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Comparative Analysis of VDMOS/LDMOS
Power Transistors for RF Amplifiers

Nicolas Chevaux and Maria Merlyne De Souza, Member, IEEE

Abstract—A comparison between the RF performance of ver-
tical and lateral power MOSFETs is presented. The role of each
parasitic parameter in the assessment of the power gain, 1-dB com-
pression point, efficiency, stability, and output matching is evalu-
ated quantitatively using new analytical expressions derived from
a ten-element model. This study reveals that the contribution of
the parasitic parameter on degradation of performance depends
upon the specific technology and generic perceptions of source in-
ductance and feedback capacitance in VDMOS degradation may
not always hold. This conclusion is supported by a detailed anal-
ysis of three devices of the same power rating from three different
commercial vendors. A methodology for optimizing a device tech-
nology, specifically for RF performance and power amplifier per-
formance is demonstrated.

Index Terms—Efficiency, lateral diffused MOSFET
(LDMOSFET), power gain (PG), stability factor, vertical diffused
MOSFET (VDMOSFET).

I. INTRODUCTION

T
WO structures of silicon MOSFETs are widely used

in RF communication systems: 1) the lateral diffused

MOSFET (LDMOSFET) and 2) the vertical diffused MOSFET

(VDMOSFET). These structures differ in performance [1], [2]:

the LDMOS with higher power gain (PG) and efficiency is

more suitable at frequencies in excess of 1 GHz, whereas the

smaller degradation of input signal and enhanced stability logi-

cally makes the VDMOS suitable for low-frequency broadband

applications.

Trivedi and Shenai [1] and Leong [2] first examined the issue

of the VDMOS versus the LDMOS. These studies revealed

global considerations, explaining the most appropriate choice of

structure for a specific application. However, the origin of these

differences was not explained, though most of the degradation

of the VDMOS is widely attributed to the inductance of the

source wire, necessary to package the device as well as the gate

to drain capacitance. In [2], the LP801 (lateral structure) and

the F2012 (vertical structure), both from Polyfet, Santa Clara,

CA [3], were compared. Some of their results are recapitulated

in Table I, confirming the enhanced output power and gain of

the lateral device.
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TABLE I
SOME RF COMPARISON BETWEEN LP801 AND F2012

Leong also demonstrated that instability takes effect at lower

frequencies for the VDMOSFET, whereas it extends into the op-

erating bandwidth and beyond in the case of the lateral structure.

While a lower out-of-band instability can be overcome without

major deterioration of performance in the operating frequency,

with resistive loading of the gate circuit, instabilities in the op-

erating band and above are more difficult to cancel and force the

designer to deal with a compromise [2].

The methodology of this paper is the utilization of new ana-

lytical expressions to determine optimum matching impedances

for the power MOSFET. Source and load impedances are re-

calculated for different values of intrinsic parameters and PG,

efficiency, and stability simulated with ADS1 via the harmonic

balance (HB) approach. To perform this study, a set of three

transistors, which deliver similar output power and operate at

the same frequency, is considered. The three devices (one lateral

and two vertical) are commercial parts from three different ven-

dors, which can deliver about 4 W at 1 GHz. For the purpose of

anonymity, the considered devices will be named as , ,

and for the lateral and the two vertical parts, respectively.

Furthermore, the performance has been evaluated by gradually

modifying one (or several) parasitic parameter of the VDMOS at

a time to equal that of the corresponding value(s) for the lateral

counterpart. This ensures that the degradation can be attributed

to the specific parameter(s) alone. The considered power am-

plifiers are single stage amplifiers (class AB, common source

amplifier); input and output of the devices are matched to the

50- environment using lumped elements matching networks

(low-pass matching network).

Main characteristics of the three transistors are summarized

in Table II. Table III depicts values of parasitic parameters (in

accordance with the model used in [4]). The models of the two

vertical devices are provided by the vendors, whereas the model

of the LDMOS is extracted from measured scattering parame-

ters using the same extraction procedure [5]–[7]; an optimiza-

tion is then applied on these parameters in order to ensure a

perfect match between simulated and measured data. The va-

lidity of all the models is verified via HB simulations. DC and

RF performances (gain, output power, efficiency) are simulated

1Polyfet Website. [Online]. Available: http://polyfet.com

0018-9480/$26.00 © 2009 IEEE
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TABLE II
RF CHARACTERISTICS OF ALL CONSIDERED DEVICES

TABLE III
VALUES OF INTRINSIC PARAMETERS FOR ALL CONSIDERED DEVICES

Fig. 1. Cross sections of RF power VDMOS and LDMOS transistors with par-
asitic capacitances.

with ADS and the model is validated through a comparison with

measured data.

Fig. 1 shows the cross sections of the two structures. The

parasitic capacitances of the VDMOS can be written as

(1)

(2)

(3)

The capacitances for the LDMOS are

(4)

(5)

(6)

Fig. 2. Types of package for (left) vertical and (right) lateral RF DMOS.

Fig. 3. Transistor model including matching impedances, gate resistance,
source inductance, and a nonlinear voltage-controlled current generator. In � ,
� , � , and � were not considered.

The gate-to-drain capacitance is directly related to the overlap

of the gate oxide onto the heavily doped region. The

topology of LDMOS allows for minimum overlap, leading to

smaller feedback capacitance than in VDMOS [8] (Table III).

Fig. 2 shows the package for the two devices. The drain of

the vertical device is directly contacted to the drain terminal

of the package, whereas bond wires attach the gate and source

terminals to the package. On the other hand, the source of the

LDMOS is directly contacted to the package; gate and drain are

attached with bond wires to the corresponding terminals of the

package. This explains the higher values of drain inductance in

the case of the LDMOS (Table III).

This paper is organized as follows. The new analytic expres-

sions for the transistor model are explained in Section II. In

Section III, PG and efficiency are examined. In Section IV the

stability is analyzed. In Section V, the issue of output matching

is discussed.

II. NEW ANALYTICAL EXPRESSIONS

Analytical expressions for matching impedances and PG

based on the transistor model of Fig. 3 have been presented

in [9]–[11] under the assumption of zero gate and drain in-

ductances , and zero gate and drain capacitances

.The PG and optimum source and load impedance

were given as

(7)

(8)

(9)
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where is the angular frequency, is the source inductance,

is the gate-to-source capacitance, is the gate-to-drain

capacitance, is the drain-to-source capacitance, is the

transconductance, is the load line optimum resistance,

is the optimum load impedance, and is the optimum source

impedance. The value of the model parameters are extracted at

the application frequency and bias.

Proceeding as in [10], the optimum load impedance is

determined by forcing the current generator to see a real output

impedance , the load-line resistance, associated with the

maximum voltage and current swings [12]. The optimum source

impedance is determined as the conjugate match of the tran-

sistor’s input impedance.

Circuit analysis of Fig. 3 reveals (10)–(17), shown at the

bottom of this page.

Using (8)–(11), optimum source and load impedances are cal-

culated using

(18)

(19)

where denotes the conjugate.

These expressions yield (20) and (21), shown at the bottom

of this page, where . The expressions of input

and output power are, respectively, obtained as the power de-

livered to the transistor under conjugate match conditions and

as the power dissipated by the load-line resistance [12]. These

definitions yield

(22)

(23)

The PG is then defined as

(24)

HB simulations have been used as a benchmark for the verifi-

cation of the accuracy of these expressions. The vertical device

is biased at V mA . Matching im-

pedances and PG are compared using our earlier expressions

[10] with those presented here with source/load–pull simula-

tions (Figs. 4 and 5). PG and gain compression are calculated

and presented in Table IV. corresponds to the PG calcu-

lated using the analytical expressions from [10] and this study.

and correspond, respectively, to the simulated PG

and the simulated 1-dB compression point when matching im-

pedances are determined via source/load–pull simulations in

ADS, equations from [10] and (20) and (21).

Figs. 4 and 5 reveal that the additional parasitic parameters

yield significant improvement in the calculation of optimum

source and load impedances. The source impedance calculated

using (20) is located on the load cycle, which is about 0.2 dB

from the optimal impedance . On the other hand, the

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(20)

(21)
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Fig. 4. Source–pull delivered power contours in the class AB �� � ��� A�
single-tone simulation.

Fig. 5. Load–pull delivered power contours in the class AB �� � ��� A�
single-tone simulation.

TABLE IV
PG AT SMALL INPUT LEVELS, OPTIMUM LOAD

AND SOURCE IMPEDANCE VALUES

previous expression [10] gives a source impedance located on

a cycle that is about 0.7 dB from . Similarly, the load

impedance is calculated with more accuracy when the new ex-

pression is used: whereas the impedance calculated using [10] is

located on the cycle that is 0.5 dB from the optimal impedance

, the new expression gives an impedance located closer

than the optimal value (about 0.05 dB). It is noticed that the

imaginary value of the matching impedances is improved com-

pared to previous expressions in [10]. This is due to the fact

that additional circuit elements are purely capacitive and induc-

tive. When these elements are not considered in the calculation

of matching impedances (expressions from [10]), the imaginary

parts are overestimated, creating a mismatch between source/

load and input/output, respectively, and leading to a lower PG

and 1-dB compression point.

Table IV shows that the PG calculated using expressions from

[10] and the present work lead to the same value because the

additional parameters , , , and have no influence.

When matching impedances from [10] are considered, however,

the simulated PG is 1.4 dB lower than the calculated gain. On

the other hand, when matching impedances from the new ex-

pressions in the current work are used, the calculated value of

PG is close to the simulated one, about 0.116 dB lower. Fi-

nally, when impedances obtained via source/load–pull simula-

tions are considered, the simulated PG is about 0.186 dB higher

than the calculated value. The 1-dB compression point

also differs depending on the matching impedances: the

obtained with the new analytical expressions is very close to

the one obtained with HB (4.03 and 3.96 W, respectively). On

the other hand, obtained with expressions from [10] is

largely lower than the expected performance of the device (only

2.42 W), leading to worse linearity.

These new expressions are even more relevant for GaN

HEMTs.

III. ANALYSIS OF POWER PERFORMANCE

A. PG

As pointed out in Section II, , , , , and

have no significant influence on PG. For this reason, only the

influence of , , , , and are evaluated. The

calculated PG using parameters from Table III confirms that

LDMOS presents better performance: calculated gain is equal

to 22.144 dB for the LDMOS against 13.469 and 14.229 dB for

and , respectively (an average difference of 8.3 dB

between the two structures). However, when the value of

in both VDMOSs is reduced to the corresponding value in

LDMOS, the PG of the LDMOS is not attained, indicating a

nonnegligible role of other parasitic parameters.

1) Role of a Single Parameter: Fig. 6 and Table V reveal

that, among both vertical devices, different parameters cause

the more important losses of PG—not necessarily the source

inductance alone.

The gate-to-drain capacitance and the gate-to-source capaci-

tance constitute the main cause of loss of PG, respectively, for

and . In case of , when is increased, the

current through rises, leading to a reduction of the output

power, and thus, the PG. In case of , the Miller effect in-

duces the same phenomenon: the impedance , in parallel

with the gate-to-source capacitance, appears at the input of the

current generator. When the value of is increased, the par-

allel association also rises, increasing the current

through .

Following and , the source inductance is, in both

cases, the second most important parameter that affects the PG.

Finally, resistive losses due to the higher gate resistance of

the VDMOS seem the least important.

Authorized licensed use limited to: Sheffield University. Downloaded on December 1, 2009 at 07:13 from IEEE Xplore.  Restrictions apply. 
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Fig. 6. Evolution of the PG of vertical devices. Each parameter is gradually set
to the corresponding value in the LD. On the �-axis, LD and VD correspond to
the parameter values in LDMOS and VDMOS, respectively, with delta defined
as �� �� �����. � , � , � , � , and � have no influence on PG.

TABLE V
GAIN OF PG WITH RESPECT TO PARASITIC PARAMETERS

TABLE VI
PERCENTAGE OF LDMOS’ PG REACHED WHEN TWO

AND THREE PARAMETERS ARE OPTIMIZED

This clearly demonstrates that the lower PG of vertical de-

vices, usually attributed to the higher value of source induc-

tance, is not necessarily correct. Since the loss in PG is due to

the leakage current through the source, and must also

be considered as elements of great importance to explain lower

performance of the VDMOS. Beyond this, each vertical device

must be individually considered in order to identify the param-

eter that causes the highest loss of PG for its optimization.

2) Influence of Many Parameters: When all parasitic param-

eters of the vertical devices, except the transconductance and

the load line resistance , are reduced to the corresponding

LDMOS values, the calculated PG of the VDMOS structure is

higher than that of the LDMOS. This is due to the higher values

of and , which tend to increase the value of the PG of

the VDMOS.

Matching impedances and PG are next recalculated when two

and three parameters are optimized simultaneously. These re-

sults are summarized in Table VI.

Fig. 7. Percentage of LDMOSFET PG reached as a function of the value of
� .

With two parameters simultaneously modified, a higher PG

(about 93% of LDMOS for both devices) is attained with and

and and . On the other hand, a lower

PG is attained when and

are optimized. This is expected since the braces and

have great influence in the loss of PG for, respectively,

the first and second vertical devices (Table V).

The PG of LDMOS can be attained with the optimization of

three parameters only (Table VI). This is due to the higher values

of the transconductance and the load line resistance in the case

of both vertical devices.

3) Influence of Transconductance: Apart from parasitic pa-

rameters, higher PG can be achieved via transconductance .

An assessment of the maximum PG attainable is given as the

limit of (16) as the value of approaches infinity

(25)

(26)

Equations (25) and (26) correspond, respectively, to linear

and logarithmic scales. Using values of parasitic parameters

from Table III, this limit gives about 18 dB in the case of

and 24 dB in the case of . This means that, depending on the

considered device, the PG of LDMOS is either not reached or

is attained and even exceeded (in the case of , the LDMOS

PG is attained from S) with only the optimization of

. The increase of also implies the increase of the output

power and the 1-dB compression point. Fig. 7 shows the evolu-

tion of PG with respect to for the considered devices.

4) Influence of Load-Line Resistance : The load-line

resistance presented to the current generator is usually higher

in the case of vertical structures than lateral ones [13]. When

the values of in the VDMOS are set to the corresponding

one in the LDMOS, the PG is depreciated (a decrease of about

1.5 dB is observed). This indicates that the higher value of

together with transconductance can maintain the PG of the ver-

tical device at a reasonable level compared to the LDMOS.

Authorized licensed use limited to: Sheffield University. Downloaded on December 1, 2009 at 07:13 from IEEE Xplore.  Restrictions apply. 
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TABLE VII
PG AT SMALL INPUT LEVELS, OPTIMUM LOAD AND SOURCE IMPEDANCE

VALUES WHEN DEVICES ARE OPERATED AT 32 V

A possibility to improve the PG is, therefore, to increase

again by operating the transistor at higher drain quiescent

voltage .

is defined as [12]

(27)

where is the conduction angle.

If increases, the maximum voltage swing is in-

creased as the knee voltage remains constant. The max-

imum current swing also remains constant so the load-line

resistance value increases. From (9), it can be demonstrated that

an increase of leads to an increase of the PG.

The two vertical devices are now operated at 32 V, instead of

28 V previously. The drain–source breakdown voltage of these

devices (65 V for both devices) allows such an operation, though

at a price of reducing the margin for reliability. Table VII sum-

marizes results of new simulations. In both cases, the PG and

the 1-dB compression point are improved. This is particularly

true in the case of , where a 2-dB higher PG and an im-

provement of the (about 0.5 W) are observed.

This demonstrates that when drain–source breakdown

voltage allows it, another alternative, without any optimization

of parasitic parameters, is to present a higher load-line resis-

tance to the current generator by increasing the drain bias.

B. Efficiency

In Section III-A.4, the role of parasitic parameters, optimal

load–line resistance, and transconductance in the loss of PG

have been determined. However, efficiency and power-added

efficiency (PAE) are also important characteristics in certain ap-

plications of amplification. Table II shows such characteristics

in the case of the three considered devices and confirms the

better performance of the lateral structure [1], [2]. In this com-

parison, the devices are biased so that they deliver the same drain

current .

Efficiency and PAE are calculated using the well-known for-

mulas [13]

(28)

(29)

1) Influence of Parasitic Parameters: Similar to

Section III-B, the role of each parasitic parameter is observed.

, , , , and are now considered as they may

Fig. 8. Evolution of PAE when the value of each parasitic parameter in
VDMOS is increased up to the one in LDMOS.

significantly influence the input power, and thus, the PAE. The

obtained results are summarized in Fig. 8.

The resistive losses due to the gate resistance have the most

important impact on the PAE; an enhancement of about 5% is

observed when the value of is reduced to the corresponding

value in . and also play an important role. The other

parameters have very negligible influence on the PAE.

The lower efficiency of the compared to the lateral de-

vice is mainly due to its higher gate-to-source capacitance rather

than it higher gate resistance. The resistive losses of re-

mains, however, an important parameter for the PAE. On the

other hand, tends to maintain the level of the PAE: a depre-

ciation of the PAE is observed when the value is reduced to the

value of in the lateral device. The other parameters have a

negligible influence on efficiency.

2) Influence of Load-Line Resistance: When a higher load-

line resistance is imposed to the current generator, the PA ex-

hibits a higher output power [see (22)]. Indeed, the higher load

line resistance in the case of the VDMOS allows greater voltage

swing (since is lower than in the case of the LDMOS)

while the current swing remains similar to the LDMOS, leading

to a higher output power.

The drain efficiency is directly related to the output power,

and the PAE to the PG (see (22) and (23), respectively): at a

given dc power, the drain efficiency increases with output power

and the PAE with PG.

This demonstrates that the higher value of load-line resistance

tends to maintain the level of the efficiency of vertical devices

against the lateral counterpart. An easy way to improve the effi-

ciency of the PA is to increase of the drain bias voltage, provided

the device can sustain any possible surges of power during op-

eration.

IV. STABILITY

The stability of a device is quantified through the factor

[14]. A convenient formula is given in [15] by

(30)

where .

Authorized licensed use limited to: Sheffield University. Downloaded on December 1, 2009 at 07:13 from IEEE Xplore.  Restrictions apply. 
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Fig. 9. ��� and stability factors plotted for the three devices from 100 MHz to
2 GHz. Bold line: ��; dashed line: � � ; and line: �� .

The amplifier is unconditionally stable when is higher than

1 and is lower than unity. If is ranged between 1 and

1, the amplifier is then said to be potentially stable.

Fig. 9 shows the and factors for the three devices be-

tween 100 MHz–2 GHz. As demonstrated by Leong [2], the

vertical device is potentially unstable at low frequencies only

(below 400 and 600 MHz for and , respectively),

whereas the instability band extends at higher frequencies (up

to 1.21 GHz) in the case of the LDMOS. The bands of uncon-

ditional stability are 0.4–1.2 GHz for , 0.6–1.01 GHz for

, and 1.21–2 GHz for the lateral device. The potential in-

stability outside these bands can cause a design challenge.

1) Influence of Parasitic Parameters: Fig. 10 shows the sta-

bility factor plotted when values of parasitic parameters in the

LDMOS are optimized. The stability factor is not affected by

, , , and .

Only the lower value of in the LDMOS contributes to

maintain the unconditional stability at low frequencies: the de-

vice indeed becomes potentially unstable over the entire range

of frequencies when is set to the corresponding values from

and [see Fig. 10(d)].

Indeed, using the Miller transformation, the gate-to-drain ca-

pacitance is equivalent to the impedance

(31)

where .

is in parallel with the source inductance. Thus, when the

value of is decreased, the value of increases and the

parallel association , which connect the source of the

device to the ground, increases, improving the stability in the

low-frequency region [16].

The other parameters are thus responsible for the poor sta-

bility of the lateral device below 1.25 GHz. When the gate re-

sistance is increased, an offset is applied to the stability factor

over the entire range of frequency, leading to a wider band of

unconditional stability around the same center frequency [see

Fig. 10(a)].

Fig. 10. Influence of each parasitic parameter in the stability factor from
100 MHz to 2 GHz. Bold line: initial LDMOS; dashed line: parameter set to
the one in the � � ; line: the parasitic parameter is set to the corresponding
one in � .

Fig. 11. Influence of the drain bias voltage on the scattering parameters. Bold
line: � � �� V; line: � � �� V.

The decrease of and tends to shift the band of stability

towards lower frequencies, but the resulting bandwidth is nar-

rower [see Fig. 10(c) and (e)]. Finally, when is increased up

to VDMOS’ values, the band of unconditional stability is largely

shifted towards lower frequencies (around 0.5 and 0.8 GHz).

However, a negative offset is applied to the range of frequen-

cies, making the stability bandwidth narrower.

The band of unconditional stability for the LDMOS is nar-

rower and at higher frequency, mainly due to the combined ac-

tion of the low gate resistance that controls the bandwidth and

the source inductance that controls the center frequency of the

stability band. As underlined by Leong [2], a resistive loading

of the gate can thus be used to overcome instability.

2) Influence of Load-Line Resistance: Fig. 11 shows the

-parameters of the lateral device when the drain of the device

Authorized licensed use limited to: Sheffield University. Downloaded on December 1, 2009 at 07:13 from IEEE Xplore.  Restrictions apply. 
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Fig. 12. Basic lumped elements low-pass matching network. The value of load-
line resistance � at plane “A” can be dramatically reduced by the value of
the output capacitance.

TABLE VIII
VALUES OF LOAD-LINE RESISTANCES, OUTPUT CAPACITANCES AND

TRANSFORMED REAL COMPONENTS OF THE THREE CONSIDERED DEVICES

is biased at 28 and 32 V. It is noticed that the difference

between -parametes is very small, the stability factor can be

assumed equal between these two drain bias conditions. An

enhancement of the load-line resistance, when the drain bias

is slightly increased from 28 to 32 V, has no influence on the

stability factor and can thus be considered when improving PG

and efficiency (Section III).

V. OUTPUT MATCHING

As pointed out by Cripps [13], the unmatchability of RF tran-

sistors for power applications is not only due to the load-line re-

sistance , but also to the output capacitance . Indeed, the

real part of the load-line resistance can be dramatically reduced

by the drain-to-source capacitance. At plane “A” (cf. Fig. 12),

the real part of the impedance is

(32)

Equation (32) reveals that the higher the value of output ca-

pacitance; the lower is the transformed real component at plane

“A” . Values of the real part of impedance seen at

plane “A” are calculated and summarized in Table VIII. The

load line resistances are considered for the previous class AB

operation.

Despite the fact that the vertical structure presents a higher

load line resistance (about 65 and 40 for and , re-

spectively, against 30 for the LD), the higher value of output

capacitance (6 and 9 pF for and against only

2.75 pF for the lateral structure) reduces dramatically,

making the vertical devices the least convenient structure for

output matching.

VI. CONCLUSION

In this paper, new analytical expressions derived from a

ten-elements model are developed for calculation of optimum

matching impedances and associated PG. The inclusion of the

drain and gate inductances shows significant improvement in

the determination of optimal matching impedances and

, as ascertained via HB simulations Using these expres-

sions, a comparison of the RF performance between lateral and

vertical DMOS has been performed. The role of each parasitic

parameter has been identified to explain differences in RF

performance. This study confirms the superiority of the lateral

structure in terms of PG, efficiency, and output matching. It

is confirmed that the latter is due to the lower value of output

capacitance of the lateral device. However, this work re-

veals that the lower performance of the vertical device in terms

of PG and efficiency are not necessarily due to any one ele-

ment; the importance of parasitic parameters depends on each

device technology individually. The most prominent of these

are and to explain the loss of PG and

and to explain the poor efficiency. The

lateral structure suffers from worse performance of stability,

mainly due to the lower value of and . Such knowledge

of the quantitative role of each parasitic parameter is useful for

design optimization of silicon MOSFETs technology used in

RF applications. Given that process and device simulators yield

little information about the RF performance of a device, this

paper has described a methodology to achieve this challenge at

low cost.
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