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The circadian clock rephases during lateral root
organ initiation in Arabidopsis thaliana
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The endogenous circadian clock enables organisms to adapt their growth and development to

environmental changes. Here we describe how the circadian clock is employed to coordinate

responses to the key signal auxin during lateral root (LR) emergence. In the model plant,

Arabidopsis thaliana, LRs originate from a group of stem cells deep within the root,

necessitating that new organs emerge through overlying root tissues. We report that the

circadian clock is rephased during LR development. Metabolite and transcript profiling

revealed that the circadian clock controls the levels of auxin and auxin-related genes including

the auxin response repressor IAA14 and auxin oxidase AtDAO2. Plants lacking or

overexpressing core clock components exhibit LR emergence defects. We conclude that the

circadian clock acts to gate auxin signalling during LR development to facilitate organ

emergence.
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T
he circadian clock plays a key role in controlling plant
growth and development. Genetic studies in the model
plant Arabidopsis thaliana have revealed that the circadian

clock is composed of interacting repressing loops. The core
loop consists of the morning loop genes, LATE ELONGATED
HYPOCOTYL (LHY) and CIRCADIAN CLOCK-ASSOCIATED 1
(CCA1), which repress the evening loop gene TIMING OF CAB
EXPRESSION 1 (TOC1), which in turn represses both morning
and evening loop genes1–6 (reviewed in ref. 3).

In plants, the circadian clock is traditionally considered to be cell
autonomous but there is emerging evidence of synchronization
between the oscillators in individual cells7. It has been shown that
the plant clock is organ-specific but not organ-autonomous8,
however, the mechanisms by which circadian rhythms become
established or how the circadian clock synchronizes between cells
currently represent important areas of research.

Lateral roots (LR) provide an ideal system to study how
adjacent populations of plant cells synchronize their growth and
development (reviewed in ref. 9). In Arabidopsis, LRs are
derived from pairs of xylem pole pericycle founder cells located
deep within the primary root. These cells undergo several
rounds of anticlinal, periclinal and tangential cell divisions to
form a new LR primordium10. Auxin is a major regulator in this
process9.To emerge into the soil, a LR primordium first has to
break through overlying endodermal, cortical and epidermal cells.
This is achieved by employing the hormonal signal auxin to
reprogramme overlying cells to undergo cell separation and
facilitate the emergence of the new root organ11–13.

In this current study, we generated a transcriptomic time
course data set of LR development and found that the circadian
clock is rephased during LR initiation and that its regulation of
auxin-related components acts to control the rate of LR
emergence. Disrupting clock function or oscillatory expression
of downstream auxin-related targets impairs LR emergence.

Results
All core circadian clock genes oscillate in LR primordia. To
identify novel genes and mechanisms regulating LR development,
we initially generated a transcriptomic time course data set
covering every stage of LR development. We previously showed
that, following a 90� gravitropic stimulus, LRs develop in a highly
synchronized manner at the outer edge of a bending root
(Fig. 1a,b)14. In Col-0 roots, under our growth conditions, stage I
LR primordia are detected at 15 h post gravity induction (pgi) and
LRs emerged 42 h pgi (Fig. 1a,b). We took advantage of this regular
LR primordium development by microdissecting root bends every
3 h from 6 to 54 h pgi (Fig. 1b,c). For this, Col-0 seedlings were
grown without previous entrainment in constant light conditions
for 3 days, before the gravity stimulus was applied. From four
independent biological replicates of each time point, Affymetrix
transcript abundance data were generated, encompassing every
stage from pre-initiation to post-emergence (Fig. 1b; microarray
data are publicly available at ArrayExpress (www.ebi.ac.uk/
arrayexpress/) under the accession number E-MTAB-2565; all
data shown in this manuscript are averages from those four
replicates). Initial quality control testing confirmed the ability of
the data set to identify LR development regulatory genes. We
examined the transcript abundance of several known key LR
regulators: AUXIN RESPONSE FACTOR (ARF) 19, LATERAL
ORGAN BOUNDARIES DOMAIN (LBD) 16, 18 and 29, SHORT
HYPOCOTYL 2 (SHY2), GATA TRANSCRIPTION FACTOR 23
(GATA23), CYCLIN B1;1 (CYCB1;1) and LIKE AUX1 3 (LAX3)
(Supplementary Fig. 1), which were all significantly upregulated at
previously published time points13,15–19. In total, 48,000 genes
were differentially expressed across all time points and principal
component (PC) analysis revealed an oscillatory pattern in the
third PC with a period of B24 h (PC3; Fig. 1d)20. Clustering of
transcript abundance profiles generated a set of 77 clusters,
revealing a broad range of gene mRNA patterns during LR
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Figure 1 | Generation of a lateral root transcriptomic data set. (a) Overview of lateral root primordium stages, as described in ref. 10. Image adapted from

ref. 14. (b) Gravitropic stimulation was used to induce the synchronized initiation of lateral root primordia at the site of root bending in a population

of 3-day-old seedlings. Lateral root primordium stages (from I to VIII according to previous descriptions from ref. 10) were determined every 3 h from 6 to

54 h post gravity induction and are represented here as a percentage of the total number of observed lateral root primordia at each time point14. (c) Root

bends were microdissected for each of those 18 time points and used for RNA extraction and subsequent microarray analysis (N¼450 per time point, 4

independent biological replicates). All seedlings were grown in constant light conditions, without previous entrainment. Image is adapted from ref. 14.

(d) Principal component analysis of the lateral root data set revealed an oscillating component in the third principal component (PC3). (e) When

differentially expressed genes were clustered, 17 clusters showed an oscillatory pattern. The estimate of the period length (h) and the number of genes in

each cluster (N¼ x) is indicated above each cluster. Clusters with blue lines comprise core circadian clock genes. Expression intensities are on a log2 scale.

The mean of the clusters is given by the solid line and the dotted lines show the mean±2s.d.
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development (Supplementary Fig. 2 and Supplementary Data 1).
Consistent with PC3, 17 clusters exhibited an oscillatory pattern
with a period ranging from 19.4 to 35.9 h (Fig. 1d,e; Supplementary
Fig. 2), and four oscillating clusters comprised well-characterized
core circadian clock genes (blue in Fig. 1e
and Supplementary Fig. 2; cluster 35 contains ELF3, cluster 60
GI and PRR7, cluster 66 CCA1 and LHY, cluster 73 TOC1, PRR5,
PRR3 and ELF4; the individual transcript abundance patterns of
these nine core circadian clock genes are shown in Fig. 2).

To validate that the LR transcriptome displays circadian
oscillations under free-running conditions, we analysed the
data set using the JTK_CYCLE algorithm21. Rhythmic
components were identified in the mRNA patterns of 1,575
genes, including all the core circadian clock genes, with an
average period length of 25.3 h (Supplementary Data 2). As such
a large proportion of genes were oscillating close to a 24-h period
in the data set, we investigated the behaviour of the set of nine
core circadian clock component genes in more detail (Fig. 2).
All nine genes clearly showed oscillatory transcript abundance,
and the period of rhythms in LHY and CCA1 mRNAs in the LR is
similar to the period of their expression measured in whole roots8

(Supplementary Data 2). Morning loop genes including
CCA1 and LHY were oscillating in anti-phase to the evening
loop gene TOC1 (indicated by vertical red lines in Fig. 2),
indicating that we are observing a fully operating circadian clock
in LR development.

It has been previously described that only the day loop is fully
operating in Arabidopsis roots, synchronized by photosynthetic
signals derived from the shoot circadian oscillator8. The most
likely difference with our observations is due to different growth
conditions. In the cited work, plants were grown hydroponically
in light-tight boxes. Therefore, under constant light conditions,
the leaves were in constant light but the roots were in constant
darkness. In our experiments, both roots and leaves are exposed
to constant light. Another difference is that whole roots were
analysed8, whereas here we follow the development of LR
primordia. When entrained in light–dark cycles the day-loop
reporter TOC1:LUC oscillates in primary and lateral roots while
in constant dark conditions waves of circadian oscillations travel

from the root tip upwards22. This principle is very similar to that
of a non-circadian oscillation of auxin responsive gene
expression, such as ARF7, along the longitudinal axis of the
root that determines the priming of LR primordia sites23. In
contrast, here we investigate the establishment of fully operating
circadian rhythms, including all evening loop components, and
coordination of circadian signals as new LR primordia develop in
growing roots.

The circadian clock rephases during LR development. The
observed circadian oscillations in the LR data set can be explained
by two different hypotheses: (H1) circadian oscillations in the
root bend are initiated at germination24 or, (H2) the root
gravitropic stimulus or LR primordium initiation rephases the
circadian clock in the root bends, possibly independent of other
tissues. To distinguish between these hypotheses, we applied a
gravitropic stimulus to a TOC1:LUC reporter line, and monitored
luminescence from germination onwards in continuous light
conditions (Fig. 3a–e). When no gravitropic stimulus was applied,
root tip and stem initially oscillated in phase, but oscillations
dampened after 2 days in all parts of the root (Fig. 3b), while
oscillations still persist in leaf and stem tissue (Fig. 3c). After
gravity stimulation, robust oscillations became visible in the root
bend and root tip tissues and persist over the course of the
experiment. Regions above the bend still dampened quickly,
similar to the control data in absence of a gravitropic stimulus.
When comparing the region at which root bending occurs to the
robustly rhythmic root tip, it appears that the bending initially
triggers an earlier phase (1–3 h) and also a longer periodicity,
suggesting that this region at the root bend is behaving differently
to other parts of the root tissue and other parts of the plant
(Fig. 3d,e). However, 48 h after gravity stimulation the phases of
the root bend and root tip synchronize. This finding can be
explained by recent data showing that the vascular tissues of
cotyledons, where the circadian clock is distinct and more robust
than in mesophyll tissues, can regulate gene expression as well as
physiological responses in the neighbouring mesophyll tissue7.
In the case of a root bend, 48 h after gravity stimulation the new
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Figure 2 | Circadian oscillations in the lateral root time course. RNA expression patterns of the circadian clock genes CCA1, LHY, GI, TOC1, PRR7, PRR5,

PRR3, ELF4 and ELF3, all of which oscillate in the lateral root data set. Expression intensities from the lateral root microarray data are on a log2 scale. Red

vertical bars indicate peak times of TOC1 expression. N¼4. All seedlings were grown in constant light conditions, without previous entrainment. The mean

of the gene expression is given by the solid line and the error bars show the mean±2s.e.
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LR has emerged (Fig. 1b) and its vascular tissues have
differentiated. We hypothesize that this maturation of the LR
vascular tissues could explain the rephasing of the LR clock to the
primary root clock. Irrespective, these data indicate that the LR
circadian clock initially oscillates in a phase independent of the
circadian clock of other root tissues.

To validate that the LR circadian clock does indeed oscillate in
a phase independent of the circadian clock in other tissues, we

conducted another experiment. Again, all seedlings were grown in
continuous light conditions, without previous entrainment,
consistent with the growth conditions in the previous
experiments. To prove that both the morning and evening loops
of the circadian clock rephase during LR development, we
measured expression levels of the morning loop gene CCA1 in
this experiment. In contrast to the microarray experiment
(Fig. 1), all seedlings were dissected at the same age (same
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Figure 3 | Gravitropic stimulation regulates the circadian clock in the root bend. (a) Luminescence levels of TOC1:LUC plants were continuously

monitored. TOC1:LUC seedlings were grown vertically and imaged after the seeds were placed on plates. (b,c) Luminescence of control seedlings without

gravitropic stimulus was monitored in: root tip and upper root (b), stem and leaf (c). (d,e) In contrast to b,c after 4 days a 90� gravitropic stimulus, as

indicated by the grey section, was applied for 12 h. After that period, the plate was rotated back to original start position. (b–e) Error bars indicate s.e.;

N¼ 2. (f) From seedlings that have been exposed to a gravitropic stimulus at different ages, various tissues (root bend (g), cotyledons (h), upper root (i)

and root meristem (j); indicated by circles) were dissected at the same time/age of the seedling (shown in f). (g–j) RNA was prepared and RT–qPCR was

used to measure the levels of CCA1 mRNA. Only the root bends show oscillation of CCA1 expression. Error bars indicate s.d.; N¼4.
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duration in the growth chamber), but gravity-stimulated at
different ages post germination (Fig. 3f). From these plants,
cotyledons, root bends, meristems and root sections above the
bending region were dissected and CCA1 mRNA levels were
measured by quantitative reverse transcription PCR (qRT–PCR;
Fig. 3g–j). If the gravistimulus did not change the circadian clock
phase in the investigated tissue, one would expect a flat
expression curve, as all samples would be harvested in the same
phase of oscillation. However, if the gravistimulus leads to
rephasing of the oscillator, one would observe CCA1 oscillations
when plotting the data against ‘time after gravitropic stimulus’.
Our results reveal that CCA1 transcript abundance starts to
oscillate in the root bend itself (Fig. 3g), while in the other
sampled tissues (Fig. 3h–j) the mRNA profile of CCA1 was flat,
confirming that the circadian clock rephases at the root bend after
the gravitropic stimulus, independent of other plant tissues.

TOC1 is auxin-inducible during LR initiation. At the start of
the LR time course, transcripts of the morning genes CCA1, LHY
and PRR7 are low, whereas mRNAs of afternoon and evening
expressed genes PRR5, PRR3, GI, TOC1, ELF3 and ELF4 are high
(Fig. 2). The first significant changes in circadian clock transcript
abundance are a rapid decline of TOC1 and GI versus a
small increase in LHY mRNA abundance from 9 h pgi (Fig. 2).
All other circadian clock genes start to oscillate later (Fig. 2),
suggesting that TOC1, GI and/or LHY genes regulate rephasing of
circadian clock oscillations in LRs. This pattern of transcript
abundance is similar in dry seeds before imbibition24, which is
believed to synchronize and set the phase of the clock in
Arabidopsis25. Since TOC1, GI and LHY are candidates for
regulating circadian clock rephasing, and given that the plant
hormone auxin triggers LR initiation, we investigated whether
their expression is regulated by this hormone. Seedling roots
were first treated with auxin (indole-3-acetic acid (IAA)) and
then apical meristem and elongation zones (the latter containing
the basal meristem from which new LR primordia originate)
were microdissected, then the RNA isolated and profiled
(as described for root bends). In the transcriptomic data
generated using wild-type (WT) (Col-0) root material, TOC1
transcript abundance was rapidly induced nearly twofold 15 min
after auxin treatment in the basal meristem where LRs are primed
(Fig. 4a), while in the root meristem the induction is nearly absent
(Supplementary Fig. 3a). To validate this observation, we
transcript profiled equivalent auxin-treated root zones in the
arf7arf19 mutant (Fig. 4a and Supplementary Fig. 3a). ARF7 and
ARF19 are two (of a total of five) auxin response (transcription
activating) factors in Arabidopsis that are required for LR
initiation since arf7arf19 mutants do not form LRs12,15,16. As
the auxin response pathway and LR development are disrupted in
arf7arf19, we employed this double mutant background as a
control for the auxin transcriptomic experiment. We observed
that while ARF7 and ARF19 are not required for the initial rapid
auxin-dependent upregulation of TOC1, they were essential for
the maintenance of high TOC1 transcript levels (Fig. 4a). In
contrast to TOC1 and LHY, root transcript abundance was not
significantly changed by auxin (Supplementary Fig. 3d,e). It has
been demonstrated that high auxin concentrations can affect, but
do not rephase the circadian clock26 and that pulses of CCA1 or
LHY expression can shift the phase of circadian rhythms, but
pulses of TOC1 expression do not27. In addition, TOC1
expression decreased after IAA treatment26. However, these
observations were made in whole seedlings. As other major
differences have been described for root and shoot circadian clock
regulation8, we cannot rule out that this mechanism might be
different in roots or LR primordia in particular. The observed

auxin induction of TOC1 gene expression cannot be seen in other
auxin and LR time course data sets28–31. However, the time
points sampled do not have the resolution to pick up the rapid
induction of TOC1 (within 15 min). In addition, whole seedlings
or whole roots were sampled for those data sets, most likely
resulting in a dilution of TOC1 induction, which is specific to the
root basal meristem. Based on this data, we suggest that auxin
controls the induction and maintenance of TOC1 expression,
representing a novel role for auxin in LR circadian clock
regulation.

The circadian clock is required for LR development.
To determine whether a fully operating circadian clock is
required for normal LR development, we compared LR densities
in single mutants and overexpressing lines of the three core
circadian clock genes CCA1 (cca1-1, CCA1-OX), LHY (lhy-21,
LHY-OX) and TOC1 (toc1-1, TOC1-OX) (Fig. 4b, Supplementary
Figs 4a,c and 5b–e)32–34. For phenotyping, all plants were grown
in continuous light conditions, without previous entrainment,
consistent with growth conditions from the previous experiments.
The strongest reduction in emerged LR and LR primordium
density was found in toc1-1, CCA1-OX and LHY-OX lines
(between 30 and 60%), whereas other lines displayed weaker LR
developmental phenotypes (Fig. 4b, Supplementary Figs 4b
and 5b). While the absence of LR phenotypes in TOC1-OX and
lhy-21 mutants seems puzzling on the first glance, a similar
variety of phenotypic occurrence has been described for various
other circadian clock-associated phenotypes. For example, CCA1-
OX, LHY-OX, elf3, prr7 and prr9 exhibit long hypocotyl
phenotypes, while the toc1-1 mutant does not3,35. Similar
phenotypic discrepancies among circadian clock mutants have
been shown in the control of flowering timing3. In addition, we
attribute the phenotypic differences between these lines to toc1-1
being a semi-dominant missense allele (in its DNA-binding
domain)36 that disrupts the mutant toc1-1 protein binding to
promoters such as CCA1 to repress their expression4, while CCA1
and LHY overexpression has been reported to be able to reset the
phase of the circadian clock27. To determine whether this
phenotype arose as a result of a defect in LR initiation or
development, we profiled the stages of LR primordia in 10-day-
old seedlings in toc1-1, LHY-OX and CCA1-OX and compared
them to their respective WTs. The proportion of toc1-1 LR
primordia between stages I and IV was increased threefold
compared with the WT control (C24, Fig. 4d), although the
overall primordia density, including emerged LRs, was similar
(Fig. 4c). LHY-OX lines also displayed a threefold increase in
stage IV primordia (Supplementary Fig. 5c), but the overall
primordia density was still lower than WT (Supplementary
Fig. 5b). CCA1-OX lines did not display a strong LR primordium
phenotype. These data suggest that disrupting the circadian clock
leads to strong defects in LR development or emergence, but not
initiation (Fig. 4b–d, Supplementary Figs 4 and 5). The transition
from stage II to V is an important phase in LR development, since
the Casparian strip, a tough lignified barrier that effectively ropes
together endodermal cells overlying new LRs, needs to be broken
to allow the new root organ to emerge37. Auxin is a key signal
promoting LR emergence11,38,39. This hormone is transported
from newly initiated LR primordia towards cells in overlying
tissues, where it triggers the expression of genes including its own
influx carrier, LAX3, and the cell-wall remodelling enzyme
polygalacturonase11,14,40.

The LR circadian clock gates auxin levels and response. Given
the LR development or emergence defects exhibited by mutant
and overexpresser lines of core clock components, we examined
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whether the circadian clock may gate auxin signalling during LR
development. We observed that 49 auxin-related genes display
circadian oscillations during LR development under our experi-
mental conditions21 (see Supplementary Data 3 for oscillating
auxin-related genes). Among these auxin-related genes is IAA14
(Fig. 4e), which is a key regulator of LR initiation41 and
emergence9. Significantly, expressing IAA14 under the regulation
of the 35S promoter blocks LR emergence42. Hence, replacing the

native IAA14 gene’s oscillatory pattern (Fig. 4e) with a
constitutive mode of expression in 35S::IAA14 transgenic
seedlings disrupts LR emergence42. IAA14 functions as a
transcriptional repressor that interacts directly with ARF7 and
ARF19 proteins. Hence, regulating IAA14 expression in a
circadian manner (Fig. 4e) would serve to gate the activity of
the IAA14/ARF7/ARF19 auxin response module and their
downstream genes that include direct targets LBD16 and LBD29
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Figure 4 | Lateral root phenotypes of circadian clock mutants. (a) TOC1 gene expression in the basal meristem is induced in response to auxin treatment

of whole seedlings in Col-0, as well as arf7arf19 mutant plants. Expression intensities are on a log2 scale and are based on transcriptomics data with an

ATH1 chip (Affymetrix), three independent biological replicates each. Error bars indicate s.d.; asterisks indicate a significant difference (Po0.05,

Student’s t-test) from wildtype. (b–d) All seedlings were grown in constant light conditions, without previous entrainment. N¼ 20 for all experiments. Error

bars indicate s.d.; asterisks indicate a significant difference from wildtype. (b) Emerged lateral root density of 10-day-old C24 and toc1-1 seedlings in cm� 1

revealed a strong phenotype for toc1-1. (c,d) Ten-day-old seedlings were fixed and the primordium density of different developmental stages (stage I to

emerged (E)) of wild-type (C24) and toc1-1 mutant seedlings in cm� 1 was determined. (e) Comparison of oscillating gene expression patterns from

the lateral root transcriptomic time course of the circadian clock genes CCA1 and TOC1 and auxin signalling genes IAA14 and AtDAO2, demonstrate gating of

auxin signalling by the circadian clock during lateral root primordium development. Expression intensities are on a log2 scale. Red vertical bars indicate

peak times of TOC1 expression. All seedlings were grown in constant light conditions, without previous entrainment. The mean of the gene expression is

given by the solid line and the error bars show the mean±2 s.e. N¼4. (f) IAA and oxIAA accumulations exhibit circadian rhythms in roots under

free-running conditions. Seedlings were germinated and entrained under 12 h light/dark cycle before transfer to constant darkness. Tissue was harvested

starting at subjective dawn for 5-day seedlings. The experiment was repeated three times. White bars, light period; dark bars, dark period. Error bars

indicate s.d.; N¼ 3.
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(refs 43,44). Consistent with this model, LBD29, and to a lesser
extent LBD16, are among the auxin-related genes whose mRNAs
display circadian oscillations during LR development in our
transcriptomic data set (Supplementary Fig. 1 and Supplementary
Data 3).

AtDAO2 (AT1G14120) represents another strongly circadian
oscillating auxin-related mRNA (Fig. 4e, Supplementary Data 3).
AtDAO2 is orthologous to the rice DAO enzyme mediating
degradation of the major plant auxin IAA to its biologically
inactive form oxIAA45. Metabolic profiling of root tissues
revealed that oxIAA levels display strong circadian oscillations
under free-running conditions (after initial entrainment for 2
days), and which increases during the subjective day coincident
with elevated AtDAO2 transcript abundance (Fig. 4f). In parallel,
free IAA levels oscillate in anti-phase with AtDAO2 and oxIAA
(Fig. 4e,f). The circadian patterns of AtDAO2 and IAA levels
(Fig. 4e,f) would lead to the gating of auxin-inducible gene
expression such as IAA14 during root development. Moreover,
the turnover of the IAA14 protein is also auxin dependent46,47

creating further opportunities to gate auxin response activity
during LR development. Indeed, slowing the auxin-dependent
dynamics of IAA14 degradation was recently demonstrated to
cause a quantitative reduction in LR emergence48.

AtDAO2 exhibits a circadian oscillation in transcript abun-
dance similar to CCA1 but in anti-phase to TOC1 (Fig. 4e).
AtDAO2 mRNA is initially induced one time step before CCA1,
suggesting that its circadian expression pattern is not dependent
on CCA1. The AtDAO2 promoter contains nine TOC1 (T1ME)
binding motifs and TOC1 has recently been reported to be a
transcriptional repressor4. In addition, AtDAO2 induction
coincides with TOC1 transcript abundance dropping and vice
versa, suggesting that AtDAO2 is negatively regulated by TOC1
(Fig. 4e). TOC1 functioning to directly repress AtDAO2
expression could explain why the toc1-1 mutant exhibits such a
severe LR phenotype (Fig. 4b–d, Supplementary Fig. 4) since
expression of many other auxin regulated genes (in addition to
AtDOA2) would be uncoupled from the circadian clock.

Discussion
We conclude that a fully operating circadian clock is necessary
during LR emergence. Endo et al.7 recently proposed that
circadian clocks of different tissues perform distinct functions.
Consistent with this, AtDAO2 and 14 other auxin-related genes
(including LAX3) oscillating in our LR data set do not exhibit
circadian changes in whole seedlings26 or cotyledons7 (Fig. 4e,
Supplementary Fig. 1, Supplementary Data 3). Our results suggest
that the circadian clock functions like a developmental
‘metronome’ during LR development, causing the expression of
genes such as AtDOA2 and IAA14 to gate auxin responses in cells
overlying new primordia, and thereby coordinate organ
emergence. But why do the circadian clocks of cells in the
vicinity of new LR primordia have to be rephased compared with
other root tissues? One likely explanation is that cells within and
surrounding new LR primordia need to independently regulate
their hydraulic properties in a manner distinct to other root
tissues to facilitate organ emergence. We recently demonstrated
that auxin channelled via the LR primordium into overlying cells
functions to repress the expression of genes encoding water
channels termed aquaporins, creating complex spatio-temporal
changes in hydraulic properties necessary for organ emergence14.
In contrast, in other root tissues the circadian clock regulates
aquaporin expression, resulting in diurnal oscillations in root
water uptake49,50. Rephasing the circadian clock in cells within
the new LRP and surrounding tissues would, in effect, transiently
hydraulically isolate them from these other diurnal oscillations in

root water uptake. Nevertheless, we observed that the circadian
phases of the newly emerged lateral root primordium (LRP) and
root tip eventually synchronize and hypothesize that the
maturation of the vascular tissues in the new root organ could
explain this rephasing (akin to the recently proposed role of the
vasculature in cotyledons7).

Methods
Growth conditions and plant material. WT, mutants and reporter lines were
grown vertically on sterile 12� 12 cm square Petri dishes on ½ MS (Murashige and
Skoog; pH 5.8) at 23 �C under continuous light (150 mmol m� 2 s� 1). For RNA
preparation, transcriptomic and phenotypic analysis, LR induction was performed
on 3-day-old Col-0 seedlings grown vertically by rotating the plates by 90�. All
mutant lines were obtained from the European Arabidopsis Stock Centre (NASC).

RNA extraction for LR transcriptomic data and qRT-PCR. Total RNA was
extracted from roots using Qiagen RNeasy plant mini kit with on-column DNAse
treatment following the manufacturer’s recommended protocol (RNAse-free
DNAse Set, Qiagen, Crawley, UK). RNA samples were quantified using a
Nanodrop ND100 spectrophotometer (Nanodrop, Wilimington, USA).

Transcriptome analysis of LR development. Four biological replicates from
separate pools of seeds (Col-0) were stratified for 2 days at 4 �C, before transfer to
growth chambers. For every time point, root bends of B400 seedlings were
microdissected under a binocular microscope and frozen in liquid nitrogen
immediately on harvesting as described in ref. 14. In addition to the root bends, a
mature root segment located between the bend and the shoot was harvested at 9 h
after an inductive gravitropic stimulation to serve as a reference of non-gravitropic-
stimulated root tissues devoid of developing LRP (time point 0 in the data set; for
more details about timing of sampling see Supplementary Table 1). RNA labelling
and hybridization to Affymetrix ATH1 arrays were performed by NASC.

Data were normalized as described in ref. 17. Error bars indicate s.d.; asterisks
indicate a significant difference from WT. For timings of plant growth and root
sampling see Supplementary Table 1, which applies to all four replicates.
Microarray data are available in the ArrayExpress database (www.ebi.ac.uk/
arrayexpress) under accession number E-MTAB-2565.

Transcriptome analysis of WT and arf7arf19. Three biological replicates from
separate pools of seeds (Col-0 and arf7arf19) were stratified for 2 days at 4 �C,
before transferring to growth chambers for 6 days. Sterile 9� 9 cm square sections
of 100 mm nylon mesh (Clarcor) were placed onto the media surface before sowing
to facilitate root dissection and harvesting of cut sections. Plates were then
transferred to tanks containing 3 l of 0.5� MS media and allowed to acclimate for
24 h and then to tanks containing 3 l of 0.5� MS media supplemented with either
30 ml 100% ethanol or 30ml of 0.1 M IAA in 100% ethanol (1 mM final IAA con-
centration) for 0, 15, 30, 60, 120, 240 or 480 min.

For each biological replicate, plants were grown and B50 roots were dissected
into 2 sections; the meristem (from the root tip to the top of the LR cap, B350 mm
from the tip) and the basal meristem zone (from the top of the LR cap to the first
visible root hair bulge, B850 mm from the shootward boundary of zone 1).
Dissected samples were immediately frozen in liquid nitrogen. RNA was extracted
using the Qiagen MicroRNA Kit following the manufacturers recommended
protocol (Qiagen) and quantified using a Nanodrop ND100 spectrophotometer.
RNA labelling and hybridization to Affymetrix ATH1 arrays were performed by
NASC.

Data were normalized as described in ref. 17. Transcriptomics data used in
these experiments have been made available through ArrayExpress (www.ebi.ac.uk)
with accession number E-MEXP-1354.

qRT–PCR. Poly(dT) complementary DNA (cDNA) was prepared from 2 mg total
RNA using the Transcriptor first strand cDNA synthesis kit (Roche). Quantitative
PCR was performed using SYBR Green Sensimix (Quantace) on a Roche Light-
Cycler 480 apparatus. PCR was carried out in 384-well optical reaction plates
heated for 1 min to 95 �C, followed by 40 cycles of denaturation for 5 s at 95 �C,
annealing for 8 s at 62 �C and extension for 30 s at 72 �C. Target quantifications
were performed with the specific primer pairs described in Supplementary Table 2.
Expression levels were normalized to ACTIN. All qRT–PCR experiments were
performed in quadruplicates and the values represent mean±s.e.m.

LR analysis and microscopy. Total number and stages of LRP were counted using
primary roots cleared by immersion in 20%(v/v) methanol/4% (v/v) hydrochloric
acid at 57 �C for 20 min, followed by immersion in 7% (w/v) NaOH/60% (v/v)
ethanol at room temperature for 15 min. Roots were then rehydrated for 5 min
each in 40%, 20% and 10% (v/v) ethanol and mounted in 50% (v/v) glycerol on
glass microscope slides and were imaged using a Leica differential interference
contrast optics microscope.
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Luciferase imaging. The TOC1:LUC reporter line was produced as part of the
ROBuST project in a Col-0 background. Seedlings were grown on vertical ½ MS
plates at 23 �C under continuous light. LR induction was performed on 3-day-old
Col-0 seedlings grown vertically by rotating the plate by 90�. About 12 h later, the
plate was rotated back to original start position. Luciferase imaging was done as
described in ref. 51. Analysis of data was done using Imaris (Bitplane).

IAA/oxIAA measurements. A. thaliana Col-0 seeds were sown on 1
4 MS, 0.5%

sucrose pH 5.7 phytagar plates, and stratified at 4 �C for 48 h. The seeds were
transferred to a Conviron growth chamber, 120mE, 12 h day/night. Seedlings were
harvested starting at day 5. For free-running circadian experiments, samples were
conducted as in the 12 h day/night experiments except that the growth chamber was
shifted to 24 h darkness for the period described. Roots were collected, briefly patted
dry, weighed in 1.5 ml centrifuge tubes and frozen in liquid nitrogen and ground to
powder. Samples were resuspended in 1 ml of 50 mM sodium-phosphate buffer,
extracted for 20 min on a lab shaker at 4 �C, and solid phase extraction was per-
formed with 30 mg Oasis HLB columns equilibrated with 50 mM phosphate buffer,
pH 3.0 as in ref. 52. Briefly, sample pH was adjusted to 3 with HCl, applied to the
HLB column, washed twice with 2 ml 5% methanol, eluted with 2 ml 80% methanol
and dried under nitrogen. Standards added were 25 ng 13C-IAA Cambridge
Research Biochemicals) and indole-3-proprionic acid (Sigma). Calibration of indole-
3-proprionic acid and 13C-IAA was calculated with 25 ng of oxindole-3-acetic acid
(OlChemIm, Ltd., Olomouc, Czech Republic). Samples were resuspended in
methanol and analysed by Liquid Chromatography-Multiple Reaction Monitoring-
Mass Spectrometry (LC-MRM-MS) using an Agilent triple quad 6460. For each
measurement, three samples were analysed. Results presented are means and s.d.

Differential expression. A gene was considered to be expressed if its expression
was 4100, and differentially expressed if a t-test between two time points was
significant at a q value of 0.05 after Benjamini–Hochberg false discovery rate cor-
rection53. For most analyses, we further restricted this list to include genes that were
only twofold induced or repressed (48,000 genes). More than 50% of probed genes
(412,000) were significantly expressed in the main LR time course. Further analyses
were performed using Excel 2010 (Microsoft Corporation, Redmond, USA).

Clustering. For each time course, we summarize the information contained in that
profile by fitting a smoothing spline through the data. For details of smoothing
splines, see ref. 54, p. 230. The basic idea is to fit a smooth curve through the data
with a penalty on the roughness of the curve. The penalty is specified in the form of
a multiplier of the integral of the squared second derivative of the curve in the
objective function. We use the R function ‘smooth spline’ to fit the splines, and set
the spar parameter to 0.4 (the multiplier described in the previous sentence is a
monotone function of this parameter). We normalize each fitted spline to have
mean 0 and variance 1 across the 18 time points of the experiment.

To cluster the normalized spline fits for differentially expressed genes in the LR
time course data set, we use a method that combines hierarchical and k-means
clustering. To cluster a set of several thousand genes, we proceed by breaking the
data set-up into smaller blocks of 1,000 (plus 1 block containing o1,000 genes as
the remainder). We cluster each block independently and then combine the centres
of the different blocks to construct a set of centres on which we perform k-means
clustering. The algorithm is as follows: calculate the spline fits for each gene and
normalize to have mean 0 and variance 1; For a set of N¼ 1,000 BþR genes, where
B is the number of blocks of 1,000 and R is the number (o1,000) in the remainder,
break the data set into B blocks of 1,000 genes and 1 block of R genes; For each of
the (Bþ 1) blocks, perform hierarchical clustering on the normalized splines using
the Ward linkage and cutting the dendrogram at a height hmax to generate (Bþ 1)
sets of centres, where each set will in general contain a different number of centres;
Combine the sets of centres and cluster using hierarchical clustering, again using
the Ward linkage and cutting the dendrogram at a height 2� hmax to generate an
overall set of centres; Use k-means clustering on the data set using the overall set of
centres from the previous step as the initial centres in the algorithm.

This algorithm is computationally very fast, even for several thousand genes,
taking only a few minutes to run. Initially, we applied the above algorithm (with
hmax¼ 2) to the differentially expressed transcription factors (TFs) (1,304 genes)
and to the other differentially expressed genes (12,318 genes) independently. This
yielded a clustering with 45 centres for the TFs, and 174 centres for the non-TFs. A
total of 219 clusters seemed very large, and possibly unnecessarily complex. We
therefore decided to compare each of the non-TF centres to each of the 45 TF
centres. We used Euclidean distance between the vectors representing the centres
as a measure of dissimilarity. We created a set of centres consisting of the 45 TF
centres together with the non-TF centres that were at least a distance of 2 away
from all of the 45 TF centres. We used the resulting set of 77 centres to perform
k-means clustering of the entire set of differentially expressed genes. After
obtaining the new centres following the k-means clustering, we summarized each
cluster by taking the mean at each time point of each of its elements.

Estimating the period for oscillatory gene clusters. After using the spline
clustering method outlined in the previous section, we identified 17 of the 77
clusters whose mean time profiles looked oscillatory. To estimate the period of

these clusters, we proceeded as follows: for each oscillatory cluster, fit a smoothing
spline through the data points with a spar parameter of 0.1 (which corresponds to a
low level of smoothing, since we have already done the smoothing to obtain the
initial centres for the k-means clustering); Use the predict.smooth.spline function
in R to estimate the first derivative of the fitted curve at a grid of 1,000 points over
the range of the length of the experiment (54 h in our case); If the derivative is
exactly 0 at any of the time points on the grid, then use those time points to index
the peaks and troughs. Otherwise use the average of neighbouring time points
between which the sign of the first derivative changes as the indices of the turning
points; For each set of peaks and troughs (turning points), calculate the time
differences between neighbouring turning points, average these differences and
double to obtain an estimate of the period for a particular oscillatory cluster; This
analysis gives periods ranging between 19.4 and 35.9 h, with six clusters showing
periods within 1.5 h of 24 h (that is, between 22.5 and 25.5 h).
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