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Abstract: Most daily driving tasks are of low bandwidth and therefore the relatively slow visual system 

receives enough cue information to perform the task in a manner that is statistically indistinguishable 

from reality. On the other hand, evasive maneuvers are of such a high bandwidth that waiting for the 

visual cues to change is too slow and skilled drivers use steering torques and vestibular motion cues to 

know how the car is responding in order to make rapid corrective actions. In this study we show for 

evasive maneuvers on snow and ice, for which we have real world data from skilled test drivers, that the 

choice of motion cuing algorithm (MCA) settings has a tremendous impact on the saliency of motion 

cues and their similarity with reality. We demonstrate this by introducing a novel optimization scheme to 

optimize the classic MCA in the context of an MCA-Simulator-Driver triplet of constraints. We 

incorporate the following four elements to tune the MCA for a particular maneuver: 1) acceleration 

profiles of the maneuver observed in reality, 2) vestibular motion perception model, 3) motion envelope 

constraints of the simulator, and 4) a set of heuristics extracted from the literature about human motion 

perception (i.e. coherence zones). Including these elements in the tuning process, notwithstanding the 

easiness of the tuning process, respects motion platform constraints and considers human perception. 

Moreover the inevitable phase and gain errors arising as a major consequence of MCA are always kept 

within the human coherence zones, and subsequently are not perceptible as false cues.  It is expected that 

this approach to MCA tuning will increase the transfer of training from simulator to reality for evasive 

driving maneuvers where students need training most and are most dangerous to perform in reality.   

Keywords:  Driver maneuvers, motion cueing, optimization, coherence zone, simulator based training.  

 

                              1. INTRODUCTION 

1.1 Simulator Applications 

Using a simulator as a virtual reality tool has diverse 

applications, such as training, research on driver/pilot 

behaviour, and the vehicle design procedure. Employing 

simulators has many advantages over the real world, it is cost 

effective and safer in hazardous conditions, and provides 

repeatable measurement and assessment on driver behaviour 

such as steering, pedal, engine profiles, vehicle motions, 

handling quality, etc. in diverse virtually prepared driving 

scenarios. It also provides easy control of variables such as 

traffic, weather, light timing, etc. during tests which cannot 

be experienced and measured repeatedly on road experiments 

(Carsten and Jamson, 2011). In other words, the availability, 

repeatability and controllability of driving variables with 

lower costs and risks has made simulators a vital tool for 

research and training and has motivated development of 

simulators in different configurations, sizes and cost.   

In car manufacturing companies, advances in virtual vehicle 

design achieved through improved modelling accuracy of 

vehicle elements (e.g. vehicle dynamics) prior to prototype 

manufacturing has raised the application of driving 

simulators. Analytical design methods imply reduction of 

physical prototyping and the increased predictive capability 

of simulation tools. If this vision is to be realised, then the 

process of analytical design and verification needs to 

encompass not just the physical dimensions of component 

and system functionality, but also the perceptual experience 

from the driver�s and passengers� perspective. One of the 

goals of the Programme for Simulation Innovation (PSi) is 

addressing how realistic simulators need to be to serve as a 

virtual prototyping tool, and what characteristics are 

necessary for it to be a reliable tool for virtual design 

evaluation.  These questions are similar to those in training: 

what simulator characteristics are needed for it to serve as a 

viable alternative to real world training.   

1.2 Simulator Motion Cuing Fidelity 

While driving a vehicle on the road, a driver uses different 

visual, motion, aural and haptic cues to know absolute 

vehicle states as well as vehicle states relative to constraints 

in the environment.  In other words, these cues affect driver 
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perception and shape the resulting driver behaviour (Hosman, 

1996). Simulators try to replicate driving cues in a virtual 

environment.  The similarity between these real world cues 

and their representation in simulators plus the informational 

value of these cues for the driving task at hand dictate the 

similarity between real world and simulator driving 

behaviour.  Cue similarity is one measure of simulator 

fidelity.  Many definitions of simulator fidelity are proposed 

(Heffley et al. (1981)).  The fidelity of a training simulator is 

explained as a quality of the simulator that permits skilled 

pilots to perform a flying task in the same way that it is 

performed in the real aircraft. Apparently, among all cues, the 

visual and motion cues play more of a determinative role in 

the fidelity of simulators, especially in evasive manoeuvres 

with a disturbance. 

This paper focuses on motion cuing and its limitations 

resulting in simulator fidelity reduction. Due to the fact that 

the vehicle motions are available to pilots/drivers in 

aircraft/car, intuitively motion cueing is necessary to be 

available in simulators to have a training effect similar to real 

world training. It is proved by many authors that motion 

cuing is absolutely necessary to achieve acceptable training 

transfer of aircraft control in simulators (Mulder et al., 2004).  

1.3 Simulator Components and Limitations  

The discrepancy between driving simulators and the real 

world in terms of representing the motion cues originates 

from three main components in simulators that have an 

impact on motion cuing: the vehicle model, motion cueing 

algorithm (MCA) and the simulator�s motion platform (MP). 

The vehicle model is generating the vehicle motion outputs 

(displacements, velocity and accelerations) with respect to 

the driver control input (steering, throttle, brake). In the ideal 

case the vehicle accelerations should be replicated identically 

by the MP, but due to the limited physical capabilities of an 

MP not all of the desired motions can be rendered one to one. 

The MCA is mainly designed to take care of the MP�s 

limitation i.e. representing the vehicle motions while keeping 

them within the MP�s motion envelope. As a result, the 

vehicle motions pass through the MCA and then to the MP. 

Both the MCA and MP are added to the dynamics of the 

controlled system (vehicle model) and the driver perceives 

the controlled system as the combination of these three.   

 

Fig. 1. Classic MCA used in this study 

The most commonly used MCA in simulators is a classical 

algorithm which is a combination of scale factors, high and 

low pass filters and limiters as its main components. The 

classic MCA was first introduced by (Conrad and Schmidt, 

1970) for flight simulator as a solution for to compromise 

between one to one acceleration rendering and motion system 

constraints. A comprehensive description about its concept 

and function is provided by Grant and Reid, (1997). Various 

combinations of filters with different orders have been 

employed in literature which are selected depending on the 

end value theorem of filter responses and presence or absence 

of washout behaviour in them (Reid and Nahon, 1985). This 

study uses the one shown in Fig. 1. 

The selection of parameters for the digital filters in MCA is 

called tuning the algorithm which is a trade-off between 

maximizing cue reproduction while eliminating motion 

commands that are outside the envelope and capability 

constraints of the MP. The classical MCA is usually tuned 

before the start of the simulation for the worst-case scenario 

so that the MP does not exceed its envelope and performance 

capability while representing the maximum portion of vehicle 

motions to participants. Consequently, there is an inevitable 

discrepancy that MCA adds in motion cueing in simulators, 

which can be captured in time domain motion cuing 

amplitude error or in the frequency domain�s phase and gain 

error between the vehicle motion output and MP�s motion 

output (Romano, 2003).  

1.4 Motion Perception and Coherence Zones   

Motion perception about position and velocity is mainly 

received through the visual system, while perception about 

acceleration is received through the vestibular system. It 

provides information for the sense of balance and spatial 

orientation of the body to support movement. The vestibular 

system consists of a semi-circular canal (SCC) and Otolith 

that are sensors of rotational and translational accelerations 

respectively. There has been much prior research into 

addressing the characteristics, thresholds and modeling of the 

Otolith and SCC.  This paper will use the Otolith model 

which is employed by Telban and Cardullo (2005) in 

developing their cuing algorithm which is described in (1). 

The f� is the sensed specific force which is related to 

stimulus specific force f , the input to Otolith model.  A 0.4 

gain takes care of the acceleration perception threshold.   
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However, in driving, the motion cue is never alone and it is 

always coupled with visual cues. It has been the subject of 

study for many years to address the maximum undetectable 

phase and amplitude distortion (coherence zones) between 

the visual and motion cues in flight simulators, to find out 

how this discrepancy between visual and motion cues affect 

the driver sensation, perception, control performance and 

behaviour in simulators. The amplitude coherence zone refers 

to the range of motion cue magnitude attenuation that, 



 

 

 

     

although not being a perfect match to the visual cue is still 

perceived by drivers to be coherent.  A similar definition 

exists for phase coherence zone. It is shown that coherence 

zones are both functions of visual cue amplitude and 

frequency (Valente Pais, 2013).  Much more research is 

needed however to understand the effect of active control on 

these coherence zones as well as the effect of natural 

perturbations.  

An example for the amplitude coherence zone for the sway 

motions is represented in Fig. 2.  It shows the amplitude 

coherence zones as coloured bars for two visual acceleration 

amplitudes of 0.1 and 1 m/s
2
 in three frequencies of 2, 3, 5 

rad/s on horizontal axis, and motion gain on vertical axis.  

The range of bars shows the zones. The trends in the data 

shows that both the upper and lower threshold gains decrease 

slightly with increasing frequency and the gains are lower for 

the highest amplitude of the visual cue (i.e. the coherence 

zone is narrower for stronger visual signals).    

  

Fig. 2. Coherence zones represented as the maximum and 

minimum motion gains obtained from the threshold values, 

across all amplitudes and all sway motion, reproduced from 

(Valente Pais, 2013).   

Knowledge of motion perception coherence zones helps to 

find the best MCA tuning settings for a motion platform 

because it provides more freedom to address the motion 

platform minimum requirement. This paper focuses on the 

classical MCA and tuning its parameters through a 

mathematical optimization approach that considers both 

limitations of the motion platform as well as the coherence 

zones. The parameter tuning is undertaken for a near limit 

slalom manoeuvre. The whole parameter optimization 

procedure is novel because it includes temporal matching to 

target accelerations, MP constraints and coherence zones. 

Section two describes the methodology for optimization 

which is followed by the presentation of results and in section 

three there is a discussion and conclusion. 

              2. METHODOLOGY AND RESULTS 

2.1 Tuning Approaches  

The MCA parameter tuning is a mathematical process among 

the driving tasks, vehicle dynamic, MCA and MP to come up 

with a set of parameters that minimizes the motion cuing 

errors between virtual and real world, while also taking into 

account human perception and behaviour. Considering driver 

behaviour to find the parameters is a closed-loop approach.  It 

means in a driving task the driver senses the feedback of the 

motion cues in the simulator to actively perceive the cues and 

gains an understanding about current and future vehicle 

states, and then performs an action to control the vehicle. 

Conversely, tuning for passive human perception is 

considered as open-loop because no active driver control is 

required and the driver sits in the simulator without 

controlling the vehicle. 

Trial and error can be used to take the driver/pilot perception 

into account for finding the MCA parameters.  Different 

parameter settings can be implemented in the simulator and 

the drivers asked about their perception about the different 

settings to draw a conclusion.  This needs a lot of effort and 

in the end may not get to a solid conclusion about realistic 

settings.  Alternatively, the candidate settings can be found 

through offline analysis.  This needs to have all the real world 

elements of the human and simulator modelled and integrated 

in an offline open-loop (i.e. for now without a driver model 

that can predict the effect of different MCA settings on 

control behaviour) analysis environment, incorporating 

models of human perception, vehicle characteristics, MCA, 

motion platform, and coherence zone thresholds. Accurate 

models of all components are available in the literature to 

allow offline tuning.  

2.2 Optimization Process  

As can be seen in Fig. 4 all the models are prepared a priori 

and integrated in an offline optimization environment in 

Matlab/Simulink. Vehicle motions are the real vehicle 

motions measured from an instrumented Jaguar S-Type car 

driven on ice-lake test tracks in Sweden with low friction 

conditions by Jaguar Land Rover professional drivers.  The 

vehicle acceleration profiles are measured both by an inertial 

measurement unit (IMU) and GPS data. Figure 3 shows the 

acceleration profiles for the slalom task for different drivers. 
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Fig. 3. Lateral acceleration profiles of three participants in 

Slalom task 



 

 

 

     

The classic MCA as described in the previous section is 

employed in the optimization. It is tuned for the lateral 

translational channel that incorporates the hexapod and 

sliding rail and avoids activating the tilt-coordination in the 

optimal tuning process. The reason for this is to use the MP 

as much as possible without relying on tilting to represent the 

motions to the driver, as well as the fact that the 5m wide 

sliding rail of the MP is capable of handling the tasks in sway 

direction acceptably without the need for tilting (Jamson, 

2010). The parameters of the MCA are the cut-off 

frequencies of the filters which are shown in Fig. 1, by 

w_hp1_hex which means cut-off frequency of first high pass 

filter of hexapod, and the scale factors, these are in fact the 

input variables of optimization shown in Fig. 4, and the 

damping ratio for all filters have the same value of 1. 

Allowing this parameter in the optimization would add more 

complexity to the optimization, but may improve results.  

The comparison between target acceleration profiles and 

MCA produced acceleration profiles is performed after these 

profiles are passed through the vestibular model to assure that 

the comparison is performed based on what humans can 

actually perceive.  The red arrows in Fig. 4 indicate that the 

frequency range of the manoeuvre is used to place extra 

emphasis on assuring that those frequencies are reproduced 

well.  For the frequency based constraints a bode plot of the 

MCA plus MP plus Vestibular System is generated each 

iteration.   

 

Fig 4. Optimization Process.   

The motion platform model of the University of Leeds 

driving simulator (Jamson, 2010) is developed from 

measured inertial measurement unit (IMU) responses of the 

platform in each single degree of freedom independently. 

They are modelled as transfer functions that were generated 

from the data. The motion platform�s hexapod also has a 

cross-coupling which means that excursions in one direction 

limit the motion envelope available another direction. 

However the MCA is being tuned only in its single lateral 

acceleration channel so that the MP�s model reflects the real 

MP�s performance. The MP�s motion envelope constraints 

are also considered in the optimization to find the MCA 

parameters.  The otolith model was introduced earlier and 

shown in (1).  

The optimization cost function is a combination of goals and 

constraints.  The constraints detailed below need to be 

satisfied and once they are the goal should be met as well as 

possible.  If the constraints cannot be satisfied by the 

optimization, then the constraints need to be relaxed until 

they can be met.  The only goal is the squared error between 

an observed real world slalom acceleration profile and the 

accelerations produced by the MCA.  Two types of 

constraints are incorporated.  The first is that the position of 

the hexapod and the sliding rail do not exceed their hard 

lateral motion limits ( 2.5m±  for rail and 0.318m±  for the 

hexapod).  The second is a set of gain and phase tolerance 

ranges around the optimal gain of 0dB (unity) and the 

optimal phase of zero degrees.  These gain and phase 

tolerances can be used to encode the coherence zones (more 

research is needed to produce those for driving manoeuvres).  

Here we provide a proof of concept demonstration that the 

optimization is capable of tuning the free MCA parameters 

such that imposed phase and gain tolerances are satisfied.  

The green lines in Fig. 5 depict a 5dB gain tolerance and a 30 

degree phase tolerance between 0.16Hz and 10Hz in the bode 

plots.  Note that this frequency range should ideally span the 

frequencies that occur in the real world manoeuvre (as they 

do for the slalom here).  Outside this frequency range the 

gain tolerance is 100dB and the phase tolerance 300 degrees.   

All the information in Fig. 2 is for sway in a passive task and 

it is available for only a few frequencies and amplitudes of 

the visual stimuli. As can be seen from Fig. 3 the frequency 

of the slalom driving task is around 0.2 Hz or 1.26 rad/sec 

and the amplitude 4 m/s
2
.  These are the visual frequencies 

and amplitudes to use for extracting the coherence upper and 

lower boundaries from Fig. 2 and as can be seen the 

corresponding data in not available in the figure. Therefore 

data collection is required for the phase and amplitude 

coherence zones in the slalom manoeuvre�s amplitude and 

frequency.   This will be subject of future research. 

To incorporate coherence zones into the optimization, a 

unique cost function is developed by including the 

optimization goals as described in (2). The first line of the 

cost function carries the responsibility of minimizing the 

temporal difference between the target real world 

acceleration (slalom here) and the accelerations of the motion 

platform.  The superscript p indicates that these accelerations 

are compared after passing through the vestibular model.  A 

weight w0 is assigned to the acceleration error.  The next line 

forces the gain error in dB to zero and the phase error in 

degree to zero.  The frequency range over which this is 

performed should match the frequency range observed in the 

manoeuvre.  Below we provide an alternative solution to gain 

and phase fitting.  The final two lines take care of hexapod 

and sliding rail position envelope constraints using 

exponential functions. The functions work in a way that when 

the MB is getting closer to the boundaries the exponential 

functions increase the values in the cost function and results 

in a change of input parameters to avoid hitting boundaries. 

There are also different weights available separately for 

hexapod and sliding rail i.e. w3 and w4 which shows how 

steep the exponential functions would behave near the 

boundary. By increasing the w3 and w4 weights the response 



 

 

 

     

of the exponential function gets steeper.  Practically these 

exponential weights can be large as long as they do not cause 

numerical overflow errors.   
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Given that the MCA is a combination of filters that together 

should produce a transfer function with unity gain (0dB) and 

zero phase because then reality is veridically replicated.  

However, a completely flat response over a wide frequency 

range is practically impossible.  It is therefore important to 

focus on the frequencies in the target manoeuvre as well as 

the human tolerances in noticing phase and gain error.   

 

Fig. 5.  Result of MCA filter and scale factor tuning using 

time and frequency constrained optimization for a low 

friction slalom manoeuvre.  The green lines indicate the 

hypothetical gain and phase coherence tolerances across 

frequencies present in a slalom manoeuvre.   

In the previous cost function (2) the weights w1 and w2 need 

to be selected which is less than trivial.  Since we can capture 

the coherence zones in terms of gain and phase tolerances 

(again research is needed to establish this for driving), the 2
nd

 

line in cost function (2) can be replaced by (3).   
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The maximum and minimum gain and phase tolerances that 

assure coherence between visual and vestibular perception of 

the vehicle motion, can take on complex forms; here we 

adopt for sake of demonstration the forms show in green in 

the bottom two panels of Fig. 5.   

The optimization was run for the slalom manoeuvre in Fig. 3; 

the results of which are presented in Fig. 5 and 6 as well as 

Table 1. The top panels in Fig. 5 show accelerations and 

displacements of the real vehicle, the MP�s hexapod, sliding 

rail and both together are shown in time domain. In the 

bottom panels the frequency response of the integrated model 

between the red arrows in Fig. 4 are shown.  It is clear that 

the optimization was able to adjust the filter parameters and 

scale factors such that the gain and phase constraints were 

met.  In other words, the transfer function of MCA+MP 

passed through the vestibular model is sufficiently flat (i.e. 

according to assumed coherence gain and phase tolerances) 

within the frequency range relevant for the target slalom 

manoeuvre. From Fig. 6 it is clear that the position 

constraints on the rail and hexapod were also satisfied.  

 

Fig. 6. Hexapod and sliding rail position, velocity and 

acceleration profiles generated for the target slalom 

manoeuvre; see text and Fig 5 caption for more details.   

The filter coefficients and scale factors resulting from the 

optimization are detailed in Table. 1.  It is important to note 

that the scale factors were free parameters in the optimization 

and that their final values are not unity.  The reason is that for 

the chosen frequency range (green constraints in Fig. 5), in 

order to reproduce the lowest frequency with a gain that 

deviates no more than 5dB from the optimal 0dB and a phase 

that deviates no more than 30 degrees from the optimal zero, 

it was only possible to do so with a scale factor of 0.88 on the 

rail without violating its excursion constraints.  If the lowest 

frequency in the green coherence profile is increased, unity 



 

 

 

     

scale factors can be achieved which means only over the 

�green� frequency range.   

Table 1. Optimization parameter results for slalom. 

       Sliding Rail Filters         Hexapod Filters 

Cut-off frequency (rad/sec) 

  Ȧ_hp1_xy   0.1110  Ȧ_hp1_hex 1.1382 

  Ȧ_hp2_xy   0.0994  Ȧ_hp2_hex 5.6813 

  Ȧ_lp1_xy 20.6424   

                                      Scale factor 

Scale factor 0.8814 Scale factor 0.7525 

 

The adopted approach gives more freedom to the 

optimization process to choose the parameter settings that 

satisfy the phase and gain thresholds because within these 

phase and gain tolerance the optimization can shift cut-off 

frequencies around and manipulate scale factors such that an 

acceptable ripple in the overall transfer function is achieved 

(akin to digital filter design).   

               3. DISCUSSION AND CONCLUSIONS 

A novel optimization scheme for tuning classical MCA was 

developed to overcome the main difficulties accompanying 

current MCA tuning process, such as needing a lot of trial 

and error to find a solution that satisfies all constraints.  The 

introduced tuning scheme integrates task (acceleration time 

series), motion platform (excursion constraints) and human 

perception (gain and phase tolerances in motion rendering 

transfer function).  The optimization has no cost function 

terms to trade off because it has no weights to select.  The 

weights on the exponential constraint terms should be high 

(we used 500) so that once the constraints are satisfied, these 

terms do no longer impact the overall cost within the 

satisficing domain.  Within this satisficing domain, the only 

operating cost term is error between observed and generated 

acceleration profiles and thus any weight results in the same 

minimum point.   

The method must be further extended to cover many other 

issues, such as including the tilt coordination channel and 

variable damping ratio into the optimization. Also all of the 

motion channels need to be tuned at the same time to take 

into account the limitation of simultaneous excursions of the 

motion platform. Moreover, to include the coherence zones 

into the analysis, data needs to be collected experimentally 

for different driving tasks in at least the surge, sway and yaw 

channels, because the available data in literature are limited 

to a few flying manoeuvres. We expect that by collecting the 

coherence zone data and including it in optimization and 

finding the filter parameters MCA parameters can be 

automatically obtained that yield high quality motion 

rendering.  To confirm these expectations, a series of 

experiments will be conducted in the University of Leeds 

Driving Simulator (Jamson 2010).   

As a cautionary note, it is good to recognize that using this 

tuning method with coherence zones does not guaranty the 

simulator to be of high fidelity because the MP may not have 

enough capability to reproduce the motion without false cues.  

However we can be sure that in employing the classical MCA 

for a MP we cannot get any higher motion cuing fidelity 

(gain and phase errors within coherence zone). Future 

research could extend the algorithm to also address the 

necessary MP size and capability to be suitable for virtual 

training and prototyping.  Within the EPSRC/JLR 

Programme for Simulation and Innovation we aim to put task 

specific numbers on otherwise nebulous terms such as 

fidelity.   
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