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Maximum Common Subgraph Isomorphism 

Algorithms: A Review 

 

Edmund Duesbury1, John D. Holliday2 and Peter Willett2 

 

 

Abstract 

Maximum common subgraph (MCS) isomorphism algorithms play an important role in 

chemoinformatics by providing an effective mechanism for the alignment of pairs of 

chemical structures.  This article discusses the various types of MCS that can be identified 

when two graphs are compared and reviews some of the algorithms that are available for this 

purpose, focusing on those that are, or may be, applicable to the matching of chemical 

graphs.   

 

1. Introduction 

 

A common requirement in chemoinformatics is the ability to align pairs of molecules to 

identify the degree of structural overlap that they have in common, for applications such as 

identifying chemical reaction sites [1], bioactivity prediction of compounds [2], and 

exploring structure-activity relationships [3] inter alia.  The molecules in chemoinformatics 

systems are normally represented as graphs and the degree of overlap can hence be identified 

by means of techniques from graph theory, specifically by the use of maximum common 

subgraph (MCS) isomorphism algorithms.  

 MCS algorithms are used not only in chemoinformatics but also in other disciplines 

(such as malware detection, protein function prediction and pattern recognition inter alia [4-

6]) with the result that many different MCS algorithms have been reported in the literature.  

Our interest in this topic has been in the context of aligning 2D molecules [7], where one 

seeks to maximise the overlap of atoms and bonds, but the procedures to be described here 

are also applicable in many cases to the alignment of pairs of 3D molecules [8].  
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 This paper discusses a range of algorithms for detecting the MCS between pairs of 

graphs, and hence provides an update to previous reviews of MCS algorithms that have been 

used in chemoinformatics [9, 10].  The paper is structured as follows.  The next section 

introduces basic graph notions, and describes different types of MCS that can be identified 

when two graphs are compared.  There is then a description of cliques, modular products and 

graph colouring, three concepts that underlie many important MCS algorithms.  The fourth 

section focuses on the use of clique-detection algorithms, and this is followed by descriptions 

of several non-clique methods.   

 

2. Basic definitions 

 

We begin our description of MCS algorithms with basic definitions and concepts in graph 

theory [11].  A graph, G, is defined as G = (V, E), where V and E represent the vertices (or 

nodes) and edges, respectively.  An edge connects two adjacent vertices; thus, if two vertices 

v1 and v2 are adjacent then (v1, v2)  E(G).  E(G) and V(G) represent the edge and vertex sets 

in a graph, respectively. The chemical graphs considered here are labelled and weighted, in 

that both the vertices and edges have descriptors attached to them viz the atom and bond 

types, respectively.  A line graph is a graph that can be derived from the edges of an input 

graph by making an edge in a graph G a vertex in its line graph L(G), so that two vertices are 

connected in L(G) if they share a common vertex in G.    

 Two graphs G1 and G2 are isomorphic if there is a one-to-one mapping of vertex sets 

V1   V2, and a one-to-one mapping of edges E1  E2.  A subgraph of graph G is a graph G’ 

such that G’  G, thus possessing a smaller set of the vertices and edges of the parent graph.  

An induced subgraph is a subgraph G’ of a graph G where all edges connecting the used 

vertices V’ in G’ are also present in G.  An edge-induced subgraph by contrast is a set of 

edges taken from the parent graph, in which vertices connected to the edges are included.  A 

subgraph is a common subgraph of graphs G1 and G2 if it is isomorphic to the subgraphs G’1 

and G’2 of G1 and G2 respectively.  A vertex cover C is a subset of vertices such that for all 

edges (u,v) א E, u א C or v א C.  It is thus a set of vertices that “includes” all the edges in the 

graph, in that for each edge in the graph G there is at least one vertex in the cover which is 

adjacent to said edge.  A related concept is that of an independent set, which is a set of 

vertices in which no vertex is adjacent to another in the set.  For a given graph, the vertices 

which are not part of a vertex cover form an independent set, and vice versa.   
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      (e) 

 

 

Figure 1:  (a) and (b) represent the graphs G1 and G2.  (c), (d) and (e) are respectively the 

MCIS, the cMCES and the dMCES for G1 and G2 (the white node in (e) is a feature from G1, 

and has been included for ease of understanding but is not part of the dMCES).    

 

 The Maximum Common Induced Subgraph (MCIS), as shown in Figure 1c above, is 

the largest (in terms of the number of vertices) induced subgraph common to G1 and G2, 

whereas the Maximum Common Edge Subgraph (MCES) is the largest (in terms of the 

number of edges) induced subgraph common to G1 and G2.  There are two types of MCES: 

the connected MCES (cMCES) and the disconnected MCES (dMCES), as shown in Figures 

1d and 1e respectively.  A cMCES is one in which each constituent vertex is connected by at 

least one path in the graph, i.e., the MCES consists of a single, connected subgraph; in a 

dMCES, conversely, this condition does not hold and the MCES can hence contain two or 

more subgraphs.   

 

3. Cliques, modular products and colouring 

 

A clique is a set of vertices in a graph such that each vertex is connected to each and every 

other vertex, with a maximal clique in a graph being one that is not contained within another, 
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larger clique and with the maximum clique being the maximal clique with the greatest number 

of vertices.  Levi [12] and Barrow and Burstall [13] appear to have been the first to realise 

that algorithms for the detection of maximum cliques could be used to identify the MCIS 

(and thus the MCES) by using the modular product of the two line graphs describing G1 and 

G2.  As will be seen in Section 4, the modular product forms the basis for several important 

MCS algorithms that are based on clique detection. 

 The modular product of two graphs, sometimes referred to as a compatibility graph, is 

a graph with the vertex set V1 × V2 of graphs G1 and G2 respectively.  If the edge set of G1 is 

E(G1), where an edge is a pair of vertices (e.g. (ui,uj)), and analogously for G2, E(G2) and 

(vi,vj), then an edge between two vertices exists in the modular product where  

(ui,uj) א E(G1) and (vi,vj) א E(G2) or, 

(ui,uj)  E(G1) and (vi,vj)  E(G2). 

The maximum clique(s) in the modular product then correspond to the MCIS between the 

two graphs [14].  In weighted and labelled graphs, an additional condition applies such that 

only vertices of the same label are matched, and likewise for the edges, i.e:  

w(ui,uj) = w(vi,vj), 

where w() denotes the vertex and edge labels for a pair of vertices comprising an edge.   

 The module product is described in Figure 2, where it will be observed that edges 

exist between vertices of the modular product when an edge exists for G1 for a given pair of 

vertices, and an edge also exists for G2.  Vertices A and B in G2 and X and Y in G1 show this, 

since an edge exists between both A and B in G2, and X and Y in G1, thus giving rise to an 

edge between vertices 1 and 5.  An edge also exists between vertices 1 and 12, since no edge 

exists between the corresponding G2 vertices A and D, and neither is there an edge between 

X and Z in G1. No edge, however, exists between vertices 1 and 6, for whilst there exists an 

edge between A and B in G2, vertex X is not joined to vertex Z in G1.  Four cliques (and two 

unique MCISs) are highlighted in the figure, e.g., the clique (4,8,12) corresponds to the MCIS 

involving vertices (B,C,D) in G1, and (X,Y,Z) in G2.  

The procedures described above find the MCIS, as is the case with many published 

MCS algorithms.  However, the MCES better describes the notion of chemical similarity, and 

finding the MCES is computationally simpler than finding the MCIS.  This is because in the 

former case, one must take into account both vertex and edge labels, rather than just vertex 

labels as in the MCIS, with the result that the modular product will contain fewer vertices and 

edges.  The problem of identifying the MCIS can be converted to that of identifying the 
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MCES using a theorem due to Whitney [15] (as discussed by by Raymond et al. [9] and by 

Nicholson  
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Figure 2:  Modular product of two graphs G1 and G2, where G1 is a linear connection of three 

vertices (X, Y and Z) and G2 a linear connection of four vertices (A, B, C and D).  Edges in 

bold are part of the four cliques that exist, whereas edges in light grey are not part of these 

cliques. The numbers have been assigned to each node of the modular product for referencing 

purposes. 

 

et al. [16]), who showed that it is possible to reconstruct a graph from its respective line 

graph, and vice versa.  By analogy, it is thus possible to construct the MCES from the MCIS 

by constructing a modular product from the line graphs instead of the original graphs.  In this 

case, a vertex in the modular product will now represent an edge match between the two 

original graphs, instead of a vertex match.  It should be noted that there is one exception to 

Whitney’s theorem.  This is the so-called ǻ-Y exchange where two different graphs lead to 
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isomorphic edge-graphs and hence to erroneous results for the MCES when translating back 

from line graphs to the original graphs: however, such results are easy to identify and prune, 

hence ensuring the identification of the correct MCES [17-19]. 

 It will be clear from the above that the modular product graph constructed from two 

molecular graphs can be large, and more importantly, have a high edge density.  The latter is 

a direct result of the sparseness in degree of chemical graphs, and leads to a more time-

consuming search process for clique detection algorithms.  The time requirements can be 

substantially reduced by simplifying the modular product, but this needs to be done without 

removing chemical meaning and without reducing the size of the MCS that is identified.  To 

this end, Kawabata [20] introduced what he referred to as the topologically-constrained 

dMCS (tdMCS) (a concept that has parallels in several older publications [21-23]).  Although 

the conventional dMCS is suitable for mapping multiple disconnected fragments between two 

molecules, no constraints on the distance between the fragments are considered, which can 

yield alignments that are unlikely (or even nonsensical) in some cases.  The tdMCS has the 

attractive property of producing a dMCS that can involve more realistic alignments, and is 

faster to calculate than a conventional dMCS.   

The tdMCS is based on the topological distance T(a,b) between two atoms (or edges) 

a and b, i.e., the minimum path distance between two features in a graph.  The tdMCS is the 

dMCS resulting from the application of the following constraint when constructing edges in 

the modular product graph for two graphs A and B:  

TA(ai, bi) – TB(aj, bj) ≤   for 1 ≤ i < j ≤ m. 

Here, ș represents a threshold on the maximum allowed difference in distance between two 

pairs of vertices (or edges), and |m| represents the number of vertices in the modular product 

graph.  Any edge in the modular product that violates this constraint is deleted, and the 

resulting maximal clique(s) correspond to tdMCSs.  Kawabata found that the tdMCIS yielded 

better agreements with alignments of superimposed ligands in ligand-protein structures than 

did the dMCIS [20].  Related work has been reported by Klinger and Austin [22] and by 

Raymond et al. [24].  Klinger and Austin described a neural network algorithm to identify 

two types of MCS that were referred to as “bond types” (which was similar to a dMCIS) and 

“topological 

distances” (which was a tdMCIS with =0), while Raymond et al. introduced a complex set 

of heuristics that sought to identify an MCS equivalent or near in size to the dMCS, whilst 
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significantly reducing the required search time by deleting both vertices and edges from the 

modular product graph.   

 

 

Figure 3: Example of a coloured graph that contains a clique, with vertices {2, 3, 4, 5, 6}). 

The chromatic number here is 5. 

 

A further important component of many clique-based MCS algorithms is the concept of 

graph colouring, an NP-complete problem that originally arose from the need to colour the 

countries on a map so that no neighbouring countries would be the same colour.  

Mathematically, graph colouring (of vertices) can be represented as a function c(v) for a 

given vertex v, such that c(v1) ֞ c(v2) when (v1,v2) א E(G).  As with maps, each vertex must 

have a colour that is different from its neighbours’ colours, and the smallest number of 

unique colours in a graph is denoted by its chromatic number (which is sometimes written as 

Ȥ(G) for a graph G) [11].  The use of graph colouring for clique detection is exemplified in 

Figure 3, where all the vertices in a clique have different colours.  Thus, a clique can be 

easily detected by showing that all of the neighbours of a given node possess different 

colours, a fact that forms the basis for several clique detection algorithms.  

 

4. Algorithms based on clique detection 

 

Having introduced the relationship between maximum cliques and MCSs, we now describe a 

range of algorithms that are based on cliques, with others being discussed in earlier reviews 

by Gardiner et al. [25] and by Pardalos and Rebennack [26].   
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In its simplest form, a backtracking clique detection algorithm involves traversing a 

search tree based on the following recursive definition [9]:  

(G) = max{1 + (NG(v)), (G\v)}. 

Here, Ȧ(G) is the maximum clique of graph G (which is usually the modular product in this 

context), NG(v) is the set of vertices adjacent to vertex v in G, and G\v is graph G with vertex 

v deleted.  A pseudocode version of this basic algorithm is shown in Figure 4 (an efficient, 

non-recursive version of this algorithm is described by Carraghan and Pardalos [27]).  Here, 

the vertices in G are processed in ascending order of degree, where v1 has the smallest degree 

in G, v2 has the smallest degree in G\v1, and vk is the vertex of smallest degree in G\{v1,...,vk-

1}.  

 

4.1 Bron-Kerbosch 

 

The Bron-Kerbosch algorithm [28], which is shown in its simplest, recursive form in Figure 

5, has been widely used in chemical and life science applications since an early comparison 

of several algorithms by Brint and Willett [29]; indeed, over one-third of the 735 citations in 

the Web of Science Core Collection database to Bron and Kerbosch’s 1973 article come from 

chemical or life science journals (with the Journal of Chemical Information and Modeling 

being the second-largest single source of citations).  It will be realised that their algorithm is 

very similar to the basic procedure shown in Figure 4 in that it recurses through 

neighbourhoods of selected vertices in the graph.  There are, however, two major differences 

that have caused it to be widely used.  First, it keeps track of previously-used vertices 

(represented as X in the figure), hence substantially increasing performance by the avoidance 

of futile backtracking; second, it reports all of the maximal cliques that are found, and not just 

a single maximum clique.  A modification of the algorithm by the same authors, and more 

formally defined by Cazals and Karande [30], involves the selection of a pivot vertex from P  X and consideration for clique exploration only those vertices that are not adjacent to this 

pivot vertex.  

Koch [17] developed three extensions to the Bron-Kerbosch algorithm, all of which 

relied on removing redundant cliques that did not contribute to finding the MCS when using 

the modular (or edge) product of two graphs.  These extensions were based on the concept of 

a c-edge, something that is described most readily if we consider the modular product of a 

graph with itself.  In this case, the c-edges are the edges in the product where the edges (e1,f1) 
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and (e2,f2) possess a common vertex, where (e1,e2) is an edge in G1 and (f1,f2) is an edge in G2.  

In this case for clique detection, G1 is isomorphic to G2.  A clique is spanned by a connected 

graph of c-edges, so Koch applied the modified Bron-Kerbosch algorithm to find these 
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Data: vertex set G (of modular product), current clique C, max clique Ȧ(G)  

Result: Maximum Clique Ȧ(G)  

Function FindCliques(G):  

While G is not empty do  

select v from G;  

C = C  v;  

FindCliques(NG(v)) ;  

If |C| > |Ȧ(G)| then 

Ȧ(G) = C  

end  

G = G\v ;  

end  

 

Figure 4: A simple backtracking maximum clique-detection algorithm 

 

 

Data: vertices in clique R, current vertex set (of modular product graph) P, previously-

processed vertices X  

Result: Maximal Cliques C  

Function BK(R,P,X):  

If P is empty and X is empty then  

add R to C ; // A maximal clique has been found 

end  

else  

for vertex v א P do  

BK(R  v, P ŀ NG(v), X ŀ NG(v)) ;  

P = P  v ;  

X = X  v ;  

end  

end 

 

Figure 5:  The Bron-Kerbosch algorithm.   
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connected c-edges, and then translated the set to the relevant vertices in the parent graph to 

yield the maximum clique in G.  The maximum clique of the c-edges, a c-clique, corresponds 

to the cMCES between the two graphs, and Koch found that this simple modification was 

significantly faster than the standard Bron-Kerbosch algorithm.  This algorithm, despite the 

above description, can be applied to non-isomorphic graphs and thus yields the maximal c-

cliques between the two graphs.  

A further development of this basic approach is described by van Berlo et al. [31], 

who extended the Bron-Kerbosch algorithm and Koch’s c-edge approach to find the maximal 

clique corresponding to the cMCIS and cMCES.  This is achieved using several heuristics 

that were applied to improve search times.  For example, the algorithm orders vertices in the 

search tree based on their “centrality” (an average of the shortest path lengths to every other 

node in the modular product), where those that are most central are selected first.  Another 

heuristic is the application of 68 atom-types that are used to label the atoms in the two 

molecules that are being compared.  An initial MCS is found by matching based on these 

atom types and the resulting mapping is then used to seed the search for the actual MCS, in 

which the atomic symbol is used as the label.   

 

4.2 TOPSIM 

 

TOPSIM [18] is an MCES-finding algorithm that relies on finding the maximum clique in a 

reduced compatibility graph of the line graphs of two weighted graphs, where a reduced 

compatibility graph is constructed where vertices are made only for matching atom and bond 

labels.  A node in the modular product here is labelled as (e, eƍ) where e is an edge from G1 

and eƍ is an edge from G2 with the same edge label, and the vertices on the edge both have the 

same labels as in e.  Edges between these vertices are constructed in the same way as with the 

modular product, and, like the modular product, the maximum clique corresponds to the 

MCES.  A branch-and-bound algorithm was employed for clique detection in TOPSIM.  

Starting from the root, the depth-first algorithm explores each node of the tree (which 

represents a vertex in the reduced modular product).  The next node chosen in the tree is 

considered legal if it is connected to every other node in the clique identified so far (or if no 

clique has been found, the first node is selected by default).  Once all possible vertices in a 

path have been explored, the algorithm backtracks, deleting vertices and exploring different 

paths in the same branch (or perhaps exploring a different branch of the tree), with the largest 

clique found being returned upon exhaustion of the entire search tree.  The lower bound of 
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the algorithm is the maximum clique determined from a pruned version of the reduced 

modular product (the pruning will not be discussed, though it aimed to preserve edges which 

had identical neighbouring edges in both graphs) while the upper bound is the maximum 

possible clique size.    

 

4.3 Babel 

 

Babel [32] described an early colouring algorithm for finding the maximum weighted clique 

of a graph. The algorithm starts initially with a random vertex, and then starts assigning 

colours such that neighbours do not possess the same colour.  The next vertex chosen in the 

graph is the one with the greatest number of colours already assigned to its neighbours, in 

effect colouring vertices in a localised order of degree.  The maximal cliques are found using 

a branch-and-bound algorithm in which the upper and lower bounds are the largest assigned 

colour for a vertex and the weight of the heaviest clique found over the course of the 

algorithm, respectively.  The basic concept underlying the algorithm is that if a vertex is in a 

clique then the number of colours assigned to its neighbours must be equal to, or greater than 

the number of colours in the greatest clique found thus far: if this is not the case then that 

vertex is eliminated from the graph being studied.  

 

4.4 RASCAL 

 

Raymond et al. developed the algorithm RASCAL (for RApid Similarity CALculation) for 

graph-based similarity searching in chemical databases, as well as for chemical MCES 

detection [19, 24].  RASCAL relies on an initial screening process to significantly boost the 

speed of searching, eliminating a large fraction of the molecules in a database so that the 

computationally demanding graph search is only performed when a pair of molecules are 

similar enough to suggest that an MCS calculation is warranted.  The screening stage 

prefaces a branch-and-bound algorithm for finding cliques in the modular product of two line 

graphs, with the condition that upon finding the MCES via the clique, the degree sequences 

of the vertices of the relevant subgraphs are compared to ensure that a ǻ-Y exchange has not 

occurred.  The graph colouring used in RASCAL is referred to as node partitioning.  Here, 

vertices in the modular product are initially grouped into colours or “partitions” based on 

whether they can actually be neighbours with each other.  Given all the vertex pairs (vi, vj) in 

a modular product, those with the same vi are grouped in the same partition, so that a graph 
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G1 with n vertices would initially have n partitions.  During each iteration of the clique 

search, vertices remaining in the search tree can be re-assigned into other partitions based on 

whether they are not neighbours to the existing vertices in a partition.  This acts as a fast 

method of shrinking the chromatic number, which also serves as an upper bound, as against 

re-colouring the graph after each iteration.  RASCAL utilises three different methods for 

calculating the upper bound, based on the size of the candidate set of vertices to add to the 

clique, and the calculated upper bound is the minimum of these three values at each stage 

during the search.  RASCAL also employs two pruning heuristics that attempt to remove 

neighbouring vertices to a clique that could not possibly extend the clique, and to remove 

symmetric vertices.   

 Barker et al. [21] used RASCAL to find the MCS in reduced graphs as a similarity 

measure.  Notably, the MCIS and MCES were used, and two types of reduced graph were 

made. The first type were “topologically-connected” graphs, where only vertices connected 

immediately to each other were joined by edges in the reduced graph (in other words, a 

standard reduced graph). The other was “fully connected,” where all vertices in the reduced 

graph were connected, and each edge was assigned a weight based on the shortest path length 

from one node to the other in the topologically-connected graph (essentially, a tdMCS with 

ș=0).  A similar reduced-graph study by Takahashi et al. [23] allowed for overlapping 

features in the reduced graph, and edges in the fully-connected reduced graphs could have 

multiple weights (representing multiple paths from one feature to another, instead of simply 

the shortest path).  

 

4.5 Iterated local search 

 

The iterated local search procedure of Grosso et al. [33] used neighbourhood rules to obtain a 

maximal clique, with three fundamental aspects: movement operators; node penalisation; and 

restart rules.  The first operator is an "add" move, which augments the current clique with an 

immediate neighbouring node not present in the clique. The other operator is a "swap" move, 

which adds a node not adjacent to exactly one other node in the clique, and then removing its 

neighbours in the clique, yielding an equal-sized clique to the previous one but transformed 

to a different location in the given graph.  Vertex penalties are assigned to a vertex whenever 

it has already been featured in a clique computed from a previous iteration, where the penalty 

is equivalent to the number of cliques it had featured in.  Finally, the restart rules return a 

clique to a smaller former state.  The simpler restart rule reverts the clique to a selected vertex 
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in the entire graph, and its immediate neighbours, while a more complex rule involves only 

performing such a restart if the move is guaranteed to remove a minimum fixed number of 

vertices.  It must be emphasised that this algorithm is non-deterministic, with most stages 

relying on random selection to some degree: that said, and despite the fact that it is a maximal 

(rather than maximum) clique algorithm, it was generally found to identify a maximum clique 

in practice.    

A modification of this algorithm has been used by Englert and Kovács [34] at 

ChemAxon to give what is claimed to be the fastest inexact method for finding the dMCES 

between two molecules.  Their procedure seeks the maximum clique in the modular product 

of two graphs using the algorithm of Grosso et al. [33], with several heuristics to improve the 

time performance and to optimise the MCS that is returned upon completion of the clique 

search. Two of these heuristics are applied to bias the search space.  The first involves the 

calculation of a “connectivity score” which represents the number of c-edges in a candidate 

node during clique expansion.  Vertices with a higher connectivity score are selected, thus 

biasing the search towards the detection of less fragmented MCSs.  The second is a similarity 

measure that is based on the Morgan algorithm and that calculates the maximum radius (in 

topological distance) at which two vertices have identical circular environments.  During 

clique expansion, vertices are selected in the modular product with the highest weighted sum 

of the scores from these two heuristics. In addition, the “labelled projection” upper bound for 

the largest possible size of the dMCES described previously by Raymond et al. [19] is used 

as an early termination criterion, with additional heuristics being employed to modify the 

MCS post-clique search so as to improve the quality of the final mapping. 

 

4.6 MaxCliqueSeq 

 

The MaxCliqueSeq algorithm of Depolli et al. [35] is exact but involves an approximate 

colouring method, albeit one that was found to be more robust in practice than that described 

by Babel [32].  Starting from an initial colour, this colour is assigned to the highest-degree 

vertex, instead of a randomly chosen one as is the case with the Babel algorithm.  The 

neighbours of this coloured vertex are then removed from a set dictating the vertices to 

colour.  Once this set becomes empty, it is refilled with uncoloured vertices, and the colour is 

incremented to the next colour.  The next vertex chosen for colouring is the first available in 

the set, and the process is then repeated until all vertices are coloured.  In addition to the use 

of this approximate colouring algorithm, MaxCliqueSeq orders the vertices in descending 
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order of degree prior to searching for cliques.  The actual algorithm is a depth-first 

backtracking algorithm, which relies on successive removal of non-neighbours and 

identically-coloured neighbours to the current clique set.  A pruning condition is used to 

control the search:  

|U| + |C| ≤ |Cmax| 

where |U| is the size of the working set of vertices to explore, |C| is the size of the current 

clique, and |Cmax| the size of the largest clique found thus far.  Whenever this condition is 

breached, the algorithm stops exploring that particular branch of the search tree.  The speed 

of the algorithm can be enhanced significantly by distributing the branch-and-bound search 

tree across multiple cores as parallel processes, the resulting speed-ups being particularly 

large when the algorithm is applied to the comparison of protein structures containing very 

many amino acid residues.  

 

5. Other types of algorithm 

 

While clique detection lies at the heart of many MCS algorithms, other approaches have been 

described and some of these are reviewed in this section. 

 

5.1  Subgraph enumeration algorithms  

 

A conceptually simple approach to the detection of the cMCS involves enumerating all 

connected subgraphs common to the two graphs that are being compared and then returning 

the largest such subgraph.  Perhaps the earliest use of this approach was described by 

Armitage and Lynch in a study of techniques for the automatic indexing of the substructural 

changes occurring in chemical reactions [36].  The algorithm commences by enumerating all 

connected two-atom substructures in the two molecules that are being compared.  Those 

substructures that do not match (in terms of their atom and bond types) are discarded, and the 

remaining substructures are then extended by one atom, and the atom and bond type filters 

applied again.  This extension-and-comparison process is continued until no common 

subgraphs exist, at which point the common subgraph(s) from the previous iteration represent 

the MCS(s).  An important part of this algorithm (and of related ones adopting an analogous 

approach) is the use of a fast canonicalisation procedure to ensure that identical subgraphs 

can be identified as rapidly as possible.   
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Varkony et al. [37] extended the above algorithm by introducing multiple “similarity 

definitions,” enabling users to produce MCSs which ignored atom and bond types, topology-

type matching (i.e., ring atoms could not map to chain atoms) and even to take into account 

the attachment points of a substructure in a molecule.  An important feature of the algorithm, 

and one that distinguishes it from those described thus far, was that it was specifically 

designed to allow the comparison of not just two but multiple molecules, with the  smallest 

molecule under consideration being taken as the starting point for the enumeration.  The 

extension of this algorithm to 3D chemical graphs is described by Crandell and Smith [38]. 

 The algorithm described by Takahashi et al. [39] is very similar to that of Varkony et 

al. but used a faster method for identifying subgraph isomorphism, specifically the set 

reduction technique first described by Sussenguth [40] and used for many years in chemical 

substructure searching algorithms (though it has now been largely supplanted for that purpose 

by the algorithm due to Ullmann that is briefly described in the next section).  A recent 

example of the enumeration approach is the fMCS algorithm of Dalke and Hastings [41].  

Like its precessors, fMCS first deletes all atoms and bonds that are not in common between 

the molecules being compared, yielding fragments.  The largest fragment from each molecule 

is taken, and the smallest of these largest fragments is tested for subgraph isomorphism in the 

other molecule(s), and then extended.  If this fails to yield the cMCS, the method then starts 

with single bond fragments instead, which are enumerated from the input graphs. 

Finally in this section we describe the MultiMCS algorithm of Hariharan et al. [42], 

which is again designed so that it can handle more than two graphs at a time.  This is based 

on exhaustive enumeration, but differs from the other algorithms above in that it involves the 

enumeration of all of the maximal common substructures for pairs of molecules, instead of all 

of the substructures for a single molecule.  One of the molecules is selected and this is then 

matched in turn against each of the remaining molecules in turn, with the overall MCS then 

being the intersection of all of resulting sets of maximal common substuctures.  An analogous 

strategy for handling multiple molecules based on the Bron-Kerbosch algorithm was 

described by Brint and Willett [29] and subsequently by Martin et al. [43]; Hariharan et al. 

instead developed a novel divide-and-conquer strategy that provides substantial speedups 

when detecting all of the maximal common substructures for a given molecule-pair.  

 

5.2 McGregor’s algorithm  

 



18 

 

The MCS algorithm described by McGregor [44] employs a simple backtracking search but 

reduces the number of backtrack instances necessary by inspecting the set of possible 

solutions remaining at some point in the depth-first search and determining whether it is 

necessary to extend the current solution. This is effected using a modification of the subgraph 

isomorphism algorithm that was first described by Ullmann [45] and that now forms the basis 

for most operational 2D and 3D chemical substructure searching systems [46].  The Ullmann 

algorithm is based on a match matrix that initially encodes all possible equivalences between 

the vertices comprising the two graphs that are to be compared, and this matrix is 

progressively refined as definite vertex-to-vertex mismatches are identified during the 

exploration of the search tree.  When used for MCES detection in labelled and weighted 

graphs, the match matrix encodes corresponding edges, rather than vertices.  An ordering 

scheme is used to modify the order of edges explored given the currently found common 

subgraph, so as to maximise the number of corresponding edges between the two graphs as 

soon as possible.  

Although first described over three decades ago, the McGregor algorithm is of 

continuing interest since it is an important component of the Small Molecule Subgraph 

Detector (SMSD) Toolkit described by Rahman et al. [47].  This contains three different 

MCS algorithms: one based on the implementation of the Bron-Kerbosch algorithm as 

provided in the Chemical Development Kit [48]; one based on the algorithm of Cazals and 

Karande [30]; and the third a subgraph isomorphism procedure that has been modified to 

enable it identify approximate MCSs [47].  The choice of algorithm in a particular case is 

based on the complexity of the two molecules that are to be compared, and the McGregor 

algorithm is used in SMSD to check whether it is possible to further extend the MCSs 

identified by the second and third of these three procedures.   

 

5.3 consR 

 

The approximate MCES algorithm described by Zhu et al. [49] uses an approach termed 

anchor selection and expansion, which generates a match matrix between two large graphs.  

The anchors here are vertices in the two graphs that possess a high similarity and 

comparatively large degrees between the two graphs.  Anchors are then expanded to match 

neighbouring vertices that are highly similar, giving a list of possible candidate matches.  The 

most similar pair of vertices is registered in the match matrix, and any other candidate 

matches assigned provided that neither of the vertices in the pair have been previously 
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assigned.  These assigned vertices become anchors themselves for which neighbourhood 

expansion is then repeated, until the whole graph has been analysed.  A refinement of this 

procedure uses minimal vertex covers; however, the identification of these is another NP-

complete problem so the authors used randomly-determined minimal vertex covers with the 

result that their algorithm is non-deterministic in operation.  

 

 

5.4 kCombu 

 

The final algorithm to be described here is Kawabata’s kCombu algorithm, which 

circumvents the potentially costly requirement of constructing and searching the modular 

product graph that is used in clique-detection MCS algorithms [20].  In the context of 

generating the MCIS, pairs of vertices – one vertex in one graph and one vertex in the other – 

are ranked based on a heuristic score.  This score consists of three distances (so that the lower 

the overall score, the better matched the two vertices are): a distance representing the 

difference in the number of neighbours between two vertices; an extended-connectivity value 

based on the Morgan algorithm; and a topological distance similar to the tdMCS constraint 

described earlier.   

A fixed number K of correspondences are generated (where the first element is one of 

the top K pairs), and for each extension of each correspondence, the next best-scoring pair is 

added, this process continuing until all (matchable) atoms have been used.  The fact that 

multiple correspondences are produced, means that up to K MCISs can be obtained (though 

in practice several of these MCS results can be isomorphic).  

 

6. Conclusions 

 

In this paper we have briefly summarised the principal characteristics of several algorithms 

for MCS detection.  It will be clear that MCS detection is a problem of continuing interest to 

a range of academic disciplines, not least chemoinformatics, and we must emphasise that our 

review has been necessarily selective given the vast literature associated with the subject.    

In this concluding section, the reader might be expecting us to recommend some sort 

of “best buy” algorithm from amongst those that have been described, but we do not believe 

that this is possible for at least four reasons.  First, as noted in Sections 2 and 3, there are 
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several different types of MCS (even if one does not differentiate between MCIS and 

MCES), with many of the algorithms being restricted to the detection of the cMCS.  Second, 

applications in chemoinformatics may require not only the maximum common subgraph but 

also some or all of the maximal ones, this requirement precluding the use of those algorithms 

that identify only the former.  Third, algorithmic efficiency can be crucially dependent on the 

size (in terms of the numbers of vertices and edges) of the graphs that are to be compared, on 

their complexities (with highly symmetric graphs often proving problematic), and on the 

degree of inter-graph similarity (where, e.g., back-tracking algorithms can be very slow if 

there are many small common subgraphs present).  Finally, and perhaps most importantly, 

only a few papers report comparative experiments where two or more algorithms are applied 

to the same set of molecules to ascertain their effectiveness, i.e., whether they do in fact find 

the true MCS(s), and their efficiency, i.e., the time taken to achieve this. Even when such 

comparisons are conducted, e.g. in the papers describing MultiMCS [42] and SMSD [47], it 

is normal for only a few algorithms to be involved: it is hence to be hoped that more 

extensive comparisons can be carried out in the future.    
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