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Electromagnetic Radiation by Antennas of Arbitrary
Shape in a Layered Spherical Media

Salam K. Khamas, Member, IEEE

Abstract—A unified method of moments model is developed for
the analysis of arbitrarily shaped antennas that are radiating next
to a multilayered dielectric sphere. The curvilinear Rao-Wilton-
Glisson triangular basis functions and dyadic Green’s functions
have been used in the model. Antennas of various geometries in-
cluding spherical, circular and rectangular microstrip antennas
as well as hemispherical dielectric resonators have been modeled.
Input impedance and radiation pattern results are presented and
shown to be in good agreement with published data.

Index Terms—Conformal antennas, dyadic Green’s function,
method of moments (MoM), spherical antennas.

I. INTRODUCTION

A
NTENNAS radiating in the proximity of a layered dielec-

tric sphere has been a subject of considerable research

studies involving antennas of various configurations, such as

conformal microstrip antennas, antennas loaded by a dielec-

tric sphere and antennas that excite hemispherical dielectric res-

onators. For instance, the radiation characteristics of a probe-fed

circular microstrip antenna printed on a layered sphere have

been investigated in [1]–[4]. A conformal annular ring patch

antenna has been analyzed in [3], [5], [6]. A superstrate loaded

spherical antenna has been studied in [7]. Theoretical and exper-

imental studies of spherical arrays have been investigated using

rectangular microstrip [8] and stacked circular patch elements

[9]. A conformal Archimedean spiral antenna that is printed on

a grounded spherical substrate has been presented in [10].

Analysis and measurements of a probe-driven hemispherical

dielectric resonator antenna (DRA) have been reported in [11],

[12]. A DRA that is excited by a conformal strip has been pre-

sented in [13], and a circularly polarized hemispherical DRA

that is excited by a conformal parasitic patch has been proposed

in [14]. The numerical analyses in [13], [14] have been imple-

mented using novel closed-form expressions in the method of

moments (MoM) solution. The input impedance of a monopole

loaded by and connected to a perfectly conducting (PEC) sphere

has been computed in [15], and the radiation pattern of two

monopoles that are connected to a PEC sphere has been pre-

sented in [16]. A monopole that is loaded by a DRA has been
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investigated in [17]. A dipole and helical antennas radiating next

to a multilayered dielectric sphere have been reported in [18],

[19], with a layered sphere used to model a human head.

In most of the aforementioned studies, the moment method

has been adopted in the analysis, where several algorithms have

been developed such that each is suitable to efficiently model a

number of regular antenna shapes. A unified MoM model that

can analyze an arbitrarily, i.e., irregularly or regularly, shaped

antenna radiating next to a layered sphere has not been reported

earlier. The aim of this study is to introduce a rigorous MoM

model that is capable of analyzing spherical antennas of any

configuration and substrate thicknesses. This has been achieved

by formulating the problem using a mixed potential integral

equation (MPIE) for an arbitrarily directed current element in

a spherical media. The layered sphere and the antenna have

been modeled using dyadic Green’s functions [20]–[22] and

the well-known curvilinear Rao-Wilton-Glisson (RWG) [23],

[24] triangular basis functions respectively. The efficiency of

the computation has been enhanced by decomposing dyadic

Green’s functions into slow and fast convergent components,

with the slower convergent elements incorporated into a single

scalar potential expression.

To verify the generality and correctness of the presented

model, antennas of various shapes have been modeled and

analysed, and the results obtained have been compared with

results reported in the literature. The investigated geometries

include probe fed circular and proximity-coupled rectangular

spherical microstrip antennas, where both electrically thin and

thick substrates have been considered. The radius, reactance

and current distribution of the feeding probe are included in the

analysis. A hemispherical dielectric resonator antenna with a

radial probe excitation has also been modeled to further verify

the accuracy and versatility of the presented model.

II. THEORY

A dielectric sphere of layers is shown in Fig. 1. Each layer

has a permittivity of and a permeability of with the outer-

most layer assumed to be free space. The antenna can be posi-

tioned arbitrarily in any layer. A perfectly conducting spherical

core can be modeled assuming the permeability and permittivity

of the innermost layer, that is the layer, as and

, respectively. Although this assumption is incorrect

physically, it is sufficient for numerical modeling purposes as it

provides a finite propagation constant in the layer [25].

0018-926X/$26.00 © 2009 IEEE
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Fig. 1. A layered dielectric sphere.

A. Integral Equation Formulation

The tangential electric field can be obtained using the electric

field integral equation (EFIE) or the MPIE, which is more suit-

able for antennas in layered media. The EFIE is given by [22]

(1)

where is the surface area of the current source,

represents the radiation from an antenna located in an infinite

homogenous media that can be expressed as [20]

(2)

and represents the contribution due to the presence

of the dielectric sphere, that is

(3)

where the individual components of (3) are given in [22],

and the superscript refers to the field, ,

and source, , points, respectively. The homogenous

media component can be employed only when both of the field

and source points are in the same layer. Therefore, when and

are located at a spherical interface between two layers, the per-

mittivity of either layer can be used to compute this component

provided the appropriate elements are invoked. As

the solution of (2) is well known, it has not been discussed in

this article and attention has been given to dyadic Green’s func-

tions of (3).

The overall electric field is a superposition of two compo-

nents: the first represents the fields of the transverse electric

(TE) modes and the second represents the fields of the

transverse magnetic (TM) modes, where each component is

expressed using an infinite summation of spherical harmonics.

The convergence of the infinite series depends on a number of

factors such as the sphere radius, dielectric permittivities and

the locations of the source and observation points [18]. Proper

truncation of the summation represents an essential factor in

the formulation of a computationally efficient model; hence

the series characteristics have been investigated as the summa-

tion index, , approaches infinity, where asymptotic spherical

Bessel and Hankel functions expressions have been employed

[26]. Such an evaluation has shown that the contribution of TE

modes asymptotes to zero for larger while that of TM modes

persists as , with an asymptotic behavior that depends

on the dielectric properties of the spherical media. Therefore,

the summation of the TE modes converges much faster than

that of the corresponding TM modes; hence, a considerable

improvement in the computation time can be accomplished by

incorporating the slowly convergent TM modes components

into a unified potential. This can be achieved using a mixed

potential integral equation representation of the electric field

instead of the EFIE representation in (1). The MPIE can be

obtained by introducing a scalar potential that consists of TM

modes contributions as well as a magnetic vector potential .

Therefore, (1) may be rewritten as [27]–[29]

(4)

where

(5)

and the electric scalar potential given by [28]

(6)

In the case of a conformal current source, that is when there

is no radial current component, Green’s functions of the electric

scalar and magnetic vector potentials can be deduced from (1),

(3) as

(7)

and

(8)

where

(9)
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(10)

(11)

(12)

(13)

Therefore, for a conformal current element, there are four

magnetic vector potential entries that represent the contribution

of the TE modes and a single scalar potential that represents the

TM modes contribution.

In the equations above

(14)

where , , ,

, is the Kronecker delta, is

the Legendre function of degree ,

, is the spherical Bessel function

and is the spherical Hankel function of the second

type. The TE and TM modes expansion coefficients ,

, and are given in [22].

In the presence of a radial current source, the scalar potential

is still applicable as long as a correction term is incorporated

into each of the magnetic vector potential components that are

associated with a radial current source, that is

(15)

and

(16)

(17)

(18)

(19)

(20)

where the first terms in (16)–(20) involve the EFIE dyadic

Green’s function elements , , , and that

are given explicitly in [22]. Substitution of (7), (15) into (4)

results in a consolidated model that can be used to analyze

arbitrarily directed current elements at the vicinity of a multi-

layered sphere.

In this study, the infinite summations of the elements

have been truncated using 60 terms, while the summation of

has been truncated using 180 terms. As there are nine entries

for , a considerable reduction in the computation time has

been achieved by merging the slower convergent electric field

components into a unified scalar potential. The aforementioned

truncation limits have been used to ensure that convergence is

achieved for all the presented structures. A typical computation

time for a spherical microstrip antenna with 250 unknowns is 6

seconds per frequency point on a 2 GHz Pentium dual processor.

B. MOM Solution

Equation (4) has been solved using the method of moments,

where the antenna surface has been divided into a mesh of curvi-

linear triangular patches as shown in Fig. 2(a). The parametric

coordinates , and have been used to transform the curvi-

linear triangle into a planar triangle as shown in Fig. 2(b). The

curvilinear RWG triangular basis functions [24] are defined over

two triangles that share a common interior edge. These functions

have been employed in this study and they are expressed as [24],

[30], [31]

(21)

where the subscripts refer to the local edge number in a triangle,

is the position vector from the global coordinate origin to any

point on the curvilinear triangle that is given by [30]

(22)

and is the Jacobian at . The position vectors , and

define the vertices of a curvilinear triangular patch, while ,

and denote the midpoints of the triangle’s three edges as

shown in Fig. 2. The surface current density can then be ex-

pressed as

(23)

where the subscripts denote an interior edge number, is the

total number of non-boundary edges in the mesh that can be

calculated as [23]

(24)
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Fig. 2. (a) Curvilinear triangle in the Cartesian coordinates. (b) Equivalent
planar triangle in the parametric coordinates � , � and � .

in which represents the total number of triangular patches

and is the number of boundary edges. Substituting (23) in

(4)–(6) provides an alternative expression of the electric field as

(25)

where

(26)

The impedance matrix elements have been calculated using

Galerkin’s MoM as [32]

(27)

which gives

(28)

where and refer to the test and expansion edges and

[24]. In deriving (28), the divergence theorem has

been employed to transfer the differential operators and

of (26) to act on the testing and expansion current functions

which results in a smoother integral. The integration over the

testing triangle surface has been avoided by using the approx-

imate Galerkin method [23], in which testing can be imple-

mented at the centroid of a curvilinear triangle. The surface in-

tegral over the source triangle has been computed using sym-

metric quadrature rules over the unit triangle [33].

A problem that needs special attention is the connection of

a feeding probe to the perfectly conducting spherical core; this

is particularly important for the rigorous analysis of a probe-fed

spherical microstrip antenna. A possible solution is to model the

probe as a strip of width that is equivalent to four times the

probe radius [34]. The common edge between the PEC sphere

and the probe should follow the curvature of the sphere precisely

as illustrated in Fig. 3. To eliminate any convergence problems

at this attachment, an image of the probe above an infinite PEC

Fig. 3. A monopole strip attached to a PEC sphere.

planar ground plane has been introduced in the solution. The

dyadic Green’s function of this image has been expressed as a

summation of spherical harmonics, subtracted from the spher-

ical dyadic Green’s function and then added, in closed form, to

the homogenous media component of the Green’s function, that

is (2) [35].

The far-field components have been determined from the

computed current distribution using the asymptotic expressions

of Hankel’s functions when , that is,

and . The

infinite summation has been truncated using 40 terms in the

far-field computation.

III. RESULTS

In this section, the validity and generality of the presented

algorithm has been verified for several geometries, where good

agreements between computed and published results have been

achieved in all cases.

Each conformal antenna is driven using a probe that is con-

nected to the PEC spherical core. A delta gap voltage source has

been used in the analysis where it has been placed at the base of

the feeding probe. Rigorous analysis of the probe has been em-

ployed as it facilitates the inclusion of the probe’s length, radius

and reactance in the computations. To connect the probe to the

conformal patch a probe-patch junction needs to be included in

the model. Such a junction is introduced by the double use of

the edge shared by the probe and the patch, that is, the common

edge is declared twice in the mesh [36].

A. Spherical Circular Microstrip Antenna

A circular patch that is printed on and in conformance with

a layered sphere is shown in Fig. 4. An example that has been

studied by several researchers [1], [3] is analyzed using a PEC

spherical core of 5 cm radius, , a spherical substrate of

and a 0.32 cm thickness, i.e., the overall sphere

radius of Fig. 4 is 5.32 cm. The conformal patch has an arc

radius of 1.88 cm and the excitation probe is positioned at an

arc distance of 0.94 cm from the antenna center. The probe

Authorized licensed use limited to: Sheffield University. Downloaded on December 7, 2009 at 05:26 from IEEE Xplore.  Restrictions apply. 
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Fig. 4. A conformal circular microstrip antenna printed on a layered sphere.

Fig. 5. The input impedance of a spherical circular microstrip antenna.

width has been chosen as , which is equivalent to

a coaxial probe of 0.05 cm radius. A convergent solution has

been achieved when the antenna surface is meshed into 176

curvilinear triangles in addition to two triangles on the probe,

resulting in a total of 248 interior edges.

The input impedance of this antenna has been calculated then

compared with that obtained using CST microwave studio [37].

The results are in good agreement as shown in Fig. 5, where

the probe radius and length have been included in both solu-

tions. The computation time of the MoM model is 3 minutes for

all frequency points compared to several hours using CST over

a frequency range of 2.6 to 3 GHz. The -plane and -plane

far-field patterns have been calculated using the aforementioned

patch parameters with a different substrate thickness of 0.16 cm

as shown in Fig. 6. Comparison with the results reported in [1]

validates the accuracy of the present computation.

The presence of a spherical superstrate has been investigated

using a PEC spherical core with a radius of 5 cm and a circular

Fig. 6. Radiation pattern of a spherical circular microstrip antenna.

Fig. 7. The resonance frequency of a spherical circular microstrip antenna as
a function of superstrate thickness.

patch with an arc radius of 2.5 cm. The substrate has a relative

permittivity of and a thickness of 0.1588 cm. The

excitation probe has been placed at an arc distance of 1.64 cm

from the antenna center. Fig. 7 illustrates the variation of the

resonance frequency as a function of the superstrate thickness

when . The computed resonance frequencies agree

well with those reported in [7] with a slight discrepancy of 2%

that could be attributed to the probe’s reactance. The resonance

frequency has been defined as the frequency at which the reac-

tive component of the input impedance is zero.

B. Spherical Patch Proximity FED by a Conformal L-Shaped

Probe

Fig. 8 presents a conformal patch printed on a grounded

spherical foam substrate with a relative permittivity of 1. A

conformal L-shaped probe is connected to the PEC spherical

Authorized licensed use limited to: Sheffield University. Downloaded on December 7, 2009 at 05:26 from IEEE Xplore.  Restrictions apply. 
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Fig. 8. A spherical rectangular patch antenna proximity fed by a conformal
L-shaped probe.

core. This example is based on a planar antenna structure

presented in [38], where a flat patch was placed above a

grounded foam substrate and excited using a coupling from an

L-shaped probe. The dimensions of this antenna are similar

to those reported in [38], that is , ,

, , and .

The feeding probe has been modeled as a strip of 2 mm width.

The surfaces of the patch and probe have been meshed into 84

and 8 curvilinear triangles, respectively, resulting in 121 un-

knowns for a convergent MoM solution. The input impedance

of the spherical patch antenna is shown in Fig. 9 compared to

that of the planar antenna given in [38]. It can be seen that the

impedance and resonance frequency of the spherical antenna

approach that of the planar counterpart for a larger PEC sphere

radius. Therefore, a higher resonance frequency is expected as

the curvature of the structure is increased.

C. Hemispherical Dielectric Resonator Antennas

A probe-fed DRA is illustrated in Fig. 10. This antenna has

been analyzed following an example reported in [11] using a

probe length of , a dielectric hemisphere of a

2.54 cm radius and a relative permittivity of 8.9. The cylindrical

probe has a radius of 0.75 mm and it is shifted from the origin by

a distance of . In this study the cylindrical probe

Fig. 9. Input impedance of a proximity coupled spherical rectangular patch
antenna.

Fig. 10. Hemispherical dielectric resonator antenna excited by a vertical probe.

has been replaced by a planar strip of width 3 mm. The pres-

ence of the planar PEC groundplane has been simulated using

the image theory, that is, the problem is modeled using a full di-

electric sphere excited by a center-fed strip of length . The sur-

face of the strip has been meshed into 20 curvilinear triangles,

which results in 19 unknowns. The calculated input impedance

of this structure is shown in Fig. 11, which indicates that the re-

sults achieved using the presented method agree well with those

reported in [11].

IV. CONCLUSION

This article has introduced a MoM model that can analyze the

radiation characteristics of arbitrarily shaped antennas when a

layered dielectric sphere is present. The computation efficiency

has been enhanced by merging the slowly convergent electric

field components into an electric scalar potential that needs to be

computed once for each curvilinear triangular patch. The con-

figurations presented have been chosen to illustrate the flexi-

bility and generality of the presented model in the analyses of

antennas for various applications, where conformal and dielec-

tric resonator antennas have been studied. The robustness and

accuracy of the model has been verified by comparing the com-

puted results with those available in the literature. In the study,

low-order RWG basis functions have been used, which could

be replaced by the higher-order interpolatory bases functions

[31] to improve the convergence and computation efficiency of

the solution. The presented analysis can be enhanced further by
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Fig. 11. The input impedance of a probe fed hemispherical DRA.

employing a coaxial feeding probe model, which can be incor-

porated into the formulation using a special attachment basis

function that facilitates the connection of a cylindrical wire to

the vertex of a curvilinear triangular patch [39], [40].
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