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Ramsey without Ethical Neutrality: A New Representation 

Theorem1 

EDWARD ELLIOTT 

RSSS, Australian National University 

edward.elliott@anu.edu.au 

 

Frank Ramsey’s ‘Truth and Probability’ sketches a proposal for the empirical measurement of 

credences, along with a corresponding set of axioms for a (somewhat incomplete) 

representation theorem intended to characterize the preference conditions under which this 

measurement process is applicable. There are several features of Ramsey’s formal system 
which make it attractive and worth developing. However, in specifying his measurement 

process and his axioms, Ramsey introduces the notion of an ethically neutral proposition, the 

assumed existence of which plays a key role throughout Ramsey’s system. A number of later 

representation theorems have also appealed to ethically neutral propositions. The notion of 

ethical neutrality has often been called into question—in fact, there seem to be good reasons 

to suppose that no ethically neutral propositions exist. In this paper, I present several new, 

Ramsey-inspired representation theorems that avoid any appeal to ethical neutrality. These 

theorems preserve the benefits of Ramsey’s system, without paying the  cost of ethical 

neutrality. 

 

1. Introduction 

In his posthumously published ‘Truth and Probability’, Frank Ramsey (1931b) 
sketches a proposal for the empirical measurement of credences, along with a 

corresponding set of axioms for a (somewhat incomplete) representation theorem 

intended to characterize the preference conditions under which this measurement 

process is applicable. Ramsey’s formal approach is distinctive, deriving first a utility 
function to represent an agent’s utilities, and then using this to construct their 

credence function. In specifying his measurement process and his axioms, Ramsey 

introduces the notion of an ethically neutral proposition, the assumed existence of 

which plays a key role throughout Ramsey’s system. 
The existence of such propositions has often been called into question. Ramsey’s 

own definition of ethical neutrality presupposes the philosophically suspect theory of 

logical atomism. On other common ways of defining the notion, it is frequently noted 

that we lack good reasons for supposing that ethically neutral propositions exist, and 

in some cases we find that there are very good reasons for supposing that they cannot 

exist. Any system which relies on the existence of such propositions ought to be 

rejected. 

However, we can have a representation theorem which is essentially Ramseyian in 

character that does not succumb to these objections. In section 4, I will develop 

several new representation theorems closely inspired by Ramsey’s own which avoid 

appeal to ethically neutral propositions in any problematic sense, substantially 

improving upon Ramsey’s proposal. In section 5, I will note several features that the 

new theorems share with Ramsey’s system which make them independently 

 
1 This is a later draft of a paper now fully accepted for publication in Mind (DOI: 10.1093/mind/ 

fzv180); details on the final version will be provided here when they become available. 
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attractive, especially in comparison to later works such as Savage 1954 and Jeffrey 

1983. First, however, I will discuss Ramsey’s original proposal in some detail (Sect. 

2), which will help us see why Ramsey thought he needed to introduce the notion of 

ethical neutrality, why it is problematic, and how those problems can be circumvented 

(Sect. 3). 

 

2. Ramsey’s proposal 

2.1 Background 

One of Ramsey’s main goals in ‘Truth and Probability’ was to argue that the laws of 

probability supply for us the ‘logic of partial belief’ (1931b, p. 166). His argument 

proceeds by first attempting to say what credences are, and on the basis of that 

understanding, showing that they conform to the laws of probability. 

Regarding the first step, of defining credences, Ramsey clearly had operationalist 

sympathies, asserting that the notion ‘has no precise meaning unless we specify more 

exactly how it is to be measured’ (1931b, p. 167). To be measured as having 

probabilistically coherent credences is (more or less) on this picture to have 

probabilistically coherent credences, and anyone who can be measured through 

Ramsey’s procedure at all will have credences conforming to the laws of probability.2 

Note that the procedure was intended to be applicable to ordinary agents—Ramsey 

was not trying to define degrees of belief for some ideally rational being, but for the 

everyday person on the street (albeit not without some unavoidable idealization). 

With this goal in mind, Ramsey proposes to take as the theoretical basis of his 

measurement system a particular theory of decision making—that is, the theory that 

‘we act in the way that we think most likely to realize the objects of our desires, so 

that a person’s actions are completely determined by his desires and opinions’ 
(1931b, p. 173). His idea is to assume the basic truth of something like subjective 

expected utility theory, and on that assumption, use empirical information about an 

agent’s preferences to work out what her credences and utilities must be. Ramsey was 

entirely aware of the empirical difficulties that this theory faces, writing that 

 

[it] is now universally discarded, but nevertheless comes, I think, fairly close to the 

truth in the sort of cases with which we are most concerned … This theory cannot 
be made adequate to all the facts, but it seems to me a useful approximation to the 

truth particularly in the case of our self-conscious or professional life, and it is 

presupposed in a great deal of our thought. (1931b, p. 173) 

 
2 Setting operationalism aside, it is easy to see in ‘Truth and Probability’ an early statement of 

something like functionalism: degrees of belief are to be understood through their causal role with 

respect to behaviour when considered in conjunction with a total desire state. Ramsey writes that ‘the 
degree of a belief is a causal property of it, which we can express vaguely as the extent to which we are 

prepared to act on it’ (1931b, p. 169). Ramsey argues against characterizing degrees of belief in terms 

of some introspectively accessible feeling had by a subject upon considering the relevant proposition. 

These arguments go well beyond operationalism, though I will not recapitulate them here. He 

concludes that ‘intensities of belief-feelings … are no doubt interesting, but … their practical interest is 
entirely due to their position as the hypothetical causes of beliefs qua bases of action’ (1931b, p. 172). 

On this more charitable interpretation, Ramsey’s representation theorem can be seen as spelling out 
precisely the relevant causal roles associated with credence states. 
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We will return shortly to exactly what Ramsey meant by ‘the sort of cases with which 

we are most concerned’, and exactly what he needed to assume to get his 

measurement process off the ground. 

At several points Ramsey notes that a similar kind of reasoning is used frequently 

by physicists and other hard scientists in the development of systems for the 

measurement of non-psychological quantities. Measurement systems are never 

developed in a theoretical vacuum; the actual data we receive is always interpreted 

through the lens of some presupposed theory or another—and quite frequently, as 

Ramsey notes, such a theory might ‘like Newtonian mechanics … still be profitably 
used even though it is known to be false’ (1931b, p. 173), so long as it is accurate for 

the cases at hand. Indeed, at several points Ramsey notes that measurement ‘cannot 

be accomplished without introducing a certain amount of hypothesis or fiction … if it 
is allowable in physics it is allowable in psychology also’ (1931b, p. 168; cf. Krantz 

et al 1971, pp. 26–31 on the role of idealizing assumptions in the construction of 

measurement systems). For Ramsey, this hypothesis or fiction is that ordinary folk 

are more or less expected utility maximizers, at least in the right circumstances. 

With this in mind, we can summarize Ramsey’s measurement procedure as 

follows: 

 

(a) Determine an agent’s preferences over outcomes and gambles; 
(b) Define a relation of equal difference in utilities; 

(c) Locate ethically neutral propositions of probability ½; 

(d) Construct an interval scale representation of the agent’s preferences; 

(e) Use that representation to define a probability function, which is taken to 

represent the agent’s credences. 
 

I will discuss each step in turn. For the sake of simplicity, I have neglected to discuss 

one important aspect of Ramsey’s procedure—viz., the use of preferences over 

complex gambles to define conditional probabilities, which are used to show that the 

measured credences constitute a probability function. (This part of Ramsey’s 
procedure is outlined in Bradley 2001.) It is also worth emphasizing that much of 

what follows is a rational reconstruction—Ramsey’s own remarks are sketchy at best, 

and he rarely explains the motivations for any of the steps he makes. 

 

2.2 Determining a preference ordering 

The first stage of Ramsey’s procedure is to determine the agent’s preferences. We 

begin with the agent’s preferences over what I will call outcomes. This is, according 

to Ramsey, relatively straightforward: 

 

If … we had the power of the Almighty, and could persuade our subject of our 
power, we could, by offering him options, discover how he placed in order of merit 

all possible courses of the world. In this way all possible worlds would be put in an 

order of value … (1931b, p. 176) 
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Ramsey here makes it clear that he takes outcomes to be ‘different possible totalities 

of events … the ultimate organic unities’ (1931b, pp. 177–8); that is, possible worlds. 

It is unclear here exactly what Ramsey intended by ‘possible worlds’. For instance, it 
is unclear whether we are considering metaphysically or conceptually possible 

worlds, and whether we are only interested in worlds consistent with history up to the 

event of the choice. 

In any case, we will designate the set of outcomes with W = {w1, w2, … }. 

Importantly within only a few paragraphs of referring to the outcomes as worlds, 

Ramsey goes on to note that with respect to at least one proposition P, and some 

outcomes w1 and w2, ‘[w1] and [w2] must be supposed so far undefined as to be 

compatible with both P and ¬P’ (1931b, p. 178, Fn. 1). The most natural 

interpretation of this seems to be w1 and w2 ought to be considered not quite as 

worlds, but rather as propositions maximally specific with respect to everything 

except P. (See Sect. 3.1 for further discussion.) Generalizing, we can take Ramsey’s 
outcome space W to be a set of very highly specific propositions, some—but not all—
of which may be maximally specific. We will say that w1 ≻ w2 just in case the agent 

prefers w1 to w2; w1 ∼ w2 just in case the agent is indifferent between the two options. 

The first task in Ramsey’s measurement procedure is then to determine a preference 

ordering over W. 

We are required also to empirically determine how the agent ranks gambles. Once 

again, Ramsey asks us to imagine that we have convinced our subject of our power, 

but this time we make offers of the following kind: ‘Would you rather have world 
[w3] in any event, or world [w1] if P is true, and world [w2] if P is false?’ (1931b, p. 

177). Let us represent the latter option, the gamble w1 if P is true, and w2 if P is false, 

as simply (w1, P; w2).
3 With his background assumption in mind, Ramsey then notes 

that: 

 

If … [the agent] were certain that P was true, he would simply compare [w1] and 

[w3] and choose between them as if no conditions were attached; but if he were 

doubtful his choice would not be decided so simply. (1931b, p. 177) 

 

Here, Ramsey looks to compare an outcome with a gamble, so we are to assume that 

gambles and outcomes are comparable. It is also evident from the axioms he later 

provides that we need to consider agents’ preferences between gambles. In sum, if G 

is the set of all gambles, then Ramsey requires us to empirically determine a ≽-

ordering on W ∪ G. 

There are a number of interpretive difficulties with Ramsey’s proposed system that 
might be raised at this point. For one thing, it is unclear how outcomes as highly 

 
3 It is unclear exactly how we ought to understand Ramsey’s gambles. For reasons outlined in 

Joyce 1999 (pp. 62–3), ‘w1 if P is true, and world w2 if P is false’ should not be understood using 
material conditionals. It is not obvious whether either subjunctive or indicative conditionals would fare 

any better; though Sobel (1998, p. 239) suggests that (w1, P; w2) is just a conjunction of subjunctives, 

(P □→ w1) & (¬P □→ w2). Part of the exegetical difficulty here is due to Ramsey’s lack of specificity 
regarding the nature of the outcome set, and to the interpretive difficulties present in Ramsey’s 
proposed system discussed shortly below. 
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specific as Ramsey suggests can be ‘offered’ to any ordinary human subject; the 

power to conceptualize even one possible world in all its detail seems beyond the 

average person. Perhaps one might chalk this up as a harmless idealization, of the 

kind frequently appealed to in many measurement systems. Somewhat more 

worrying, however, is that convincing a subject that ‘we had the power of the 
Almighty’ would surely drastically alter her doxastic state prior to measuring it, as 

Jeffrey (1983, pp. 158–60) has noted. Likewise, when a subject is offered the choice 

of either w3 or (w1, P; w2), we must not suppose that her credence in P is in any way 

changed by the offer or this would ruin the measurement. 

Interestingly, Ramsey himself objects to another proposed bet-based measurement 

system on the grounds that ‘the proposal of the bet may inevitably alter [the subject’s] 
state of opinion’ (1931b, p. 172). Either Ramsey did not recognize that the same 

objection applies with greater force to his own account, or he believed that the worry 

could be addressed. Bradley (2001, pp. 285–8) suggests one way in which it might be 

addressed: rather than making the subject believe in our godlike powers, we simply 

ask her to choose amongst options as if they were genuinely available to her (with 

perhaps the added proviso that she ought not change her credences in any relevant 

propositions). To the extent that such a request can be satisfied, this re-construal of 

Ramsey’s methodology may help to minimize any changes to subjects’ credences 

prior to measurement. 

In any case, we can now say precisely what Ramsey meant when he referred to the 

accuracy of expected utility theory in ‘the sort of cases with which we are most 

concerned’. We are to limit our attention to conscious, deliberate and presumably 

reflective judgements of preference between worlds and worlds, gambles and 

gambles, and worlds and gambles. Plausibly, Ramsey would have also held that we 

are not to consider cases where the subject is intoxicated, or under any kind of 

substantial physical or emotional duress. Ramsey does not need to assume anything 

as strong as the truth of subjective expected utility theory tout court, nor even its 

approximate truth across a wide range of cases—he only needs that it is accurate in 

this particular kind of case. It would not be misleading, therefore, to interpret 

Ramsey’s use of ≻ as, roughly: α ≻ β relative to an agent S just in case S prefers α to 
β after consciously deliberating on the matter, while neither under physical or 

emotional distress, nor under the influence of any intoxicating substances. On this 

interpretation, Ramsey’s assertion that expected utility theory is broadly accurate in 

‘the sort of cases with which we are most concerned’ is essentially the claim that an 

ordinary agent’s reflective preference ordering over worlds and gambles is what we 

would expect of an expected utility maximizer. Put like this, Ramsey’s assumption 

appears quite plausible.  

 

2.3 Defining an equal difference relation  

Ramsey’s first step has us empirically determine how the agent ranks outcomes and 

gambles. However, a simple preference ordering on outcomes and gambles only 

suffices for an ordinal scale representation of an agent’s utilities. For Ramsey, this is 

unsatisfactory: ‘There would be no meaning in the assertion that the difference in 

value between [w1] and [w2] was equal to that between [w3] and [w4]’ (1931b, p. 176). 

We usually suppose that it is meaningful to say such things as ‘I desire α much more 
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than β; more so than α over γ’ and ‘I prefer α over β to the same extent that I prefer γ 
over δ’. A merely ordinal representation is unable to capture this information, 

representing as it does only the relative positions of outcomes in the preference order. 

Thus Ramsey sets himself the task of characterizing an equal difference (in utilities) 

relation between pairs of outcomes wholly in terms of preferences over gambles. If he 

can do this, then on the basis of well-known results from the mathematical theory of 

measurement, he can construct a richer representation of our utilities. 

Let us say that (w1, w2) =
d (w3, w4) holds just in case the difference in value for the 

agent between w1 and w2 is equal to the difference in value between w3 and w4. 

Ramsey’s goal of defining =d in terms of preferences over gambles then sets up a 

certain difficulty to be overcome. According to the assumed background theory, an 

agent’s preferences over gambles are determined by two factors: their utilities and 

their credences. Whether an agent prefers (w1, P; w2) to (w3, Q; w4), for example, 

depends partly on the utilities that she attaches to the outcomes w1, w2, w3, w4, and 

partly on the credences she has with respect to P and Q. However, whether (w1, w2) 

=d (w3, w4) holds for that agent should depend solely on the utilities she attaches to 

w1, w2, w3, w4. In order to define =d in terms of preferences over gambles, then, 

Ramsey needs some way of factoring out any confounding influences, so that whether 

the agent prefers one of the relevant gambles to another depends only on the utilities 

attached to the outcomes involved. 

Ramsey’s central innovation here is to define, in terms of preference, what it is for 
a proposition to have probability ½, and then to use this to define =d. Let us suppose 

for simplicity that whether an agent prefers (w1, P; w2) to (w3, Q; w4) depends only on 

the utilities the agent has for w1, w2, w3, w4, and the credences she has for P and Q. 

More specifically, assume the following: 

 

Naïve Expected Utility Theory 

If des is a real-valued interval scale that measures the agent’s utilities for outcomes 
(i.e. des(w1) ≥ des(w2) if and only if w1 ≽ w2), and bel is a probability function that 

represents the agent’s credences, then (w1, P; w2) ≽ (w3, Q; w4) if and only if 

des(w1).bel(P) + des(w2).(1 – bel(P)) ≥ des(w3).bel(Q) + des(w4).(1 – bel(Q)). 

 

We will note shortly that Ramsey did not assume naïve expected utility theory; but 

for now it suffices to explain the reasoning behind his definitions. 

Suppose that the agent is indifferent between the following two gambles: (w1, P; 

w2) and (w2, P; w1). According to naïve expected utility theory, there are only two 

(not mutually exclusive) ways in which this might come about: either w1 and w2 have 

exactly the same utility for the agent, or the agent’s credence in P is exactly 0.5. To 

rule out the former possibility, we consider a pair of gambles (w3, P; w4) and (w4, P; 

w3), where we know that the agent is not indifferent between w3 and w4. If we find 

that the agent is indifferent between (w3, P; w4) and (w4, P; w3), we will have 

established that bel(P) = 0.5. If the probability of P were any other way, then the 

agent would have not been indifferent between (w3, P; w4) and (w4, P; w3). For 

instance, if w3 ≻ w4 and bel(P) > 0.5, then any minimally rational agent would prefer 

(w3, P; w4) to (w4, P; w3). 
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With this in place, we are then able to say that (w1, w2) =
d (w3, w4) holds just in 

case (w1, P; w4) ∼ (w2, P; w3), where P has probability ½. The reasoning behind this 

is not immediately obvious, but goes as follows: from the assumption of naïve 

expected utility theory, we have that (w1, P; w4) ∼ (w2, P; w3) holds if and only if 

 

des(w1).bel(P) + des(w4).(1 – bel(P)) = des(w2).bel(P) + des(w3).(1 – bel(P)) 

 

We have also already established that bel(P) = 0.5 = 1 – bel(P), so we can drop the 

constant factor leaving us with 

 

des(w1) + des(w4) = des(w2) + des(w3) 

 

which holds just in case 

 

des(w1) – des(w2) = des(w3) – des(w4) 

 

This just states that the difference between w1 and w2 is equal to the difference 

between w3 and w4; so if bel(P) = 0.5, then (w1, P; w4) ∼ (w2, P; w3) if and only if (w1, 

w2) =d (w3, w4). Given naïve expected utility theory, by appealing to probability ½ 

propositions, we are able to use preferences to define an equal difference relation that 

depends solely on the differences in utility of the outcomes. 

 

2.4 Locating ethically neutral propositions of probability ½  

Before moving on to measuring utilities, however, Ramsey makes the following note: 

 

There is first a difficulty which must be dealt with; the propositions like P … 
which are used as conditions in the [gambles] offered may be such that their truth 

or falsity is an object of desire to the subject. This will be found to complicate the 

problem, and we have to assume that there are propositions for which this is not the 

case, which we shall call ethically neutral. (1931b, p. 177) 

 

This is the entirety of what Ramsey writes regarding his motivation for introducing 

ethically neutral propositions. 

The idea is clear enough: naïve expected utility theory is mistaken, as it fails to 

take into account the utility that may attach to the gamble’s condition, and how the 

condition might influence the valuation of outcomes. Assuming that w1 is consistent 

with both P and ¬P, it is possible that an agent might attach a different value to (w1 & 

P) than to (w1 & ¬P). These are potentially quite different states of affairs with 

potentially different utilities, and the truth or falsity of P might make a great deal of 

difference to how the outcome w1 is valued. As a rough example, suppose that in w1 

the agent has a puppy as a pet, while in w2 she instead keeps a kitten, and let P be 

puppies spread disease but kittens do not; plausibly, (w1 & P) will be valued quite 

differently than (w1 & ¬P), and likewise for (w2 & P) and (w2 & ¬P). 
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Instead of naïve expected utility theory, and supposing w1, w2, w3, and w4 are each 

compatible with the relevant propositions, we should really have that 

 

(w1, P; w2) ≽ (w3, Q; w4) 

 

if and only if 

 

des(w1 & P).bel(P) + des(w2 & ¬P).(1 – bel(P)) ≥ des(w3 & Q).bel(P) + des(w4 & 

¬Q).(1 – bel(Q)) 

 

It is easy to see that this fact invalidates the reasoning behind both the definition of a 

½ probability proposition and the definition of =d, for now we can no longer say that 

the agent’s preferences between (w1, P; w2) and (w3, Q; w4) depend on their credences 

in P and Q and the utilities the agent has for w1, w2, w3, w4. Rather, they actually 

depend on the agent’s credences in P and Q and their utilities for (w1 & P), (w2 & 

¬P), (w3 & Q), and (w4 & ¬Q). 

Ramsey’s solution to this difficulty is the ethically neutral proposition—a kind of 

proposition the truth or falsity of which is of absolutely no concern to the agent. 

Ramsey provides us with a problematic definition of the notion, which I will discuss 

further in section 3.2. The apparent purpose of the notion, however, is that if P is 

ethically neutral, then the conjunction of P with an outcome has the same utility as 

the outcome itself, and similarly for the conjunction of ¬P and the outcome. Setting 

aside Ramsey’s own definition, we can say that P is ethically neutral whenever w ∼ 

(w & P) ∼ (w & ¬P), for any outcome w ∈ W that is compatible with both P and ¬P.4 

It is clear what the upshot of introducing ethically neutral propositions is supposed 

to be: so long as we are considering gambles conditional on ethically neutral 

propositions, we can without risk of error apply naïve expected utility theory. Thus 

Ramsey (1931b, pp. 177–8) happens upon the following two definitions: 

 

Definition 1: Ethically neutral proposition of probability ½  

P is an ethically neutral proposition of probability ½ if and only if P is ethically 

neutral, and for some w1, w2 ∈ W, ¬(w1 ∼ w2), and (w1, P; w2) ∼ (w2, P; w1)
5 

 

And: 

 

Definition 2: Equal difference relation 

(w1, w2) =
d (w3, w4) if and only if (w1, P; w4) ∼ (w2, P; w3), where P is an ethically 

neutral proposition of probability ½ 

 
4 If there are no outcomes compatible with both P and ¬P, then P is trivially ethically neutral by 

this definition. Ramsey likely would have required non-trivially ethically neutral propositions, though 

the issues here are complex. See Sect. 3.1 and Sect. 4.3 below for discussion relating to this issue. 
5 Ramsey states that ‘We assume by an axiom that if this is true of any one pair [w1], [w2], it is true 

of all such pairs’ (1931b, pp. 177–8). This axiom is never actually listed, and it does not seem to 

follow from any of RAM 1–8 either separately or in conjunction. 
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2.5 Measuring utilities 

At this point (1931b, pp. 178–9), Ramsey lists eight axioms, and states (but does not 

prove) that their satisfaction enables an appropriately rich representation of the 

agent’s preferences. That is: 

 

Ramsey’s representation conjecture 

If RAM 1–8 hold, then there exists a real-valued function des on W such that for 

all w1, w2, w3, w4 ∈ W, des(w1) – des(w2) = des(w3) – des(w4) if and only if (w1, w2) 

=d (w3, w4); furthermore, des is unique up to positive linear transformation 

 

We will not consider whether Ramsey’s axioms successfully ensure the desired 
representation result, or how they might be fleshed out to do so if not—though see 

Bradley 2001 for relevant work in this regard. It is at least clear that something in the 

vicinity of Ramsey’s axioms should suffice, however. 

I here reproduce Ramsey’s axioms, albeit with slightly improved notation. Let P 

be a set of propositions, W is the set of outcomes, and G the set of gambles. There are 

multiple options for the formalization of G. One might treat G as a set of functions 

from pairs of mutually exclusive and exhaustive propositions to W (as in Bradley 

2001, p. 273), or simply take G to be a subset of W × P × W (as I do below, Sect. 4); 

the differences between these options need not concern us here. ≻ and ∼ are defined 

on W ∪ G. The very first axiom is the most distinctive aspect of Ramsey’s theorem: 

 

RAM 1 There is at least one ethically neutral proposition of probability ½ 

 

The importance of RAM 1 for the rest of Ramsey’s formal system should not be 

understated. Most of the axioms to follow are stated in terms of =d, which is defined 

in terms of ethically neutral propositions. If RAM 1 is false, those axioms will be in 

some cases false, in others trivial; in either case, the system as a whole collapses 

without this foundational assumption.  

The next three axioms are each obviously necessary for Ramsey’s desired 

representation result: for all P, Q ∈ P, w1, w2, w3, w4, w5, w6 ∈ W, (w1, P; w2), (w3, P; 

w4) ∈ G, and α, β, γ ∈ W ∪ G, 

 

RAM 2 (i) If P, Q, are both ethically neutral propositions with probability ½, and 

(w1, P; w2) ∼ (w3, P; w4), then (w1, Q; w2) ∼ (w3, Q; w4); (ii) if (w1, w2) =
d 

(w3, w4), then w1 ≻ w2 iff w3 ≻ w4, and w1 ∼ w2 iff w3 ∼ w4 

RAM 3 α ∼ β and β ∼ γ only if α ∼ γ 

RAM 4 If (w1, w2) =
d (w3, w4) and (w3, w4) =

d (w5, w6), then (w1, w2) =
d (w5, w6) 

 

The role of RAM 2 is ensure that the definition of =d is coherent. RAM 3 simply 

states that ∼ is transitive, while RAM 4 states that =d is transitive—an obvious 
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requirement given the intended interpretation of =d. Given the definition of the equal 

difference relation above, RAM 4 is equivalent to the following: 

 

If (w1, P; w4) ∼ (w2, P; w3) and (w3, P’; w6) ∼ (w4, P’; w5), then (w1, P’’; w6) ∼ (w2, 

P’’; w5), where P, P’, and P’’ are ethically neutral propositions of probability ½ 

 

Together, RAM 2–RAM 4 help to ensure that =d, which holds between pairs of 

outcomes, mirrors the behaviour of the equals relation between the differences of 

pairs of real numbers. 

The following two existential axioms are stated in terms of what Ramsey calls 

values—essentially, ∼-equivalence classes of outcomes. Formally, 

 

Definition 3: The value of w 

For every outcome w ∈ W, let w = {w’ ∈ W: w’ ∼ w} 

 

The value of an outcome w, denoted w, is thus the set of all outcomes in W with the 

same desirability as w. Ramsey’s next two axioms are then: 
 

RAM 5 For all w1, w2, w3, there is exactly one w4 such that (w1, w4) =
d (w2, w3) 

RAM 6 For all w1, w2, there is exactly one w3 such that (w1, w3) =
d (w3, w2) 

 

RAM 5 implies that there is always at least one outcome w4 such that the difference 

between w1 and w4 is equal to the difference between w2 and w3, for any choice of 

outcomes w1, w2 and w3. In a manner of speaking, RAM 6 says that for any pair of 

worlds w1 and w2, there is a third world w3 with a utility which is exactly half-way 

between the utilities of w1 and w2. Given RAM 1 (which implies the non-triviality of ≻ on W), this entails a certain denseness to the agent’s preference structure, and 

correspondingly, that W is infinite. 

Finally, Ramsey lists two other axioms, which are not spelled out in any detail: 

 

RAM 7 ‘Axiom of continuity:—Any progression has a limit (ordinal)’ (1931b, p. 

179) 

RAM 8 Archimedean axiom 

 

What Ramsey intended for RAM 7 is something of a mystery. One guess (cf. Sobel 

1998 and Bradley 2001) would be that for every gamble (w1, P; w2), there is an 

outcome w3 such that w3 ∼ (w1, P; w2). An axiom to this effect seems to be required 

to ensure that every real number can be mapped to at least one world’s value. 
Ramsey does not specify the character of RAM 8, however it is easy to guess its 

role—like other so-called Archimedean axioms in various representation theorems, it 

is supposed to rule out any one outcome or gamble being incomparably better or 

worse than another. More specifically, RAM 8 is intended to ensure that the 

numerical representation satisfies the Archimedean property of real numbers: for any 
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positive number x, and any number y, there is an integer n such that n + x ≥ y. This 

ensures that we do not require infinite desirability values to measure the agent’s 
utilities. Were one to spell out RAM 8, it is likely that it would need to look much 

like ADS 5 of Definition 13 below. 

 

2.6 Measuring credences 

Suppose that we have our function des. Ramsey then argues that: 

 

Having thus defined a way of measuring value we can now derive a way of 

measuring belief in general. If the option of [w2] for certain is indifferent with that 

of [(w1 if P; w3)], we can define the subject’s degree of belief in P as the ratio of 

the difference between [w2] and [w3] to that between [w1] and [w3] … This amounts 

roughly to defining the degree of belief in P by the odds at which the subject would 

bet on P, the bet being conducted in terms of differences of value as defined. 

(1931b, pp. 179–80) 

 

In a footnote, Ramsey adds that ‘[w1] must include the truth of P, [w3] its falsity; P 

need no longer be ethically neutral’ (1931b, p. 179, Fn. 1). We are led to the 

following definition:  

 

Definition 4: Ramsey’s credence function 

For all contingent propositions P and outcomes w1, w2, w3 such that w1 implies P, 

w3 implies ¬P, ¬(w1 ∼ w3), and w2 ∼ (w1, P; w3), bel(P) = (des(w2) – des(w3)) / 

(des(w1) – des(w3)) 

 

This definition does not require P to be ethically neutral. Ramsey mistakenly states 

that it ‘only applies to partial belief and does not include certain beliefs’ (1931b, p. 

180), though plausibly he meant that the definition does not apply if P is non-

contingent. In this case, we simply stipulate that bel(P) = 1 if P is necessary, 0 if P is 

impossible. Note that, because ratios of differences are preserved across positive 

linear transformations of the des function, bel(P) so-defined is unique. 

The reasoning behind this final step is again left up to the reader, though again it 

follows from his background assumption of the descriptive adequacy of subjective 

expected utility theory. Note first of all that if w1 entails P, then the conjunction of P 

and w1 is just equivalent to w1, so des(w1) = des(w1 & P). Ramsey clearly 

presupposed, then, that the desirability of a prospect (w1, P; w2) ∼ w3, where w1 
entails P and w2 entails ¬P, is given by the following equality: 

 

des((w1, P; w2)) = des(w1).bel(P) + des(w2).(1 – bel(P)) = des(w3) 

 

This is then rearranged to give us the definition of bel(P) as above. 

Ramsey does note that for his definition to work we require two more 

assumptions. The first of these is that the value of bel(P) does not depend on the 

choice of worlds and gambles satisfying the stated conditions. In effect, this is to 



 

 

12 

place restrictions directly upon bel after it has been defined in terms of preferences. 

(See Condition 1, Sect. 4.4 below.) The second assumption is that for any gamble 

(w1, P; w2) we will always be able to find some world w3 such that w3 ∼ (w1, P; w2). 

Both of these assumptions are clearly required if bel is to be coherently defined for 

each contingent proposition. 

Ramsey (1931b, pp. 180ff) goes on to define conditional probabilities using 

preferences over more complicated gambles, and he argues that bel satisfies the laws 

of probability, though I will not recapitulate that argument here: it is enough that 

Ramsey provides a credence function, bel: P ↦ [0,1], that supposedly represents the 

agent’s degrees of belief—after all, it combines with the agent’s utilities for outcomes 
to determine their preference ordering for two-outcome gambles in more or less the 

manner we pre-theoretically expect degrees of belief to do so. For our purposes, it is 

incidental whether bel satisfies the axioms of the probability calculus. 

In summary, Ramsey’s proposal is as follows. We begin with the background 

assumption of the empirical adequacy of subjective expected utility theory, and an 

empirically determined preference ordering on the set of outcomes and two-outcome 

gambles. Then, referring specifically to gambles conditional on an ethically neutral 

proposition of probability ½ that is assumed to exist (and determined through 

observation of the agent’s preferences), we construct a function des that measures the 

agent’s utilities. Having determined des, and given some further assumptions, we use 

des to determine the function bel, according to what it must be given the initial 

background assumption. It is then argued that bel has certain attractive properties that 

lend support to its interpretation as a measure of the agent’s degrees of belief. 
 

3. Ethical neutrality 

3.1 Why Ramsey introduced ethical neutrality 

Ramsey was right to reject naïve expected utility theory. If the outcomes w1 and w2 

are each compatible with both P and ¬P, then it is entirely possible that the agent 

values (w1 & P) more (or less) than (w1 & ¬P), and similarly for (w2 & P) and (w2 & 

¬P). Any rational agent ought to take this into account when deliberating between 

gambles conditional on P with w1 and w2 as outcomes. For example, contrary to naïve 

expected utility theory, it is possible that the agent could be indifferent between w1 ∼ 

w2 without thereby being indifferent between (w1, P; w2) and (w2, P; w1), if the truth 

or falsity of P makes a difference to how the agent values w1 or w2. 

However, this point is conditional on w1 and w2 being each compatible with both P 

and ¬P. If instead we suppose that w1 implies P, then (w1 & P) is logically equivalent 

to w1—and for Ramsey, if w1 implies P, then the desirability of w1 is just the 

desirability of (w1 & P).6 Ramsey’s characterisation of the bel function relies on this 

very fact.7 So, inasmuch as w1 implies P and w2 implies ¬P, 

 

 

6 If w1 implies ¬P, then (w1 & P) = ∅. It is unclear whether Ramsey intended his utility function to 

assign any value to ∅, as his definition of the credence function only requires the utility function to be 

defined on W ∪ G, which does not contain ∅. 
7 While descriptively questionable, I will not discuss this idealizing assumption in any further 

detail. Such assumptions are standardly made in many descriptive decision theories and measurement 

systems—if it is a problem for Ramsey, then it is a problem for a great deal of the work in this area. 
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des((w1, P; w2))  = des(w1 & P).bel(P) + des(w2 & ¬P).(1 – bel(P))  

= des(w1).bel(P) + des(w2).(1 – bel(P)) 

 

Note that this holds regardless of whether P is ethically neutral or not. In other words, 

if w1 implies P and w2 implies ¬P, then we can apply naïve expected utility theory to 

the gamble (w1, P; w2). 

Interestingly, Ramsey originally describes his outcome set W as a set of possible 

worlds, and it is part of Ramsey’s background theory that every world individually 
determines the truth or falsity of any proposition. In particular, Ramsey assumed a 

broadly Wittgensteinian logical atomism (though he believed it possible to 

reformulate his theorem without these commitments; see his 1931b, p. 177, Fn. 1). 

Ramsey’s discussion does not commit him to the entirety of Wittgenstein’s theory; 
instead, Ramsey assumes what Sobel (1998) calls a thin logical atomism, in the 

following sense: we are to suppose that there exists a class of atomic propositions 

such that no two worlds are exactly identical with respect to the truth of these 

propositions, every atomic proposition can be true or false entirely independently of 

any others, and for every world w and atomic proposition P, there is another world w* 

that differs only with respect to the truth of P. Every possible world on this picture is 

determined by the set of atomic propositions true at that world. Even setting aside the 

assumption of logical atomism, on an orthodox conception of propositions as sets of 

worlds, then for any given (determinate) proposition, a given world either is or is not 

a member of that proposition. Every world therefore determines either the truth or 

falsity of any proposition, and no possible world is compatible with both P and ¬P. 

This leaves us with something of a puzzle: why did Ramsey alter his 

characterisation of the outcome set (as noted in Sect. 2.2)? It seems that if he instead 

limited his attention to gambles like (w1, P; w2), where w1 implies P and w2 implies 

¬P, then he could have used preferences over these to define =d without needing to 

introduce the notion of ethical neutrality. Let us call any gamble (w1, P; w2) 

impossible if either w1 implies ¬P or w2 implies P. A gamble is possible if and only if 

it is not impossible. If outcomes are possible worlds, then every possible gamble (w1, 

P; w2) must be such that w1 implies P and w2 implies ¬P, and so des(w1) = des(w1 & 

P) and des(w2) = des(w2 & ¬P). We can therefore always apply naïve expected utility 

theory to possible gambles if the outcomes are worlds. So why did Ramsey not stick 

to his original characterisation of outcomes as worlds, and simply use preferences 

over possible gambles to define =d? 

The answer to this question can be discovered by considering again how Ramsey 

defines ½ probability propositions. In particular, to determine whether P has a 

probability ½, we need to consider preferences over two gambles of the form (w1, P; 

w2) and (w2, P; w1). The definition Ramsey gives us only makes sense if the outcomes 

w1 and w2 are not possible worlds. If w1 and w2 are possible worlds, then at least one 

of the two gambles is impossible, and if either gamble is impossible, then the 

reasoning behind the assignment of probability ½ to the proposition P is no longer 

valid. Indeed, Ramsey recognized the difficulty here, and for this reason wrote that, at 

least for those outcomes w1 and w2 required for his definition of ½ probability 

propositions, ‘[w1] and [w2] must be supposed so far undefined as to be compatible 

with both P and ¬P’ (1931b, p. 178, Fn. 1). Supposing for simplicity that P is atomic, 
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we are presumably to take the outcomes w1 and w2 as near-worlds, which we can 

understand as propositions that are just shy of being maximally specific. Given thin 

logical atomism, for every world w and every atomic proposition P, there is a 

proposition that nearly uniquely identifies w except for specifying whether P is true 

or not. In Ramsey’s framework, a near-world with respect to an atomic proposition P 

is a disjunction of two worlds wP and w¬P that are identical with respect to all of their 

atomic propositions except for P. 

The answer to our puzzle, then, is that Ramsey’s set of outcomes cannot quite be 

the set of possible worlds given his strategy for defining =d. For the pair of possible 

gambles (w1, P; w2) and (w2, P; w1) referred to in Definition 1, neither w1 nor w2 can 

imply either P or ¬P. It follows for the reasons given, then, that we cannot in general 

apply naïve expected utility theory to such gambles, unless we appeal to ethically 

neutral propositions. 

 

3.2 Problems with ethical neutrality 

In looking at whether the notion of ethical neutrality is viable, we ought first to start 

with Ramsey’s own definition: 
 

Definition 5: Ethical neutrality (Ramsey’s original) 

P is ethically neutral if and only if (i) if P is atomic, then wP ∼ w¬P, for all pairs of 

worlds wP, w¬P identical with respect to all their atomic propositions except for P, 

(ii) if P is non-atomic, then all of Ps atomic truth arguments are ethically neutral 

 

So, an atomic proposition P is ethically neutral for an agent just in case any two 

possible worlds differing in their atomic propositions only in the truth of P are always 

equally valued by that agent, and ethical neutrality for non-atomic propositions is 

understood in terms of atomic propositions. Ramsey here demonstrates commitment 

to another aspect of Wittgensteinian atomism: every non-atomic proposition can be 

constructed from atomic propositions using truth-functional connectives.8 We are able 

to locate such a proposition, if it exists, by considering the agent’s preferences over 
worlds. As just noted, for some gambles (w1, P; w2) and (w2, P; w1), Ramsey requires 

that w1 and w2 are compatible with both P and ¬P. If we suppose for simplicity that P 

is atomic, then w1 and w2 are near-worlds with respect to P. It follows from Ramsey’s 
definition then that (w1 & P) ∼ (w1 & ¬P) and (w2 & P) ∼ (w2 & ¬P). It does not yet 

follow that (w1 & P) ∼ (w1) ∼ (w1 & ¬P), which Ramsey also required. However, we 

can take this as an unstated background assumption: if (w1 & P) ∼ (w1 & ¬P), then 

(w1 & P) ∼ (w1) ∼ (w1 & ¬P). 

Sobel (1998, p. 241) has argued that there are few or no ethically neutral 

propositions in this sense. Consider the proposition there are an even number of hairs 
on Dan Quayle’s head. Sobel argues that this can be ethically neutral for ‘almost no 
one’: 

 
8 Interestingly, Ramsey’s definition suggests that ethically neutral propositions can be logically 

equivalent to non-ethically neutral propositions. Suppose that P is ethically neutral, but Q is not. Then 

P is logically equivalent to (P & (Q v ¬Q)), but (P & (Q v ¬Q)) is not ethically neutral. Thanks to 

Rachael Briggs for noting this. 
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Though it is true that I do not care about Quayle’s hair, there are worlds that differ 
regarding the truth of that proposition that, just because of that difference, differ in 

their values for me. I am thinking of worlds in which I have bet money on this 

proposition! The argument … can be readdressed to atomic propositions, if such 
there be, to the conclusion that no atomic proposition is Ramsey-ethically-neutral 

for any of us. Ramsey’s existence axiom for ethically neutral atomic propositions, 
even if coherent, severely curtails the applicability of his theory. (Sobel 1998, p. 

248) 

 

There seem to be two concerns here. The first appears to be something like the 

following: for any proposition whatsoever, we should be able to find a set of 

otherwise similar possible worlds where we have entered into a bet conditional on 

that proposition with desirable outcomes if things turn out one way, and undesirable 

outcomes if things turn out another way. Since we care about the outcomes of the bet, 

we will value the relevant worlds differently. However, this objection seems to have 

no hold given Ramsey’s view: the relevant worlds are supposed to differ at the atomic 

level only with respect to the proposition in question. In all other respects—including, 

importantly, the payouts for any bets we may enter into—the worlds are supposed to 

be identical. 

The second and more obvious worry is that Ramsey’s conception of ethical 
neutrality requires the assumption of logical atomism for its cogency. Ramsey built 

his theory upon the assumption of logical atomism so that he could make sense of the 

idea of two worlds differing only with respect to a particular proposition. The notion 

is of little use to contemporary philosophers who by and large reject that aspect of 

Wittgenstein’s view. 

In his atomism-free reconstruction of Ramsey’s theorem, Bradley (2001) supplies 

the following definition, intended to achieve the same purpose: 

 

Definition 6: Ethical neutrality (atom-free) 

P is ethically neutral if and only if for all propositions Q that are compatible with 

both P and ¬P, (P & Q) ∼ Q ∼ (¬P & Q) 

 

Tautological and impossible propositions will be trivially ethically neutral according 

to this definition. Clearly, however, we are interested only in non-trivially ethically 

neutral propositions. A common suggestion is that propositions such as the tossed 
coin will land heads constitute ethically neutral propositions of probability ½. Part of 

the reason why we use coin tosses occasionally when making decisions is because we 

have no intrinsic interest in whether the coin lands heads or tails. If Q is something 

like there are dogs, and P is the tossed coin will land heads, then it seems plausible 

that (P & Q) ∼ Q ∼ (¬P & Q). 

However, there are strong reasons to think that no contingent propositions will be 

ethically neutral in the sense of Definition 6, for any minimally rational subject. Let 

P be the tossed coin will land heads, and take Q to be the proposition 
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(the tossed coin will land heads & I receive $100000) or (the tossed coin will not 
land heads & I get kicked in the shins) 

 

Q is obviously compatible with both P and ¬P. However, (P & Q) is equivalent to the 
tossed coin will land heads & I receive $100000 while (¬P & Q) is equivalent to 

tossed coin will not land heads & I get kicked in the shins. But for some very strange 

preference orderings, it is certainly not the case that (P & Q) ∼ Q ∼ (¬P & Q). The 

point here generalizes easily; there are no non-trivially ethically neutral propositions 

in this sense. Note that the issue here is not that no contingent proposition satisfies the 

definition exactly, while there may nevertheless be some propositions which 

approximate ethical neutrality. Rather, the upshot is that no proposition even comes 

close to satisfying the requirements of ethical neutrality. We will always be able to 

find countless many propositions Q that falsify the indifference requirements.9 

A refinement of Definition 6 might be useful here. Instead of requiring (P & Q) ∼ 

Q ∼ (¬P & Q) for all propositions Q compatible with both P and ¬P, Ramsey only 

requires the following: 

 

Definition 7: Ethical neutrality (atom-free, refined) 

P is ethically neutral if and only if w ∼ (w & P) ∼ (w & ¬P), for any outcome w ∈ 

W that is compatible with both P and ¬P 

 

If there are no outcomes compatible with both P and ¬P, then P is trivially ethically 

neutral by this definition. Again, we can set such propositions aside; we are interested 

in non-trivially ethically neutral propositions (see Sect. 4.3 for more discussion). If Q 

is not in the outcome set W, then there are no relevant gambles with Q as an outcome 

and we do not need to concern ourselves over whether (P & Q) ∼ Q ∼ (¬P & Q). If 

we assume that there are far fewer propositions in W than in P, then the foregoing 

objection is blocked. This will certainly be true if the outcomes in W are highly 

specific, as is the case in Ramsey’s system. 

With that said, it is still not obvious that any non-trivially ethically neutral 

propositions exist even in this weaker sense. Why should we suppose that there are 

any propositions P such that (non-trivially), w ∼ (w & P) ∼ (w & ¬P) for all w ∈ W 

compatible with P and ¬P? Indeed, without knowing the exact nature of the outcome 

space W, we cannot even know whether there are any outcomes compatible with both 

P and ¬P, for an arbitrarily chosen proposition P. Ramsey explicitly stipulates that 

there must be at least one pair of outcomes compatible with some ½ probability 

ethically neutral proposition and its negation—but this stipulation is meaningless 

inasmuch as we do not already know what proposition that may be. Unfortunately, 

Ramsey’s discussion leaves the nature of W quite vague, making the matter 

impossible to judge. 

We can circumvent this concern by stipulating that W contains, for each of a very 

wide range of propositions in P, highly specific outcomes that are undefined with 

respect to that proposition. But even then, Ramsey gives us little reason to suppose 

 
9 Thanks to Rachael Briggs and Al Hájek for these points and related discussion. 
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that ethically neutral propositions exist relative to a given agent’s preference 
ordering—still less that there are any such propositions that satisfy Definition 1. 

RAM 1 clearly cannot be defended as a condition of rationality, and it does not 

follow from Ramsey’s background assumption of the descriptive adequacy of 

expected utility theory. Ramsey’s aim in the first instance was to develop a procedure 
for the measurement of degrees of belief, so unlike other intended uses for decision 

theoretic representation theorems he did not require his axioms to be constraints of 

practical rationality; nevertheless, if the process is to be viable then it ought at least be 

applicable. It may not be impossible for a rational agent to satisfy the axiom, but we 

still require good reasons to believe that most do—yet no reasons are forthcoming.  

A related issue regards Ramsey’s proto-functionalist attempt to define degrees of 

belief in terms of his measurement procedure: a definition of credences which relies 

on a dubitable and unjustified existential assumption is, at best, of very limited 

interest. Are we to suppose that agents who falsify RAM 1 do not have degrees of 

belief? Ultimately, given his reliance upon ethically neutral propositions, Ramsey’s 

system was not sufficient to establish the main upshot of ‘Truth and Probability’: that 

the laws of probability provide for us the logic of partial belief. Even if it is 

understood in terms of Definition 7, RAM 1 is a very shaky foundation for a 

measurement procedure, and still worse for a definition of credences. 

Many expected utility representation theorems developed since Ramsey’s original 
work have also made use of ethically neutral propositions, either explicitly or 

implicitly. Davidson and Suppes (1956) develop a representation theorem similar to 

Ramsey’s wherein they explicitly characterize and axiomatize the existence of 

ethically neutral propositions. Others make implicit appeal to ethically neutral 

propositions, in the sense that they figure in the intended interpretation of the formal 

system, rather than being formalized directly. In this capacity we find ethical 

neutrality in the theorems of Davidson, Siegel and Suppes (1957), Debreu (1959), 

Suppes (1956), and Fishburne (1967). Each of these works appear to require an 

understanding of ethical neutrality in something like the senses of Definition 6 or 7 

(each for essentially the same reason that Ramsey required the notion), and thus they 

inherit the problems associated with those definitions. We need a firmer foundation 

for the measurement of credences. 

 

4. Refining Ramsey’s system 

4.1 Preliminaries 

Ramsey’s motivation for introducing the idea of ethical neutrality arises ultimately 

from his strategy for defining ½ probability propositions and =d. But we are not 

forced to use Ramsey’s definitions. It is possible to avoid introducing ethical 

neutrality in any of the senses defined so far, if we can develop alternative definitions. 

One obvious possibility would be to introduce a second qualitative relation into 

our formal system, à la Joyce 1999. Let =b be a qualitative probability relation 

defined on the set of propositions: P =b Q if and only if the agent judges P to be 

exactly as likely as Q. Now we might say that a proposition P has probability ½ just 

in case P =b ¬P. Developing this line of thought would lead us to a two-primitive 

(preference and qualitative probability) representation theorem, though it is also 

likely to render much of Ramsey’s approach redundant. For instance, if the agent has 
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a sufficiently rational qualitative probability ranking ≥b on the set of propositions, 

then we can apply something like de Finetti’s (1931) representation theorem to arrive 
at a cardinal representation of her credences without needing to consider her 

preferences over gambles at all. 

Let us suppose, then, that we have no straightforward empirical access to agents’ 
qualitative probability rankings. We are then in Ramsey’s original position, aiming to 

develop a system for the measurement of credences where we only have empirical 

access to agents’ preferences over outcomes and gambles. 

Another possibility would be to construct a relative notion of ethical neutrality. 

Ramsey’s definition of =d in terms of gambles does not need ethical neutrality tout 
court; instead, the conditioning proposition need only be ethically neutral with 

respect to the outcomes involved in the relevant gambles. That is, for Ramsey, (w1, 

w2) =d (w3, w4) if and only if (w1, P; w4) ∼ (w2, P; w3), where P is an ethically neutral 

proposition of probability ½, but here it is enough if P is neutral with respect to w1, 

w2, w3 and w4. Sobel (1998, pp. 268–9) suggests a modification to Ramsey’s system 
along these lines, which forces the replacement of RAM 1 with 

 

RAM 1’ For every quartet of worlds there is a proposition believed to degree ½ 

that is ethically neutral with respect to each world in the quartet 

 

The difficulty here then becomes spelling out the notion of relative ethical neutrality 

in such a manner as to render RAM 1’ plausible. Sobel’s own suggested definition 
also presupposes logical atomism, as it was intended to fit with the rest of Ramsey’s 
system. A more straightforward strategy, however, is to bypass the issue of ethical 

neutrality altogether; we can have an essentially Ramseyian representation theorem 

without needing to first construct a notion of ethical neutrality at all, rendering 

attempts to define the notion pointless. 

Before we move on, I will note two assumptions that underlie the rest of the 

discussion. First, I will follow Ramsey’s initial suggestion and take the space of 

outcomes, W, to be the set of all possible worlds.10 This assumption is for simplicity 

only; nothing of importance to the formal result is altered if we take outcomes to be 

propositions (see discussion in Sect. 4.3). Secondly, and far more importantly, I will 

limit my attention to possible gambles only. I am doubtful that it makes much sense 

to assert that an agent can have interesting preferences with respect to impossible 

gambles, and in any case their inclusion comes with a great deal of added complexity. 

As such, preferences over impossible gambles play no role in deriving the 

forthcoming representation result. I axiomatize this limitation in GRS 1 below. 

The key idea of the theorem below is that, while Ramsey used the same outcomes 

in two different gambles to define what it is for a proposition to have probability ½, 

this is unnecessary—it is enough if we instead use outcomes with exactly the same 

desirability. Suppose that w1 ∼ w’1, w2 ∼ w’2, and ¬(w1 ∼ w2), but 

 

 
10 I leave open the kind of modality being employed here. One might take W to be the set of 

metaphysically possible worlds, though this may lead to some counterintuitive results. My preference 

is to construe W as the set of epistemically possible worlds; in the sense of Chalmers 2011. 
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(w1, P; w2) ∼ (w’2, P; w’1) 

 

We assume that each of these two gambles is possible; that is, w1 and w’2 each imply 

P, and w2 and w’1 each imply ¬P. Given the Ramseyian background assumption, this 

is possible only if: 

 

des(w1).bel(P) + des(w2).(1 – bel(P)) = des(w’2).bel(P) + des(w’1).(1 – bel(P)) 

 

Since w1 ∼ w’1 and w2 ∼ w’2, we know des(w1) = des(w’1) = x and des(w2) = des(w’2) 

= y; and because ¬(w1 ∼ w2), we know that x ≠ y. Let bel(P) = z. We are left with: 

 

xz + y(1 – z) = yz + x(1 – z) 

 

Regardless of the specific values of x and y, this is possible only if z = (1 – z); thus, 

bel(P) = 0.5. This is essentially the same reasoning that Ramsey used in developing 

his definition of ½ probability propositions, with the only difference being that we 

have appealed to equally valued outcomes rather than using the same outcomes for 

the two gambles. Since (w1, P; w2) and (w’2, P; w’1) are both possible gambles with 

worlds as outcomes, we can apply naïve expected utility theory. There is no reason to 

require that P is ethically neutral. A set Π of ½ probability propositions is 

characterized precisely in Definition 8 below. 

Making this modification, in light of the two assumptions noted above, forces a 

number of changes to Ramsey’s axiomatisation. There are two particularly important 
changes that I will note here, before laying out the main theorem in full. First, we can 

no longer employ Ramsey’s definition of =d. (Instead of defining =d, I will instead 

define ≥d.) However, here we can employ the same trick: there is no reason why (w1, 

w2) ≥d (w3, w4) must be defined using the worlds w1, w2, w3, and w4. It is enough if we 

use worlds with exactly the same desirability. Furthermore, there is no reason why we 

need to use the same ½ probability proposition in both gambles. Instead, we can say 

that (w1, w2) ≥d (w3, w4) holds just in case, if w1 ∼ w’1, w2 ∼ w’2, w3 ∼ w’3, w4 ∼ w’4, 

and both (w’1, P; w’4) and (w’2, P’; w’3) are possible gambles where P and P’ both 

have a probability of ½, then: 

 

(w’1, P; w’4) ≽ (w’2, P’; w’3) 

 

The reasoning behind this is essentially identical to that outlined in section 2.3. Note 

that w1 need not be distinct from w’1; the only thing we require is that w’1 implies P 

(and similarly for the other outcomes, mutatis mutandis). ≥d is characterized precisely 

in Definition 9 below. 

Secondly, we need to ensure that there are enough worlds for this definition of ≥d 

to work. That is, we need to assume that we will always be able to find the required 

gambles (w’1, P; w’4) and (w’2, P’; w’3). This is not obviously going to be the case, if 

we are limiting our attention to possible gambles only. In effect, we need to assume 

that for every pair of worlds w1 and w2, there will always exist at least one proposition 
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P of probability ½ such that for some worlds w’1 ∼ w1 and w’2 ∼ w2, w’1 implies P 

and w’2 implies ¬P. This is a reasonably strong assumption. It requires that every 

value contains multiple members, and that at least two of these members will disagree 

with respect to P for some P of probability ½. In effect, this assumption replaces 

Ramsey’s axiom RAM 1. It is formalized as GRS 2 below. 

 

4.2 Main representation theorem 

In this section I reproduce the main formal result of the paper: a representation 

theorem for the construction of an interval scale des on the set of gambles G and 

outcomes W such that for all α, β ∈ W ∪ G and all w1, w2, w3, w4 ∈ W, 

 

α ≽ β if and only if des(α) ≥ des(β) 
(w1, w2) ≥d (w3, w4) if and only if des(w1) – des(w2) ≥ des(w3) – des(w4) 

 

In section 4.4 I will introduce some further conditions that suffice for the construction 

of a credence function bel. Assume, in all that follows: 

 

W is a non-empty set of possible worlds 

P is an algebra of sets on W (i.e. a set of propositions) 

G ⊆ W × P × W ≽ is a binary relation defined on W ∪ G; ≻ and ∼ are defined in the usual way 

 

Note that P need not contain all sets of worlds. For instance, the system to be 

developed is consistent with supposing that P = {∅, W, P, ¬P}, where P (or ¬P) has 

probability ½. Given GRS 1, G will be restricted to all and only possible gambles.11 

In the sequel, I have adopted the notational convention that sameness of subscript 

for outcomes implies sameness of desirability (but the reverse need not hold). For 

instance, it should be assumed in all that follows that w’1 and w’’1 each refer to 

outcomes with the same desirability as w1 (i.e. w1 ∼ w’1 and w’1 ∼ w’’1). It should not 

be assumed, however, that either w’1 or w’’1 is necessarily distinct from w1. Likewise, 

(w1, P; w2) should be understood as a variable for gambles with outcome w1 if P, w2 

otherwise; and (w’1, P; w’2) for gambles conditional on P with outcomes equal in 
value to w1 and w2. Again, the pair (w1, P; w2) and (w’1, P’; w’2) need not be distinct. 

We first define the set of ½ probability propositions: 

 

Definition 8: The set of ½ probability propositions, Π 

Π = {P ∈ P: there are w1, w2 ∈ W such that (w1, P; w2), (w’2, P; w’1) ∈ G, ¬(w1 ∼ 

w2), and (w1, P; w2) ∼ (w’2, P; w’1)} 

 

 
11 Note that (w1, P; w2) and (w2, ¬P; w1) are distinct elements of W × P × W; here I leave it 

undetermined whether they represent distinct objects of preference. See Sect. 4.4, Theorem 4. 
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Henceforth, I will use π, π’, and so on, to designate propositions within Π. It should 

not be assumed that π ≠ π’. Given this, I will use (w1, π; w2) specifically for gambles 

conditional on some π in Π (with outcomes w1 and w2). 

We can now define ≥d. 

 

Definition 9: The difference between w1, w2 is at least as much as w3, w4 

(w1, w2) ≥d (w3, w4) if and only if (w’1, π; w’4) ≽ (w’2, π’; w’3) for all (w’1, π; w’4), 

(w’2, π’; w’3) ∈ G 

 

For the purposes of characterizing the Archimedean axiom, we will also need to 

define a strictly bounded standard sequence. We can break this notion down into two 

concepts: 

 

Definition 10: Standard sequence 

w1, w2, … , wi, … is a standard sequence if and only if (i) for all (w’2, π; w’1), (w’’1, 

π’; w’’’1) ∈ G, ¬((w’2, π; w’1) ∼ (w’’1, π’; w’’’1)), and (ii) for every wi, wi+1 in the 

sequence, (w’i+1, π; w’2) ∼ (w’1, π’; w’i) for all (w’i+1, π; w’2), (w’1, π’; w’i) ∈ G 

 

In light of the axioms to be characterized shortly, it will turn out that w1, w2, … , wi, 

… is a standard sequence just in case (i) (w2, w1) ≠d (w1, w1) and (ii) (wi+1, wi) =
d (w2, 

w1) for all wi, wi+1 in the sequence. So, for instance, the sequence w1, w2, w3, w4 is a 

standard sequence just in case: 

 

(w2, w1) ≠d (w1, w1) and (w4, w3) =
d (w3, w2) =

d (w2, w1) 

 

The idea, of course, is that the (nonzero) difference in desirability between any two 

adjacent members in the sequence is always equal to the difference in desirability 

between any other two adjacent members. 

 

Definition 11: Strictly bounded standard sequence 

w1, w2, … , wi, … is a strictly bounded standard sequence if and only if w1, w2, … , 
wi, … is a standard sequence and there exists wa, wb ∈ W such that for all wi in the 

sequence, (w’a, π; w’i) ≻ (w’1, π’; w’b) and (w’’i, π’’; w’’b) ≻ (w’’a, π’’’; w’’1), for 

all (w’a, π; w’i), (w’1, π’; w’b), (w’’i, π’’; w’’b), (w’’a, π’’’; w’’1) ∈ G 

 

In other words, any standard sequence w1, w2, … , wi, … is strictly bounded if there 

are wa, wb ∈ W such that for any wi in the sequence, (wa, wb) >
d (wi, w1) >

d (wb, wa). 

Essentially, regardless of the size of the interval between wi and w1, we can find 

outcomes in W that are spaced even further apart. 

The coherence of the foregoing definitions will be ensured by the axioms GRS 1–
9, which we can now specify: 
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Definition 12: Generalized Ramsey structure 

<W, P, G, ≽> is a generalized Ramsey structure if and only if W is non-empty, P is 

an algebra of sets on W, G ⊆ W × P × W, ≽ is a binary relation on W ∪ G, and for 

all w1, w2 ∈ W, all sequences w1, w2, … , wi, … ∈ W, all P ∈ P, and all (w1, P; w2), 

(w1, π; w2), (w’2, π’; w’1), (w1, π; w4), (w2, π’; w3), (w3, π’’; w6), (w4, π’’’; w5) ∈ G, 

the following nine conditions hold: 

GRS 1 (w1, P; w2) ∈ G iff w1, w2 ∈ W, P ∈ P, and w1 ∈ P, w2 ∈ ¬P  

GRS 2 For every pair of worlds w1, w2 ∈ W, there exists a π ∈ Π such that for 

some w’1, w’2 ∈ W, w’1 ∈ π and w’2 ∈ ¬π  

GRS 3 <W ∪ G, ≽> is a weak order 

GRS 4 If (w1, π; w2), (w’2, π’; w’1) ∈ G, then (w1, π; w2) ∼ (w’2, π’; w’1) 

GRS 5 If (w1, π; w4) ≽ (w2, π’; w3) and (w3, π’’; w6) ≽ (w4, π’’’; w5), then, for all 

(w’1, π*; w’6), (w’2, π+; w’5) ∈ G, (w’1, π*; w’6) ≽ (w’2, π+; w’5) 

GRS 6 For every triple w1, w2, w3 ∈ W, there is a w4 ∈ W such that for some 

(w’1, π; w’3), (w4, π’; w’2) ∈ G, (w’1, π; w’3) ∼ (w4, π’; w’2)  

GRS 7 If w1, w2, … , wi, … is a strictly bounded standard sequence, then it is 

finite 

GRS 8 w1 ≽ w2 iff for all (w’1, P; w’2) ∈ G, w1 ≽ (w’1, P; w’2) ≽ w2  

GRS 9 For each (w1, P; w2) ∈ G, there is a w3 ∈ W such that (w1, P; w2) ∼ w3 

 

We can now state the main representation theorem: 

 

Theorem 1: Generalized Ramseyian utility measurement 

If <W, P, G, ≽> is a generalized Ramsey structure then there is a function des: W ∪ 

G ↦ ℝ such that for all α, β in W ∪ G and all w1, w2, w3, w4 ∈ W, 

(a) α ≽ β if and only if des(α) ≥ des(β) 
(b) (w1, w2) ≥d (w3, w4) if and only if des(w1) – des(w2) ≥ des(w3) – des(w4) 

Furthermore, des is unique up to positive linear transformation 

 

A proof is provided in the appendix. We now turn to a discussion of the axioms GRS 

1–9 before turning to how to get from generalized Ramsey structures to credence 

functions. 

 

4.3 Generalized Ramsey structures 

The strategy for proving Theorem 1 is closely connected to Ramsey’s process; viz., 

given the agent’s preferences over outcomes and two-outcome gambles, we first 

determine the relation ≥d between pairs of outcomes and on that basis construct an 

interval scale measurement of the agent’s preferences. The most important step here 
is establishing that if <W, P, G, ≽> is a generalized Ramsey structure, then <W × W, 

≥d> is an algebraic difference structure: 
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Definition 13: Algebraic difference structure  

<A × A, ≽*> is an algebraic difference structure if and only if A is non-empty, ≽* 

is a binary relation on  A × A, and for all a1, a2, a3, a4, a’1, a’2, a’3 ∈ A, and all 

sequences a1, a2, … , ai, … ∈ A, the following five conditions hold: 

ADS 1 <A × A, ≽*> is a weak order 

ADS 2 If (a1, a2) ≽* (a3, a4), then (a4, a3) ≽* (a2, a1) 

ADS 3 If (a1, a2) ≽* (a4, a5) and (a2, a3) ≽* (a5, a6), then (a1, a3) ≽* (a4, a6) 

ADS 4 If (a1, a2) ≽* (a3, a4) ≽* (a1, a1), then there exist a5, a6 ∈ A such that (a1, 

a5) ∼* (a3, a4) ∼* (a6, a2) 

ADS 5 If a1, a2, … , ai, … is such that (ai+1, ai) ∼* (a2, a1) for every ai, ai+1 in 

the sequence, ¬((a2, a1) ∼* (a1, a1)), and there exist a’, a’’ ∈ A such that 

(a’, a’’) ≻* (ai, a1) ≻* (a’’, a’) for all ai in the sequence, then it is finite 

 

This allows us to invoke the following theorem: 

 

Theorem 2: Algebraic difference measurement 

If <A × A, ≽*> is an algebraic difference structure, then there exists a real-

valued function f on A such that, for all a1, a2, a3, a4 ∈ A, (a1, a2) ≽* (a3, a4) if 

and only if f(a1) – f(a2) ≥ f(a3) – f(a4); furthermore, f is unique up to positive 

linear transformation 

 

For a proof of Theorem 2, see Krantz et al 1971 (Ch. 4). 

Though none of the axioms GRS 1–9 are identical to any of Ramsey’s listed 
axioms, the majority of them bear a close resemblance to the axioms and assumptions 

mentioned by Ramsey in his paper. The differences are largely due to the assumption 

that the set of gambles includes only possible gambles, and the altered definition of ½ 

probability propositions. In this section I will discuss the axioms individually. It is 

worth noting first that none of the axioms are intended to be independently plausible 

qua norms of practical rationality, though at least a few may seem to have this 

status.12 As with Ramsey’s axiom system, the goal here is to establish conditions for 
the possibility of measurement under the assumption of the broad descriptive 

adequacy of something like expected utility theory—we are not directly interested in 

establishing foundations for a prescriptive decision theory. 

The purely structural axiom GRS 1 does not correspond to any of Ramsey’s 
axioms or any of the further assumptions he mentions, and his discussion is too sparse 

to know with any certainty whether he implicitly assumed anything like it. The move 

from worlds to near-worlds as outcomes suggests that he desired to avoid impossible 

gambles. However, given how Ramsey proposed to define =d, without changes 

 
12 Plausibly, GRS 3, 4, and 9 are constraints of practical rationality. I am inclined to take GRS 5 as 

a rationality constraint, though this is difficult to justify without presupposing the representation result. 

The status of the Archimedean axiom GRS 7 is unclear, though representation theorems that forego an 

Archimedean axiom can be developed, e.g. Bartha 2007. The existential axioms GRS 2, 6 and 8 are 

not plausibly rationality constraints. GRS 1 is a purely structural axiom, and places no constraints on 

any agent whether ideal or not. 
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elsewhere in his system he also required either that we have preferences over 

impossible gambles, or that every outcome in W was compatible with both the truth 

and falsity of some ethically neutral proposition. The argument for this proceeds by 

first noting that if des(w1) – des(w2) = des(w3) – des(w4), then it should be the case 

that (w1, w2) =
d (w3, w4). Suppose that w1 ∼ w’1, so des(w1) – des(w’1) = des(w’1) – 

des(w1). From Definition 2, we know that (w1, w’1) =
d (w’1, w1) is only defined if the 

agent has preferences over some pair of gambles of the form (w1, P; w1) and (w’1, P; 

w’1) for some ethically neutral P of probability ½. It follows that either w1 is 

compatible with P and ¬P, and similarly for w’1, or at least one of these two gambles 

is impossible. 

We might suppose that Ramsey was happy to deal with preferences over 

impossible gambles. This would have forced him to assume that there is an 

interesting difference between two impossible propositions (w1 & P) and (w2 & P), 

where both w1 and w2 entail ¬P but ¬(w1 ∼ w2). For suppose that Ramsey had only 

one impossible proposition, ∅. Then des(w1 & P) = des(w2 & P) = des(∅), but des(w1) 

≠ des(w2). For whatever value we take des(∅) to have, it is clear that this will lead to 

problems. For instance, suppose that des(∅) ≠ des(w1); w1 and w2 each imply P; w3 

implies ¬P; and des(w1) = x, des(w2) = des(w3) = y. We require that (w1, w2) =
d (w1, 

w3), for obviously x – y = x – y. However, the justification for the definition of =d in 

terms of preferences fails under these conditions: 

 

(w1, w2) =
d (w1, w3) if and only if (w1, P; w3) ∼ (w2, P; w1) 

 

But this holds just in case 

 

des(w1 & P).bel(P) + des(w3 & ¬P).(1 – bel(P)) = des(w2 & P).bel(P) + des(w1 

& ¬P).(1 – bel(P)) 

 

Supposing P is ethically neutral and has probability ½, this equals 

 

0.5x + 0.5y = 0.5y + 0.5des(∅) 

 

It follows that des(∅) = x = des(w1), which contradicts our initial assumption. 

The only consistent way that Ramsey could have involved impossible gambles into 

his system would have been to treat different impossible propositions as different 

objects of desire. Perhaps an appeal to impossible worlds would suffice for this 

purpose: the impossible prospect of being a married bachelor might be desired to a 

greater than of being a square circle. 

I do not want to judge whether Ramsey intended to countenance impossible 

gambles; for my own part, restricting our attention to possible gambles seems the 

better option. It is not obvious how we ought to treat preferences with respect to 

impossible propositions, if indeed there is more than one. For instance, it is implicit in 

Ramsey’s system that if w1 ≽ w2, then w1 ≽ (w1, P; w2) ≽ w2. Without some such 

assumption he is unable to show that the function bel is a credence function (see 
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proof in the appendix). However, if we know that (w1 & P) is impossible, it is not 

obvious why this should be the case: it seems at least as plausible that w2 ≽ (w1, P; 

w2) in this case, as we know we are not going to receive w1 in the event that P and 

there is only a potentially very small probability bel(¬P) ≤ 1 of receiving w2. By 

explicitly avoiding any impossible gambles and the issues that come with them, then, 

Theorem 1 constitutes an advance over Ramsey’s system. 
As noted earlier, GRS 2 plays a very similar foundational role to RAM 1; indeed, 

it is involved in every major step of the theorem’s proof. It is worth noting again that, 

on the assumption that Ramsey wanted to avoid impossible gambles, his system 

requires something stronger than just RAM 1. In fact, given his definition of =d, 

Ramsey’s system needs the stronger claim that every outcome is compatible with the 

truth or falsity of at least one ethically neutral proposition of probability ½. This can 

be phrased as an existential condition that replaces RAM 1: 

 

RAM 1* For every w ∈ W, there is at least one ethically neutral proposition of 

probability ½, P, such that w is compatible P and ¬P 

 

GRS 2 posits a substantially more plausible requirement than this. It postulates the 

existence of a set of propositions, Π, such that all have probability ½, but none have 

to be ethically neutral in any of the senses defined above.13 It is not required that 

every outcome has to be compatible with both the truth and falsity of at least one 

proposition in Π; in fact none will be, if W is the set of possible worlds. Instead, it 

implies that for every w in W, there is a proposition π in Π such that for some pair of 

outcomes w’ and w’’ with the same desirability as w, w’ implies π and w’’ implies ¬π. 
Given this, independent of its intrinsic plausibility, the use of GRS 2 as the basis for a 

representation theorem constitutes a substantial advance over Ramsey’s system. 
GRS 2 is nevertheless likely to be a somewhat contentious axiom. It implies, for 

instance, that every value w contains two worlds w and w’ that differ with respect to 

some ½ probability proposition. It is plausible that for many values—perhaps even 

most—we will be able to find such a proposition. Consider, for instance, the 

following situation. World w is a world much like our own, where at some point in 

history far away a fair coin was tossed and it landed heads. No bets were ever made 

on the outcome of the toss, indeed nobody within the world paid attention to the 

outcome, and the toss had no significant impact on history in any way. World w’ is 

essentially just like w, but wherein the coin lands tails. Our subject has no intrinsic 

interest in the outcomes of coin tosses. Let P be the proposition the tossed coin lands 

heads. Plausibly, for our subject, w ∼ w’, while w ∈ P and w’ ∈ ¬P. Importantly, it 

does not matter here that at some worlds (or even most worlds) the truth or falsity of 

 
13 Suppose we define a new notion, ethical substitutability: P is ethically substitutable with respect 

to a value w iff w is compatible with P and ¬P, and (P & w) ∼ w ∼ (¬P & w). Given the (very 

plausible) assumption that for all values w, w ∼ w and if Q is a non-empty subset of w, then Q ∼ w, 

GRS 2 implies the existence of at least one ethically substitutable proposition. This is hardly 

problematic, however: all that is required for P to be ethically substitutable relative to some w is the 

existence of two equally valued worlds that differ with respect to P. Supposing that ethically 

substitutable propositions exist would not leave us with the problems discussed in Sect. 3.2. Thanks to 

Rachael Briggs and David Chalmers here. 
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P might make a difference to how our subject values that world. The propositions 

required by GRS 2 might be highly relevant to the agent’s subjective valuation of a 
world. 

The case just given suggests that for most pairs of worlds w1 and w2, we should be 

able to find a ½ probability proposition which satisfies the conditions of GRS 2. The 

axiom seems to be at least approximately satisfied in this sense—for any world in 

which there are coin tosses, we should be able to find a world which is equivalent in 

all respects that the agent cares about but where the outcome of some fair coin toss is 

altered. If we come to a world where coin tosses matter (or where there are no coins), 

we should usually be able to find some other even-probability event of no intrinsic 

interest that we can appeal to—or some other pair of worlds with the same value 

which do differ with respect to some ½ probability proposition. 

But it is still not obviously the case that this holds for every value w. Perhaps there 

are some worlds which are unique in their desirability ranking, being equal in value to 

no other worlds; or perhaps there are some values which contain multiple worlds, but 

none of which disagree with respect to any ½ probability proposition. However, this 

circumstance would seem to be rare if it occurs at all, and if so it would not be a 

devastating problem: it would primarily mean that sometimes, ≥d on W × W is 

undefined. Some pairs of worlds might be left out of the ≥d comparison, but the 

relation would nevertheless still be a well-defined order on the others. It would likely 

be possible (though not without substantial added complexity) to prove a weaker 

representation result, which leaves certain utility values for worlds (and 

correspondingly, probability values for propositions) unspecified or within certain 

constrained intervals. 

GRS 3 corresponds closely to RAM 3, and it is a standard necessary condition in 

decision theoretic representation theorems. The role of GRS 4 is complex, and while 

no axiom like it shows up in Ramsey’s system, amongst other things it plays many of 
the same roles as RAM 2. Like GRS 2, this axiom shows up in every major step of 

the proof that <W × W, ≥d> is an algebraic difference structure. In a manner of 

speaking, this axiom says that the rational agent treats the same way all prospects 

with similarly valued outcomes conditional on any ½ probability proposition. It tells 

us that we can substitute one world w1 for another w’1 within a gamble, or one ½ 

probability proposition for another, so long as the outcomes have the same 

desirabilities and the substitution results in a possible gamble. So, for example, if w1 

and w’1 have the same desirability and both are compatible with the ½ probability 

propositions π and π’, then (w1, π; w2) ∼ (w’1, π’; w2). It also allows that we can 

change the order of outcomes, in the sense that if (w1, π; w2) and (w’2, π; w’1) are both 

possible gambles, then (w1, π; w2) ∼ (w’2, π; w’1). GRS 4 helps to ensure the 

coherence of the definitions of Π, ≥d, and of the bel function. 

GRS 5 is designed to play the same role as RAM 4: in light of the other axioms, it 

effectively asserts that ≥d is transitive, which is crucial for establishing that <W × W, 

≥d> satisfies ADS 1 and ADS 3 of Definition 13. GRS 6 is essentially a restatement 

of RAM 5. Its role is limited to establishing that <W × W, ≥d> satisfies ADS 4, a non-

necessary structural condition. GRS 7 is the Archimedean axiom; appropriately 

translated, it basically asserts that <W × W, ≥d> satisfies ADS 5.  
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GRS 1–7 are sufficient to establish that <W × W, ≥d> is an algebraic difference 

structure, which entails the existence of a real-valued function des on W with the 

property that (w1, w2) ≥d (w3, w4) if and only if des(w1) – des(w2) ≥ des(w3) – des(w4). 

GRS 8–9 are used to ensure that des represents ≽ on W ∪ G in the sense that for all 

α, β ∈ W ∪ G, des(α) ≥ des(β) if and only if α ≽ β. These final two axioms also play 

central roles in the construction of a credence function bel (Sect. 4.4). 

GRS 8 does not correspond to any of Ramsey’s stated axioms or any of the 
assumptions he otherwise mentions, though he clearly presupposed something like it 

in any case. It essentially states that the desirability of a gamble (w1, P; w2) sits 

somewhere between (or equal to) the desirabilities of w1 and w2. This ensures that des 

is such that for all w1, w2 ∈ W, des(w1) ≥ des(w2) if and only if w1 ≽ w2. It also helps 

to ensure that bel does not result in probabilities less than 0 or greater than 1. 

The sole formal role of GRS 9 is to ensure that we can extend des on W to W ∪ G; 

it is perhaps identical to what Ramsey intended for his RAM 7. It necessitates the 

existence, for each gamble, of an outcome that is directly comparable with that 

gamble. This ensures that for all α, β ∈ W ∪ G, des(α) ≥ des(β) if and only if α ≽ β. 

Given the non-triviality of ≻ on W ∪ G (ensured by GRS 2) and that, if w1 ≻ w2, then 

w1 ≻ (w1, π; w2) ≻ w2, GRS 9 forces the set of outcomes to be infinite. In this respect, 

it is similar to Ramsey’s RAM 6, though it plays a quite different role than what 

Ramsey had intended for his axiom. This is also likely to be a contentious axiom; 

though here it is noteworthy that the assumption is not necessary for the main 

representation result. The failure of GRS 9 implies that, potentially but not 

necessarily, bel may be undefined for some P ∈ P. Other means of extending des to 

W ∪ G are also likely possible in lieu of GRS 9. 

Although Theorem 1 takes as outcomes a set of worlds, an essentially identical 

theorem exists where W is a set of propositions: W ⊆ P. On this interpretation, W 

might refer to sets of ∼-equivalence classes of worlds. Alternatively, W might be 

taken to be an arbitrary set of propositions, perhaps more or less equivalent to P itself. 

Formally, the difference between the theorems essentially just involves substituting 

every instance of ∈ between worlds and propositions to a ⊆ relation (between two 

propositions). For instance, GRS 2 becomes: 

 

GRS 2* For every pair of propositions w1, w2 ∈ W, there exists a π ∈ Π such 

that for some w’1 ∼ w1 and w’2 ∼ w2, w’1 ⊆ π and w’2 ⊆ ¬π 

 

The representation result can then be established along precisely the same lines as in 

Theorem 1, mutatis mutandis. Of course, this would alter the interpretation of the 

axioms. GRS 2*, for instance, implies that for every proposition w in W, there exists 

at least two propositions w’ and w’’ and a ½ probability proposition π such that w ∼ 

w’ ∼ w’’ and w’ ⊆ π and w’’ ⊆ ¬π. The modified version of the first axiom, GRS 1, 

would imply that G is the set of gambles with outcomes that entail their conditions 

rather than merely being compatible with them. 
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4.4 Constructing bel 

Let us suppose that <W, P, G, ≽> is a generalized Ramsey structure; our goal then is 

to construct a representation of the agent’s credences. Closely following Ramsey’s 
suggestion, we can define the function bel as follows: 

 

Definition 14: bel 

For all P ∈ P, if P = ∅, then bel(P) = 0; and if P = W, then bel(P) = 1; otherwise, if 

w1, w2 ∈ W are such that ¬(w1 ∼ w2) and (w1, P; w2) ∈ G, then bel(P) = (des((w1, P; 

w2)) – des(w2)) / (des(w1) – des(w2)) 

 

As with Ramsey’s definition, bel so-defined is unique, due to the fact that ratios of 

differences are preserved across admissible transformations of the des function. 

We will also need the following condition to ensure the coherence of the 

definition: 

 

Condition 1: bel coherence 

For all (w1, P; w2), (w3, P; w4) ∈ G where ¬(w1 ∼ w2) and ¬(w3 ∼ w4), (des((w1, P; 

w2)) – des(w2)) / (des(w1) – des(w2)) = (des((w3, P; w4)) – des(w4)) / (des(w3) – 

des(w4)) 

 

Condition 1 is a formal restatement of one of the conditions that Ramsey briefly 

mentions are required to ensure the coherence of the bel function. What it says can be 

visualized as follows. Definition 14 tells us that bel(P) is, say, 0.75, if it is the case 

that w1 ≻ w2 and the value of the gamble (w1, P; w2) sits exactly three quarters of the 

way from the values of w2 to w1. Condition 1 then tells us that for all w3, w4 such that 

w3 ≻ w4, if the gamble (w3, P; w4) exists then it also sits three quarters of the way 

between w4 and w3 in the agent’s desirability scale (and if w4 ≻ w3, then (w3, P; w4) is 

one quarter of the distance between w4 and w3). This directly implies that the value 

bel(P) does not depend on which outcomes and gambles we choose to consider, 

which is an obvious coherence requirement.14 The other condition mentioned by 

Ramsey—that we will always be able to find outcomes satisfying the conditions of 

Definition 14—follows already from GRS 1–3. 

 

Theorem 3: Generalized Ramseyian credence and utility measurement 

If <W, P, G, ≽> is a generalized Ramsey structure and Condition 1 holds, then 

there is a function des: W ∪ G ↦ ℝ, and a function bel: P ↦ [0,1], such that for all 

α, β in W ∪ G, all w1, w2, w3, w4 ∈ W, and all (w1, P; w2) ∈ G, 

 
14 I have chosen to state Condition 1 in terms of des as there is no apparent straightforward means 

of stating it purely in terms of preferences. Since des is constructed entirely from preferences, 

Condition 1 is equivalent to some (perhaps infinitary) condition on preferences. Importantly, 

Condition 1’s content is more transparent when expressed in terms of des, which requires that des has 

already been characterized. Davidson and Suppes’s (1956) axiom A10 achieves a similar purpose as 

my Condition 1 without referring to the intended representation, but only through a complicated series 

of definitions that serve to obscure its content. 
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(a) α ≽ β if and only if des(α) ≥ des(β) 
(b) (w1, w2) ≥d (w3, w4) if and only if des(w1) – des(w2) ≥ des(w3) – des(w4) 

(c) bel(W) = 1 and bel(∅) = 0 

(d) des((w1, P; w2)) = des(w1).bel(P) + des(w2).(1 – bel(P)) 

Furthermore, bel is unique and des is unique up to positive linear transformation 

 

There are some important points to note about this representation result, the proof 

of which is in the appendix. The first is that the function bel need not be a probability 

function, though it could be. It is a credence function in the sense that bel maps 

propositions to some value within [0,1]; thus it is plausible to take bel(P) as a 

representation of the degree of belief the agent associates with the proposition P. 

The reason for bel’s permissiveness is that GRS 1–9 and Condition 1 jointly place 

very few restrictions on preferences for gambles conditional on propositions outside 

of Π. For instance, suppose that neither P nor Q are in Π, P ⊂ Q, ¬(w1 ∼ w2), and the 

agent is to rank the two gambles (w1, P; w2) and (w1, Q; w2). Only GRS 3, GRS 8–9, 

and Condition 1 can have any impact on how these gambles are ranked, as the other 

conditions are either purely existential or refer to gambles conditional on ½ 

probability propositions. GRS 9 only asserts the existence of some w3 and w4 such 

that w3 ∼ (w1, P; w2) and w4 ∼ (w1, Q; w2), while GRS 8 only asserts that (w1, P; w2) 

and (w1, Q; w2) must be valued somewhere between w1 and w2. Each of these, along 

with GRS 3, can clearly be satisfied even if (w1, P; w2) ≻ (w1, Q; w2). Finally, 

Condition 1 only restricts the relative rankings of gambles conditional on the same 

proposition, so it is also consistent with (w1, P; w2) ≻ (w1, Q; w2). Assuming all the 

other conditions to be satisfied, it follows immediately that if (w1, P; w2) ≻ (w1, Q; 

w2), then bel(P) > bel(Q). Hence, bel in this instance is not a probability function. 

It is of course possible to state further conditions to ensure that bel satisfies certain 

desirable structural properties. For instance, an extremely plausible condition is that 

the order in which outcomes are presented in a gamble makes no difference to their 

value: 

 

Condition 2: Order indifference 

For all (w1, P; w2), (w2, ¬P; w1) ∈ G, (w1, P; w2) ∼ (w2, ¬P; w1) 

 

Another way to motivate Condition 2 would be to say that (w1, P; w2) and (w2, ¬P; 

w1) are merely notational variants each representing the same object of preference; in 

this case, the condition will be satisfied by all preference orderings necessarily. In 

light of the other conditions, it implies that bel is such that bel(P) = 1 – bel(¬P). From 

GRS 1, we know that (w1, P; w2) ∈ G if and only if (w2, ¬P; w1) ∈ G; however, the 

axioms GRS 1–9 (plus Condition 1) are compatible with the agent valuing them 

differently (for essentially the same reasons just outlined). This leads us to the 

following result: 
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Theorem 4: Generalized Ramseyian measurement with order indifference 

If <W, P, G, ≽> is a generalized Ramsey structure and Condition 1 and 2 hold, 

then there is a function des: W ∪ G ↦ ℝ, and a function bel: P ↦ [0,1], such that 

such that for all α, β in W ∪ G, all w1, w2, w3, w4 ∈ W, all (w1, P; w2) ∈ G, and all P ∈ P, 

(a)  α ≽ β if and only if des(α) ≥ des(β) 
(b) (w1, w2) ≥d (w3, w4) if and only if des(w1) – des(w2) ≥ des(w3) – des(w4) 

(c) bel(W) = 1 and bel(∅) = 0 

(d) des((w1, P; w2)) = des(w1).bel(P) + des(w2).(1 – bel(P)) 

(e) bel(P) = 1 – bel(¬P) 

Furthermore, bel is unique and des is unique up to positive linear transformation 

 

Note that the fact that (w1, P; w2) and (w2, ¬P; w1) are distinct entities in G is an 

artefact of how we have formalized gambles, that is, as elements of W × P × W. 

Without changing the axioms and with almost no changes to the proof, it is entirely 

possible to characterize G as a set of one- or two-valued functions from W to W. On 

this formalization, (w1, P; w2) and (w2, ¬P; w1) will be the same object—that is, each 

will be a function f: W ↦ W such that f(w) equals w1 if w ∈ P, and w2 if w ∈ ¬P. From 

this, Condition 2 follows immediately from GRS 3. I have chosen to use the more 

general formalization, G ⊆ W × P × W, as it allows for the more general 

representation result of Theorem 3. If we desire that bel satisfies condition (e), 

Condition 2 is only a very weak additional constraint on preferences. 

It would also be possible to ensure that bel is monotonic, in the sense that if P ⊆ 

Q, then bel(P) ≤ bel(Q), if we add the following condition for all P, Q ∈ P: 

 

Condition 3: Monotonicity 

If P ⊆ Q, then for all w1, w2 ∈ W, (i) if w1 ≻ w2 and some (w1, Q; w2), (w’1, P; w’2) 

exists in G, then (w1, Q; w2) ≽ (w’1, P; w’2); (ii) if w2 ≻ w1 and some (w1, Q; w2), 

(w’1, P; w’2) exists in G, then (w’1, P; w’2) ≽ (w1, Q; w2) 

 

If Condition 3 holds and P is the power set of W, then bel is a Choquet capacity; that 

is, a function f: 2W ↦ [0,1] such that f(∅) = 0, f(W) = 1, and f(Q) ≥ f(P) whenever P ⊂ 

Q. GRS 1–9 plus Condition 1 and 3 thus form the basis for a version of Choquet 

expected utility theory (cf. Schmeidler 1989): 

 

Theorem 5: Ramseyian Choquet expected utility theory 

If <W, P, G, ≽> is a generalized Ramsey structure where P is the power set of W 

and Condition 1 and 3 hold, then there is a function des: W ∪ G ↦ ℝ, and a 

function bel: P ↦ [0,1], such that such that for all α, β in W ∪ G, all w1, w2, w3, w4 ∈ W, all (w1, P; w2) ∈ G, and all P, Q ∈ P, 

(a) α ≽ β if and only if des(α) ≥ des(β) 
(b) (w1, w2) ≥d (w3, w4) if and only if des(w1) – des(w2) ≥ des(w3) – des(w4) 

(c) bel(W) = 1 and bel(∅) = 0 
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(d) des((w1, P; w2)) = des(w1).bel(P) + des(w2).(1 – bel(P)) 

(f) If P ⊆ Q, bel(P) ≤ bel(Q) 

Furthermore, bel is unique and des is unique up to positive linear transformation 

 

Condition 2 and Condition 3 are independent; if both hold (and P is the power set of 

W), then bel will satisfy both conditions (e) and (f). 

Substantially more is required to ensure that bel is additive, and it is difficult to 

come up with conditions which are not simply direct assertions of the additivity 

requirement itself, or which do not involve gambles more complex than the simple 

two-outcome gambles we have considered so far. I am inclined to take bel’s potential 
lack of structure as a feature, not a bug. Plausibly, ordinary agents do not have 

probabilistically coherent degrees of belief, so any representation of credences which 

requires such coherence is flawed. The representation result of Theorem 3 is 

compatible with an extremely wide range of credence functions—although it does 

require that if P ∈ Π, then bel(P) = 0.5, and there must be at least one P ∈ Π.15 The 

result does imply that bel(∅) = 0 and bel(W) = 1, but it is noteworthy that these values 

for ∅ and W are entirely stipulative. Without this stipulation, bel’s uniqueness 
condition does not hold; however, bel on (P – W) – ∅ remains unique. It would be 

possible to set aside that stipulation and leave bel(∅) and bel(W) undefined. 

It is also important to note that the foregoing three representation results do not 

imply that the agent who satisfies the preference conditions can be represented as an 

expected utility maximizer generally. The simple reason for this is that satisfying 

GRS 1–9 and Condition 1, Condition 2, or Condition 3 is compatible with all kinds 

of preference patterns over more complex gambles. For instance, suppose that {P1, 

P2, P3} is a partition of W. Nothing about any of the above theorems implies that the 

desirability of the more complex gamble, (w1, P1; w2, P2; w3, P3), must be a function 

of the des values of the outcomes and the bel values of the propositions. In particular, 

the theorem does not imply that: 

 

des((w1, P1; w2, P2; w3, P3)) = des(w1).bel(P1) + des(w2).bel(P2) 

 + des(w3).bel(P3) 

 

In line with Ramsey’s suggestion that we only presuppose the adequacy of the theory 
of subjective expected utility maximisation for the kinds of cases that we are 

concerned with, the representation result is compatible with high degrees of 

irrationality for choices more complex than those between simple gambles of the 

form (w1, P; w2). Again, I take this to be a feature rather than a bug. Ordinary agents 

are not expected utility maximizers across the board, so it should not turn out that 

they can only be represented as such. 

 

5. Conclusions 

 
15 The reasoning of Sect. 2.3 essentially counts as a proof that if P is in Π, then bel(P) = 0.5. That 

there is at least one proposition in Π follows immediately from GRS 2 and Definition 8. 
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Despite its very early inception, there are several features that make Ramsey’s system 
attractive, especially in comparison to later works. The theory of cardinal utility 

developed by John von Neumann and Oskar Morgenstern (1944) was in some 

respects a rediscovery of ideas already present in ‘Truth and Probability’, but its 
appeal to extrinsic probabilities limits its applicability, whereas Ramsey’s system 

makes no such appeal and instead serves to characterize the agent’s subjective 
probabilities. 

Savage’s (1954) theorem was also founded on Ramseyian ideas, and like Ramsey, 

Savage attempted to derive both a utility function and subjective probabilities purely 

from an agent’s preferences. But Savage’s system suffers from defects not present in 
Ramsey’s system. Notably, Ramsey’s system does not seem to require the assumption 
of state neutrality, which is a crucial element of Savage’s system. Savage assumes 
that the desirabilities associated with outcomes (which are arbitrary objects or states 

of affairs in Savage’s system) are entirely independent of the wider circumstances in 
which those outcomes are instantiated. If an outcome were, say, going for a swim in 
the sea, then state neutrality requires that we would value this state of affairs to a 

particular degree regardless of whether it is cold out, whether we have been 

swimming recently, or whether there have been recent reports of vicious shark attacks 

nearby. The analog of assuming state neutrality in a Ramseyian system would be the 

assumption of naive expected utility theory, and we have seen that Ramsey does not 

make that mistake. Indeed, it is precisely because Ramsey recognized the falsity of 

this assumption that he introduced the notion of ethical neutrality. 

Furthermore, given the plausible assumption that Ramsey wanted to avoid 

impossible gambles (Sect. 4.3), the outcomes of a gamble are always consistent with 

the conditions of the gamble; consequently, Ramsey’s system seems to avoid the 
constant acts problem that plagues Savage’s formalization. Savage posits a set of 

functions from an infinite set of states into a distinct set of outcomes (intended to 

represent possible actions an agent might take), however he crucially assumes that so-

called constant acts exist—that there are actions we might perform which result in a 

particular outcome regardless of the state of the world we are in, even if that state of 

the world is incompatible with the outcome obtaining.16 

Of course, this is not to say that Ramsey’s gambles have an unequivocally clear 
interpretation (see Sect. 2.2, above). If we construe Ramsey’s measurement system as 
involving merely hypothetical judgements, as Bradley (2001) suggests, then perhaps 

we might read (w1, P; w2) as just a conjunction of subjunctive conditionals, 

 

If P were the case, then w1, and if ¬P were the case, then w2 

 

At least one problem arises from this interpretation, however. It seems plausible, as 

Jeffrey (1983) suggests, that the utility of a proposition should be a (credence) 

weighted average of the utilities of the worlds within it. Yet there is nothing in 

Ramsey’s eight axioms to guarantee that agents’ utilities for worlds (or near worlds) 

will align nicely with their utilities for the propositions that they are a part of. Of 

 
16 See Joyce 1999 (Ch. 3) for a damning discussion of the problem of constant acts in Savage’s 

work. 
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course, the same concern seems to apply to Theorem 1, perhaps suggesting the need 

for a further utility consistency condition if this interpretation is adopted. 

Finally, on the assumption that his representation conjecture holds, another 

attractive feature of Ramsey’s proposal is that it provides us with strong uniqueness 
results: if an agent satisfies Ramsey’s axioms and the further stated conditions, then 

there is a unique credence function bel, and a utility function des unique up to 

positive linear transformation, which jointly represents her preferences for two-

outcome gambles in expectational form. We might contrast this with Jeffrey’s (1983) 
expected utility theorem, where his pair of functions, <P, U> (analogous to our bel 
and des, respectively), is only unique up to a fractional linear transformation. 

All of this is achieved, however, on the basis of the highly problematic RAM 1 (or 

RAM 1*), which we have seen is untenable. For this reason, Theorem 1 constitutes a 

substantial advance over Ramsey’s proposed axiom system for the measurement of 

utilities, while Theorem 3, Theorem 4, and Theorem 5 together show that (as 

Ramsey suggested but never proved) we can use such utility scales to measure 

degrees of belief with only minimal additional commitments. These theorems have all 

the attractive features just noted of Ramsey’s system, without requiring the existence 

of ethically neutral propositions in any problematic sense. Certainly, there is no 

presupposition of the existence of ethically neutral propositions as Ramsey defined 

them (Definition 5), for we have made no use of logical atomism in setting out the 

theorems. And no proposition need non-trivially satisfy the highly questionable 

notion of ethical neutrality given in Definition 6; that is, there need not exist any 

contingent propositions P such that for all propositions Q that are compatible with 

both P and ¬P, (P & Q) ∼ Q ∼ (¬P & Q). Indeed, there need not even be any 

propositions that non-trivially satisfy the weaker Definition 7. 

There are, naturally, further problems to deal with in the construction of Ramsey-

style measurement systems. We have just seen that there are some concerns regarding 

the best interpretation of the elements of G. It is also clear that there is still plenty of 

de-idealization required: the application of the theorem requires knowledge of 

preferences between far too many (indeed, infinitely many) pairs of gambles and 

outcomes to ever gain empirical access to all of them—and the longer we take to 

empirically discover an agent’s preferences, the more likely her beliefs and desires 

are to change over time.17 Furthermore, the outcomes that make up W are far too fine-

grained to ever be fully conceptualized or described; we could never genuinely ask 

any person to consider whether they would prefer (w1, P; w2) over (w3, P; w4), if w1, 

w2, w3 and w4 are possible worlds. Relatedly, we have to contend with the idealizing 

assumption that if w1 implies P, then w1 ∼ (w1 & P). This requires a kind of logical 

omniscience on the part of our agent: a capacity to always recognize the logical 

equivalence of w1 and (w1 & P). Finally, we will need to say more about those 

circumstances where the existential commitments GRS 2 and GRS 9 fail, and what 

kind of representations can be had in such cases. 

It is difficult to see how we might complicate our axioms to encompass more 

realistic scenarios. Importantly, though, these are not issues specific to Ramsey’s 
proposal—in fact they arise quite generally for any attempt to construct a 

 
17 The Ramsey-style theorem of Davidson and Suppes 1956 was developed in part to deal with this 

problem. 
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measurement procedure on the basis of an expected utility representation theorem. 

We do know, however, that ethical neutrality is not a problem for this programme—
we simply do not need a notion of ethical neutrality to measure degrees of belief and 

desire in a manner much like Ramsey suggested.18 

 

6. Appendix 

The proof of Theorem 1 proceeds as follows. First, we show that GRS 1–7 jointly 

entail that <W × W, ≥d> is an algebraic difference structure, allowing us to invoke 

Theorem 2 giving us des on W. GRS 8 and GRS 9 are then used to extend des to W ∪ G, and it is shown that this provides us with an interval scale representation of ≽ on 

W ∪ G.19 

It will be helpful to establish some lemmas first: 

 

Lemma A: For every pair w1, w2 ∈ W, there is a (w’1, π; w’2) ∈ G 

 

1. Follows immediately from GRS 1 and GRS 2. ■ 

 

We thus know that universally quantified statements about possible gambles 

conditional on some ½ probability proposition are never trivially satisfied; so, for 

instance, where a step says ‘for all (w’1, π; w’4), (w’2, π’; w’3) ∈ G, (w’1, π; w’4) ≽ 

(w’2, π’; w’3)’, Lemma A ensures that at least one such pair of gambles exists in G. I 

will generally omit this step in what follows. Set memberships have been suppressed 

where obvious: henceforth we are only concerned with gambles in G. 

 

Lemma B: If (w’1, π; w’4) ≽ (w’2, π’; w’3) for some pair (w’1, π; w’4), (w’2, π’; 
w’3), then (w1, w2) ≥d (w3, w4) 

 

1. Suppose that (w’1, π; w’4) ≽ (w’2, π’; w’3) for some such pair. 

2. By Lemma A, some (w’’4, π’’; w’’1) exists, and by successive iterations of GRS 

4, (w’1, π; w’4) ∼ (w’’4, π’’; w’’1) and (w’’4, π’’; w’’1) ∼ (w’’’1, π’’’; w’’’4) for all 

such pairs. Because ∼ is an equivalence relation (GRS 3), (w1, π; w4) ∼ (w’’’1, 

π’’’; w’’’4) for all such pairs. 

3. By the same steps, we know that (w’2, π’; w’3) ∼ (w’’2, π*; w’’3) for all such 

pairs. 

4. So given our starting supposition, (w’’’1, π’’’; w’’’4) ≽ (w’’2, π*; w’’3) for all such 

pairs, which is just the right hand side of Definition 9. ■ 

 

Lemma C: If (w1, w2) ≥d (w3, w4), then (w4, w3) ≥d (w2, w1), and (w1, w3) ≥d (w2, w4) 

 
18 Thanks to Rachael Briggs, David Chalmers, Al Hájek, Hanti Lin, Wolfgang Schwarz, a 2014 

ANU PhilSoc audience, a 2014 Canberra AAP audience, and two anonymous referees at Mind for 

helpful feedback and discussion. 
19 Several of the steps in what follows owe much to Bradley 2001, especially Lemma C and the 

steps involving it. 
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1. Suppose (w1, w2) ≥d (w3, w4), so (w’1, π; w’4) ≽ (w’2, π’; w’3) for all such gambles. 

2. Lemma A ensures some (w’’4, π*; w’’1), (w’’3, π+; w’’2) exist, and by GRS 4, 

(w’’4, π*; w’’1) ∼ (w’1, π; w’4) and (w’’3, π+; w’’2) ∼ (w’2, π’; w’3). Substituting 

for equally valued gambles, we get (w’’4, π*; w’’1) ≽ (w’’3, π+; w’’2), which given 

Lemma B implies (w4, w3) ≥d (w2, w1). 

3. Likewise, (w’1, π; w’4) ≽ (w’’3, π+; w’’2), so (w1, w3) ≥d (w2, w4). ■ 

 

We can now show that ADS 1–5 follow from GRS 1–7. ADS 2 is simply the first 

part of Lemma C. Next we will prove that ≥d on W × W is complete: 

 

1. From Lemma A, for any two (w1, w4), (w2, w3), there exist (w’1, π; w’4), (w’2, π’; 
w’3). From GRS 3, either (w’1, π; w’4) ≽ (w’2, π’; w’3) or (w’2, π’; w’3) ≽ (w’1, π; 
w’4). 

2. Given Lemma B, if the former then (w1, w2) ≥d (w3, w4), and if the latter then (w3, 

w4) ≥d (w1, w2). So either (w1, w2) ≥d (w3, w4) or (w3, w4) ≥d (w1, w2). ■ 

 

We also prove that ≥d on W × W is transitive: 

 

1. Suppose that (w1, w2) ≥d (w3, w4) and (w3, w4) ≥d (w5, w6). 

2. From Definition 9, for all the relevant gambles, this implies that (w’1, π; w’4) ≽ 

(w’2, π’; w’3) and (w’3, π*; w’6) ≽ (w’4, π+; w’5). 

3. For any pair of gambles (w’’1, π’’; w’’6), (w’’2, π’’’; w’’5), GRS 5 then requires 

that (w’’1, π’’; w’’6) ≽ (w’’2, π’’’; w’’5), and (w1, w2) ≥d (w5, w6) follows from 

Lemma B. ■ 

 

So <W × W, ≥d> is a weak order and ADS 1 is satisfied. Next we show that ADS 3 is 

satisfied: 

 

1. Suppose (w1, w2) ≥d (w4, w5) and (w2, w3) ≥d (w5, w6). 

2. The second part of Lemma C applied to each conjunct entails (w1, w4) ≥d (w2, w5) 

and (w2, w5) ≥d (w3, w6). Because ≥d is transitive, (w1, w4) ≥d (w3, w6). So from 

Lemma C again, (w1, w3) ≥d (w4, w6). ■ 

 

ADS 4 is satisfied: 

 

1. Suppose (w1, w2) ≥d (w3, w4) ≥d (w1, w1). 

2. From GRS 6, for every triple w1, w3, w4, there is a w5 such that for some (w’1, π; 
w’4), (w5, π’; w’3) (ensured by Lemma A), (w’1, π; w’4) ∼ (w5, π’; w’3). Applying 

Lemma B, we see that there must be a w5 such that (w1, w5) =
d (w3, w4). 

3. Likewise, for every triple w3, w4, w2, there is a w6 such that (w’3, π; w’2) ∼ (w6, π’; 
w’4) for some such pair; so there is a w6 such that (w3, w4) =

d (w6, w2). ■ 
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And ADS 5 is also satisfied. The proof of this is trivial given GRS 7, and Definition 

9, and the definition of a strictly bounded standard sequence; it has therefore been left 

unstated. GRS 1–7 therefore imply that <W × W, ≥d> is an algebraic difference 

structure, which ensures the existence of des on W (unique up to positive linear 

transformation), such that: 

 

(w1, w2) ≥d (w3, w4) if and only if des(w1) – des(w2) ≥ des(w3) – des(w4)  

 

We appeal primarily to GRS 8 to show that des(w1) ≥ des(w2) if and only if w1 ≽ w2: 

 

1. From GRS 8, w’1 ∼ w1 if and only if, for all (w’’1, P; w’’’1), w1 ∼ (w’’1, P; w’’’1); 

and similarly, w’2 ∼ w2 if and only if, for all (w’’2, P; w’’’2), w2 ∼ (w’’2, P; w’’’2). 

2. Given GRS 3 then, w1 ≽ w2 if and only if (w’’1, π; w’’’1) ≽ (w’’2, π’; w’’’2) for all 

such gambles, which holds if and only if (w1, w2) ≥d (w2, w1). 

3. From Theorem 2, (w1, w2) ≥d (w2, w1) if and only if des(w1) – des(w2) ≥ des(w2) – 

des(w1), which can only be if des(w1) ≥ des(w2). So w1 ≽ w2 if and only if des(w1) 

≥ des(w2). ■ 

 

We further require that des is defined on W ∪ G. From GRS 9, we know that for 

every (w1, P; w2) there is a w3 such that (w1, P; w2) ∼ w3. We can achieve the desired 

extension by making the following stipulation: 

 

For all w3, (w1, P; w2) ∈ W ∪ G, des((w1, P; w2)) = des(w3) if and only if (w1, P; w2) ∼ w3 

 

The proof that condition (a) of Theorem 1 then holds is trivial and left unstated. The 

uniqueness properties of des on W will also clearly hold for des on W ∪ G. The 

foregoing thus establishes Theorem 1. 

To prove Theorem 3, we need to show that Definition 14 provides us with a 

unique function bel that satisfies the stated properties. There are three parts to proving 

this. First, we need that we will always be able to find worlds and gambles satisfying 

the definition’s conditions. Second, we need to show that the bel(P) is independent of 

the choice of worlds and gambles satisfying the definition; along with the first step 

this will ensure that bel is a function with domain P. Finally, we show that the range 

of the function is [0,1]. 

 

1. By stipulation, if P = ∅ then bel(P) = 0; and if P = W, then bel(W) = 1. Thus we 

are only concerned with bel(P) for contingent propositions, which must contain at 

least one member. 

2. Given GRS 2 and Definition 8, ≻ on W is non-trivial. Let w1 and w2 be two 

outcomes such that ¬(w1 ∼ w2). There are then three possibilities: for any 

contingent proposition P, either P contains both w1 and w2, or ¬P does, or P and 

¬P contain one of w1 and w2 each. 
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3. If either P contains both outcomes, given GRS 3, its negation must contain at 

least one world w3 such that either ¬(w1 ∼ w3) or ¬(w2 ∼ w3). Likewise if ¬P 

contains both outcomes. If P and ¬P contain one of w1 and w2 each, we already 

know that there are worlds in P and in ¬P such that the agent is not indifferent 

between them. In any case, then, for any contingent proposition P, given GRS 1, 

there will be at least one gamble of the form (w1, P; w2) where ¬(w1 ∼ w2). 

4. That bel(P) is independent of the choice of worlds and gambles satisfying the 

antecedent conditions follows immediately from Condition 1. 

5. The range of bel is [0,1]: from GRS 8 and GRS 3, for all (w1, P; w2), either w1 ≽ 

w2 and w1 ≽ (w1, P; w2) ≽ w2, or w2 ≽ w1 and w2 ≽ (w1, P; w2) ≽ w1. Given the 

established properties of des, we know des(w1, P; w2) always sits somewhere 

weakly between des(w1) and des(w2). It follows that the ratio of the difference 

between des((w1, P; w2)) and des(w2) and the difference between des(w1) and 

des(w2) will always be within [0,1]. ■ 

 

We now prove that bel is such that des((w1, P; w2)) = des(w1).bel(P) + des(w2).(1 – 

bel(P)): 

 

1. Suppose first that w1 ∼ w2; then, by reasoning noted above, des(w1) = des(w2) = 

des((w1, P; w2)). Let des(w1) = x. The required equality then holds just in case x = 

x.bel(P) + x.(1 – bel(P)); we have already noted that bel(P) ∈ [0,1], so this is true 

regardless of the value of bel(P). 

2. Suppose next that ¬(w1 ∼ w2). From Definition 14, bel(P) = (des((w1, P; w2)) – 

des(w2)) / (des(w1) – des(w2)), which holds if and only if  

(des(w1) – des(w2)).bel(P) = des((w1, P; w2)) – des(w2) if and only if  

des((w1, P; w2)) = des(w1).bel(P) – des(w2).bel(P) + des(w2) if and only if  

des((w1, P; w2)) = des(w1).bel(P) + des(w2).(1 – bel(P)). ■ 

 

Finally, bel is unique: 

 

1. From the earlier proofs and the fact that ratios of differences are preserved across 

admissible transformations of des, we know that there is only one function bel on 

P such that bel(W) = 1, bel(∅) = 0, and for any contingent P, if w1, w2 are such 

that ¬(w1 ∼ w2) and (w1, P; w2), then bel(P) = des((w1, P; w2)) – des(w2) / des(w1) 

– des(w2). 

2. We have also already established that the previous equality holds if and only if 

des((w1, P; w2)) = des(w1).bel(P) – des(w2).bel(P) + des(w2). Since there is only 

one function satisfying the left-hand side, only one satisfies the right-hand side. ■ 

 

The foregoing establishes Theorem 3. Next we prove Theorem 4. Clearly, assuming 

that <W, P, G, ≽> is a generalized Ramsey structure and Condition 1 holds, the only 

thing we need to prove here is that if Condition 2 holds then  bel(P) = 1 – bel(¬P).20 

 

 
20 Thanks to Rachael Briggs for the main outline of the following proof. 
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1. bel(W) = 1 and bel(∅) = 0 by stipulation, so we are only interested in contingent 

P. 

2. As already shown, for all contingent P, there is some (w1, P; w2) such that the 

ratio (des((w1, P; w2)) – des(w2)) / (des(w1) – des(w2)) is defined (i.e. such that 

¬(w1 ∼ w2)). From Theorem 3, this is the value of bel(P). 

3. From GRS 1 and since P is closed under negation, if (w1, P; w2) is in G then (w2, 

¬P; w1) is in G; thus bel(¬P) = (des((w2, ¬P; w1)) – des(w1)) / (des(w2) – des(w1)). 

Multiplying the denominator and the numerator by –1 gets us bel(¬P) = (des(w1) 

– des((w2, ¬P; w1))) / (des(w1) – des(w2)). 

4. Condition 2 ensures (w1, P; w2) ∼ (w2, ¬P; w1), so des((w1, P; w2)) = des((w2, ¬P; 

w1)). 

5. Let des((w1, P; w2)) = x. Given the foregoing, bel(P) + bel(¬P) is equal to: 

((x – des(w2)) / (des(w1) – des(w2))) + ((des(w1) – x) / (des(w1) – des(w2))) 

= (x – w2 + w1 – x) / (w1 – w2) = (x – x + w1 – w2) / (w1 – w2) 

= (w1 – w2) / (w1 – w2) = 1. Condition (e) of Theorem 4 follows immediately. ■ 

 

Finally, we can prove Theorem 5. As before, given Theorem 3, the only thing we 

need to prove here is that if Condition 3 holds along with the other conditions then 

bel is monotonic. 

 

1. If P = ∅, then by stipulation, bel(P) = 0 and for all Q, bel(P) ≤ bel(Q). If Q = W, 

then bel(Q) = 1 and for all P, bel(P) ≤ bel(Q). Thus suppose that P and Q are 

contingent and P ⊆ Q. 

2. From Condition 3, for all w1, w2, if some (w1, Q; w2), (w’1, P; w’2) exist, then: if 

w1 ≻ w2, (w1, Q; w2) ≽ (w’1, P; w’2), and if w2 ≻ w1, (w’1, P; w’2) ≽ (w1, Q; w2). 

3. We know from steps proven above that for all contingent Q, we will find at least 

one pair w1, w2 such that either (a) w1 ≻ w2 and (w1, Q; w2) exists, or (b) w2 ≻ w1 

and (w1, Q; w2) exists. Given either (a) or (b), there are only two possibilities: 

(w’1, P; w’2) exists in G, or it does not. 

4. Suppose (a) is true, and that (w’1, P; w’2) exists; thus (w1, Q; w2) ≽ (w’1, P; w’2) 

and therefore des((w1, Q; w2)) ≥ des((w’1, P; w’2)) and des(w1) > des(w2). With 

the established properties of bel, the former (weak) inequality implies 

des(w1).bel(Q) + des(w2).(1 – bel(Q)) ≥ des(w1).bel(P) + des(w2).(1 – bel(P)). 

This can only hold given the latter (strict) inequality if bel(Q) ≥ bel(P). 

5. Suppose now that (b) is true, and that (w’1, P; w’2) exists. By the same steps as 

just given, des(w1).bel(P) + des(w2).(1 – bel(P)) ≥ des(w1).bel(Q) + des(w2).(1 – 

bel(Q)) and des(w1) > des(w2), which can only hold if bel(Q) ≥ bel(P).  

6. So given either (a) or (b) and the assumption that (w’1, P; w’2) exists, bel(Q) ≥ 
bel(P). 

7. Assume now instead either (a) or (b), and that (w’1, P; w’2) is not in G. Because 

(w1, Q; w2) is in G and all members of ¬Q are members of ¬P, we know that there 

is some w’2 ∈ ¬P. Thus (w’1, P; w’2) ∉ G only if there is no w’1 ∈ P. Since all 

members of P are members of Q, Q must contain members of multiple values. 

8. All w ∈ P must be such that for all w’ ∈ ¬Q, w ∼ w’; if instead ¬(w ∼ w’), then 

since any member of P is also in Q and any member of ¬Q is also in ¬P, we 
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would have w ≻ w’ and (w, P; w’), (w, Q; w’) in G or w’ ≻ w and (w, P; w’), (w, 

Q; w’) in G, contradicting the earlier supposition. Given this, Q must contain all 

w ∈ W such that ¬(w ∼ w’), for any w’ ∈ P. 

9. Given GRS 2, all ∼-equivalence classes of worlds contain at least two members; 

thus, for any w1 ∈ Q and w2 ∈ P such that w1 ≠ w2 and furthermore ¬(w1 ∼ w2), 

there is a w’1 ∈ Q which is not in P. Let R be the proposition which contains all 

members of P, and w’1 but not w1. Thus, P ⊂ R ⊂ Q. As P is the power set of W, 

R ∈ P. 

10. We now know that for some w1, w’2, w1 ≻ w’2 and (w1, Q; w’2), (w’1, R; w’2) 

exist, or w’2 ≻ w1 and (w1, Q; w’2), (w’1, R; w’2) exist. By the steps given earlier, 

bel(Q) ≥ bel(R). We also know that for some w1, w2, w1 ≻ w2 and (w2, R; w1), (w2, 

P; w1) exist, or w2 ≻ w1 and (w2, R; w1), (w2, P; w1) exist. By the same steps, then, 

bel(R) ≥ bel(P). By transitivity, bel(Q) ≥ bel(P). ■ 
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