was obtained, in comparison to

the literature value of (8.5+3.5
−2.5

) × 10−12 cm3 s−1 (Atkinson et

al., 2004), thus indicating the validity of the sampling proce-

dure. No dependence of the observed reactivity was observed

on the total flow rate through the instrument, which was var-

ied between 10 and 22 standard L min−1, or on the pulse rep-

etition frequency of the photolysis laser, which was varied

between 0.1 and 1 Hz, as shown in Fig. 10.

The coupling of OH reactivity measurements to chamber

studies will enable detailed assessment of our understanding

of the chemistry of secondary products in complex oxidation

mechanisms by providing increased constraint on oxidation

budgets during chamber experiments, and will be explored

further in future work.

9 Effects of averaging time and future improvements

to sampling

Measurements have also been made in HIRAC to investigate

the effect of the averaging time on the measured OH reactiv-

ity. Figure 11 shows the observed OH reactivities, for a given

set of conditions, as a function of the averaging time, show-

ing successful measurements with an averaging time of 10 s

and indicating the potential for further improvements for fu-

ture integration of ambient OH reactivity observations with

flux measurements.

Experiments described in this work using known concen-

trations of reactive gases have been able to reproduce rec-

ommended literature values for known rate coefficients, in-

dicating the validity of the technique described here over the

dynamic ranges investigated. However, recent work in Leeds

has shown that, at higher reactivities, observed kinetics can

be influenced by sampling issues related to the effects of ve-

locity distributions on the transport time of sampled gas from

the pinhole nozzle to the point at which fluorescence is ex-

cited and detected in the FAGE cell. The effects of the veloc-

ity distributions on the time taken for sampled gas to travel

from the pinhole to the point of detection coupled with the
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Figure 11. Observed OH reactivities, for a fixed gas composition

(for which the expected OH reactivity is shown in red), as a func-

tion of averaging time, obtained using 15 mW of 308 nm probe laser

power.

true kinetics of the OH decay can lead to underestimations

of very high reactivities; this is described in detail by Stone

et al. (2016). Successful measurements with known concen-

trations of CH4 at reactivities of ∼ 150 s−1 (Sect. 4, Fig. 4b),

although scattered owing to the small number of time points

over which fast decays can be measured and poorer preci-

sion compared to lower reactivities, indicate that such ef-

fects should be minimal for the instrument described in this

work, even for the highest reactivities observed during the

ClearfLo campaign (> 100 s−1). However, experiments in-

corporating OH reactivity measurements in chamber studies,

such as those described in Sect. 8, must also ensure that the

gas sampled from the chamber has been sufficiently diluted

so as to avoid the measurement of high reactivities directly.

Future work will incorporate a new inlet designed to min-

imise the distance between the pinhole nozzle and the point

of excitation fluorescence and detection, ideally such that de-

tection occurs within the supersonic jet formed on expansion

of the gas as it flows through the pinhole. The new inlet

will not only increase the dynamic range over which reac-

tivity measurements can be made, but sampling within the

supersonic jet will also lead to increased signal-to-noise and

enable further reductions in the averaging time required to

achieve adequate signal-to-noise for measurements with high

time resolution.

10 Conclusions and outlook

In this work we present the design and characterisation of an

instrument to make field and chamber measurements of OH

reactivity by laser flash photolysis (LFP) coupled with laser-

induced fluorescence (LIF) using the FAGE technique. The

LFP-LIF reactivity instrument, its operation and data anal-

ysis have been described in detail. Ambient reactivity mea-

surements obtained during field campaigns in London, UK,

and York, UK, have been presented, and will be discussed

further in future work. The instrument has also been cou-

pled to an atmospheric chamber, and preliminary results have

been shown to demonstrate the potential for reactivity mea-

surements during future chamber experiments.

Reactivity measurements have been made using an averag-

ing time of 10 s, indicating potential for integration of ambi-

ent OH reactivity observations with flux measurements. Fu-

ture development of the instrument will increase the dynamic

range over which measurements can be made and will en-

able reduced averaging times owing to improvements in the

signal-to-noise ratio.
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