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Abstract 

 

Background: Amyotrophic Lateral Sclerosis (ALS) is a progressive 

neurodegenerative disease with an unknown cause. Studies have reported that the 

incidence rate of ALS might be changing. As ALS is an age related disease, crude 

incidence could increase as population structure changes, and as overall life 

expectancy improves. 

 

Methods: Age Period Cohort (APC) models are frequently used to investigate trends 

in demographic rates such as incidence. Age-specific incidence rate for ALS from 

1996-2014 were taken from a population based ALS register in Ireland. In order to 

circumvent the well-known identifiability issue in APC models, we apply the method 

of Partial Least Squares Regression to separate the effects of Age, Period and Cohort 

on ALS incidence over time. 

 

Results: This APC analysis shows no cohort effect and the initial signs of a period 

effect; increasing incidence of ALS in the most recently diagnosed group.  
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Conclusions: As further years of data accrue to the Irish register it will become clear 

if this effect emerges as a strong trend in the incidence of ALS in Ireland and 

replication of these analyses in other populations will show if our findings on 

temporal patterns in ALS incidence are shared elsewhere. 

 

 
Keywords: Age-Period-Cohort analysis, Amyotrophic Lateral Sclerosis, Incidence 
patterns, Motor Neuron Disease, Partial Least Squares Regression 
 

 

Amyotrophic Lateral Sclerosis (ALS) is a rare progressive neurodegenerative disease 

with an unknown cause. The crude incidence of ALS for those aged 18 or over is 

estimated to be approximately 2.7 per 100,000 person-years in Europe [1]. The annual 

incidence in Ireland is about 2.6 per 100,000 [2], with approximately 110 new cases 

diagnosed annually.  

A number of studies have been published exploring patterns in ALS incidence over 

time [3-5]. A recent systematic review of the literature [6] showed that of 21 studies 

reporting on changes in ALS incidence over similar time periods to this study, results 

were variable, with more than half reporting stable incidence, five with increased 

incidence rates and the remainder showing highly variable rates. Trends in overall 

(crude) incidence rate may be driven by changing population structure; population 

ageing is a continuing trend in all European Union (EU) member states [7]. As ALS is 

an age related disease, crude incidence could increase as population demographics 

change, and as overall life-expectancy improves. The apparent incidence might also 

rise, solely because of a reduction in competing causes of death earlier in life, for 

example, the rapid fall in coronary heart disease mortality in many developed 

countries over the last thirty years [8,9]. Better case ascertainment over time, and 

subtle changes in diagnostic criteria, may also influence trends in reported incidence, 
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as the disease becomes more recognisable, and variations in presentation are included 

(e.g the recognition that frontotemporal dementia is closely associated with the 

condition). Thus, as diagnostic accuracy improves, there may be a perceived increase 

in incidence over time. Another potential factor influencing incidence rates arises 

from variation in early-life conditioning that affects later-life disease risk, thereby 

invoking variations across birth cohorts. As the causes of ALS are unknown, and 

possibly associated with exposure to environmental factors, experiences throughout 

the lifecourse are potentially important but the extent to which there may be critical 

periods remains unclear. Examining ALS incidence for various birth cohorts might 

reveal subgroups of the population at higher risk of disease due to exposure to some 

unknown risk factors during their lifetime.  

Age-Period-Cohort (APC) models are frequently used in epidemiological studies to 

investigate temporal trends in demographic rates, such as incidence and mortality. To 

our knowledge, only three other APC analyses have been published on ALS [10-12]. 

Seals et al. [12] applied a method described by Cartensen [13] to develop an APC 

model for ALS incidence from 1982 to 2009 and mortality from 1970 to 2009 in 

Denmark. In these instances data were taken from hospitalisation and death records 

rather than from population-based registers. Their model attributes an increase in ALS 

incidence and mortality to a birth cohort effect, while period effects are less important 

in explaining these temporal changes. A 2011 study of APC effects on Motor 

Neurone Disease (MND) mortality in France between 1968 – 2007 applied a Poisson 

model to data taken from national records [11]. The model showed that the increasing 

mortality rate was better explained by a cohort effect, than by time of death (period 

effect). A third analysis of mortality data from Switzerland between 1942 and 2008 

applied a logit model to investigate APC effects in ALS mortality and concluded that 
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there was no strong evidence of a birth cohort effect on ALS [10].  

A longstanding problem in conducting APC analysis is the issue of perfect 

collinearity between these variables. An identifiability issue arises due to the intrinsic 

mathematical relation, age + cohort = period. This presents a methodological 

challenge, as standard regression techniques cannot be applied. A number of methods 

have been used previously for modelling APC effects in population data [14]. In 

recent years, the method of partial least squares regression (PLSR) has been used to 

partition the three components effects of age, period and cohort and applied to health 

outcomes. PLSR overcomes the identifiability issue by employing an algorithm that 

optimizes the estimation separately for all three components. Previous PLSR models 

have explored effects in blood pressure [15], obesity [16] and overall mortality [17]. 

In this study we seek to describe the APC trends in ALS incidence in Ireland between 

1996-2013 in those aged 40-89 using PLSR, thereby partitioning the effects 

separately for age, period and cohort. This is the first APC study to use population-

based ALS Register data.  

METHODS/DATA: 

Patient Cohorts: Age specific incidence rates were calculated using data from a 

national based register for ALS established in 1995. Ethical approval was granted by 

Beaumont Hospital Ethics (Medical Research) Committee and all subjects gave 

informed consent to their data being used for research purposes. All diagnosed cases 

of ALS in Ireland captured on the ALS Register between 1996 and 2014 were 

analysed. The total number of cases included in the analysis was N=1734, 55.1% 

(n=956) were males. Spinal onset of ALS accounted for 57.6% of the sample (n=999), 

and 34.1% (n=592) were classified as having bulbar onset.  This national register has 
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almost complete case ascertainment for the Republic of Ireland [18]. Age specific 

population estimates were taken from national records [19]. The analysis excluded 

patients younger than 40 and older than 89 years of age due to sparse data. For the 

purpose of this APC analysis, age was defined as the age of the patient at the time of 

diagnosis, period was the year of diagnosis, and cohort was the year of birth. Data 

were split into ten 5-year age groups (ranging 40-89 years) and four time periods 

(ranging from 1996-2014). Age-specific incidence rates were calculated for each time 

period; sample size, group definitions and their associated incidence rates are 

presented in an Age by Period table (Table 1). In aggregated data tables such as this, 

each diagonal represents a cohort of data. The total number of cohorts is equal to the 

sum of the number of Age and Period groups, minus one (Age + Period – 1 = 13) [20]. 

(Table 1 here) 

 

Traditional regression techniques require a covariate matrix that is full rank and thus 

invertible in order to produce unique coefficient estimates. Due to their perfectly 

collinear relationship, introducing age, period and cohort as covariates into a single 

generalised linear regression model results in a covariate matrix that is not full rank 

and consequently models fail to estimate unique coefficients for these three variables. 

However, the PLSR method does not require a covariate matrix to be full rank and 

invertible, and therefore avoids the issue of identifiability. Properties and assumptions 

of the PLSR method and its application to age-period-cohort problems are discussed 

in detail elsewhere [15, 20]. Briefly, partial least squares extracts weighted 

components of the explanatory variables, maximising the covariance between these 

components and the outcome variable under the assumed constraint that age + period 

= cohort. The method then sorts the extracted components in order of decreasing 
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covariance with respect to the outcome variable. The R2 value produced by the 

analysis can be used as a guide in choosing the number of components to be extracted, 

since the first few components will explain the most covariance with the outcome, 

and a small change in the R2 value will yield little further explanatory power. In this 

instance, there are a maximum of two components and we have to decide if one or 

both are required to explain optimally the relationship between covariates and the 

outcome.  

Here, we apply the methodology to ALS in Ireland over a period of 19 years to 

explore APC effects on incidence over time. For our analyses, changes in the 

percentage variance explained in the output variable by the model was used as a 

criterion for choosing the number of model components to be extracted. 

 

Statistical Methods: 

All analyses were carried out using R software version 3.1.2 [21]. Partial least squares 

analysis used the pls package for R software [22]. Our first analysis was a linear 

analysis of incidence with three covariates: age, period and cohort. To explore 

potential non-linear trends, a second analysis was carried out with 27 dummy 

variables, one for each age, period and cohort grouping. The design matrix for this 

non-linear analysis is shown in the appendix. 

Since PLSR makes no assumption about the distribution for coefficients [23], 

confidence intervals were calculated using the jack-knife method [20].  

 

RESULTS: 

 



 7 

Descriptive analysis: 

A basic descriptive analysis was carried out to visualise the data prior to applying the 

PLSR model. Figures 1A, 1B and 1C show ALS incidence according to age, period of 

diagnosis and birth cohort fitted with either non-parametic or parametric smoothed 

curves and a 95% confidence interval. In most population based analyses, ALS 

incidence increases with age, and peaks in late mid-life, with a slight decrease in 

incidence for those aged over 70 years. The rate of newly diagnosed cases appears 

relatively stable over time, as shown in Figure 1B, with a potential increase for the 

most recent years. Incidence rates vary for different birth cohorts. Figure 1C 

highlights some important features of the data: first, data are incomplete for the later 

cohorts, as individuals can develop ALS later in life beyond the current data 

collection, meaning incidence rates increase with earlier birth cohorts; and second, 

data are sparse for the earlier cohorts (1907-1916) , in the first years of the register. 

These data features and their implications are discussed below.  

 

(Figure 1A here) 

(Figure 1B here) 

(Figure 1C here) 

 

Figure 2 shows the incidence per 100,000 for each age group by diagnosis year. A 

loess curve (Į = 0.07) was added to the raw data to show the patterns of change over 

time. The solid line represents the mean incidence for all ages per diagnosis year. 

Incidence for those aged 40-50 has remained stable over time, while those in older 

age groups are subject to greater variation. The 80-89 age group has seen an increase 

in incidence since approximately 2003. 
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(Figure 2 here) 

 

PLSR Models: 

Our first PLSR model explores the linear effects with one component of the 

covariates age, period and cohort on ALS incidence. Two components is the 

maximum number that can be extracted from this linear model. To decide how many 

components should be used we observe the change in explanatory power of the model, 

given by R2, as additional components are added. The model with one component had 

an R2 value of 66%, which increased only slightly to 69% with the two-component 

model, hence the one-component model was preferred due to parsimony. Table 2 

shows the regression coefficients and confidence intervals for the one-component 

model. Both age and cohort showed similar positive associations with incidence. 

 

(Table 2 here) 

 

No effect on incidence rate was found for period; a notable effect was found for age 

(0.13, 95% CI: 0.09 – 0.16) with incidence rates increasing with each increasing 5 

years of age; and a similar effect found for cohort (0.13, 95% CI: 0.09 - 0.17) with 

incidence rates of ALS increasing amongst older cohorts. This model imposes the 

assumption of linear effects and does not consider any non-linear trends that may 

exist in the data. In order to investigate these effects in more detail, a second PLSR 

model was constructed with 27 dummy variables, one for each subgroup of the three 

covariates age, period and cohort. Up to 23 components could have been extracted in 

the model. Table 3 shows the increase in percentage variance explained as the number 
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of components extracted increases. Very little additional explanatory power is 

achieved by extracting more than four components; hence we ran our non-linear 

analysis with only four components. This resulted in an R2 of 99% for the outcome 

variable. PLSR coefficients and confidence intervals are given in Table 4.  

 

(Table 3 here) 

(Table 4 here) 

 

Figures 3A, 3B and 3C show the PLS coefficients for Age, Period and Cohort with 

95% confidence intervals estimated by the jacknife. A loess curve was fitted over the 

PLS coefficient estimates to explore potential non linear effects.  

  

(Figure 3A here) 

(Figure 3B here) 

(Figure 3C here) 

 

This non-linear analysis suggests a mostly increasing effect on incidence with age, as 

shown in Figure 3A and Table 4. This reaches a peak in those aged 75-79 (0.60, 95% 

CI 0.32 - 0.87), followed by a decrease in incidence for the oldest age groups. The 

shape of this graph is similar to the crude age effects on incidence shown in Fig 1A, 

suggesting that period and cohort effects have little impact on the crude age effect. 

Figure 3B shows no difference between the first three time periods, and an increase in 

incidence for the most recently diagnosed group, though confidence intervals are wide 

and have considerable overlap with previous periods. Visual comparison of Fig 1B 
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and 3B suggests that there is little conflation with age and cohort effects within the 

crude period effects. 

The non-linear effects of birth cohort on incidence are shown in Figure 3C. Data for 

the most recent birth cohorts are incomplete as this portion of the population has not 

yet reached the peak age of onset for ALS, thus incidence in these groups will rise in 

the coming years. The youngest cohort 1967-1971 was removed from the plot as the 

confidence interval was very wide due to sparse data. The model results in Fig 3C 

show less variability across cohorts than the crude birth cohort effects in Fig 1C 

suggesting that the crude effects in Fig 1C were age and period effects rather than 

cohort effects. 

 

 

DISCUSSION: 

A cohort effect is usually attributed to variations in early life environment. Exposure 

to certain unfavourable environmental factors in early life can have adverse effects in 

later life. Our model shows that there is no substantial cohort effect after we removed 

the interacting effects of age and period. Incidence measures for the youngest cohorts 

must be observed with caution, since this rate will increase in the coming years as 

these individuals age and their risk of developing ALS increases. This is likely to 

leave a flat graph of cohort effects over time. However, due to the smaller numbers of 

cases, cohort effects for the earliest and latest birth cohorts are subject to greater 

uncertainty, and hence it may be more difficult to detect a true cohort effect. 

No substansive association was found between period of diagnosis and incidence in 

either the linear or non-linear models. ALS incidence is stable from 1996-2010 and 

appears to rise in the final diagnosis period 2010-2014, though the error bounds are 
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wide and the estimates are not greatly different from the other diagnosis periods. This 

apparent increase could signify an increase in the overall incidence of ALS in the 

population. This seems plausible when we consider the data from Figure 2, which 

shows that the incidence since 2010 is slightly higher overall when compared to 

previous periods. One possible explanation for this phenomenon is a change in 

competing risks of death. Improvements in treatment and changes in lifestyle has 

improved life expectancy for many life limiting conditions. As a result we may see an 

increased incidence of ALS in older people who, in the past, might have died from 

another cause. The data from Figure 2 would support this hypothesis, as we see an 

overall rise in incidence for those aged 80-89. Another potential explanation for this 

effect could be subtle changes in diagnostic criteria, with better ascertainment of cases 

not hitherto recognized (e.g. those presenting with frontotemporal dementia. These 

points serve as explanations for a potential period effect on incidence of ALS. Over 

time it will become clear if these effects emerge as strong trends in the incidence of 

ALS. 

Two previously published APC models for ALS incidence and mortality reported 

increased risk of death from ALS for those born between 1880 -1920 [11, 12], while a 

third study concluded that there was no evidence of a birth cohort effect in ALS in 

Switzerland [10]. Our model shows no reportable period or cohort effects on 

incidence of ALS for those diagnosed in Ireland between 1996-2013. Our model is 

the first to use a population based register for ALS. In addition, we are the first group 

to successfully separate age, period and cohort effects on ALS incidence without 

imposing additional limiting constraints. The partial least squares regression method 

preserves the mathematical relationship between the age, period and cohort variables 

while circumventing the identification problem. Replication of similar analyses in 
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other populations would be beneficial to assess whether these patterns of incidence 

are observable elsewhere. 

 

 

CONCLUSION: 

Although the major cause(s) of ALS remain unidentified, epidemiological analyses 

may provide further insight and guide future investigations.   

Results of this Age-Period-Cohort analysis suggest the initial signs of increasing 

incidence of ALS in recent years. As further years of data accrue to the Irish register it 

will become clear if this effect emerges as a strong trend in the incidence of ALS in 

Ireland and replication of these analyses in other populations will show if our findings 

on temporal patterns in ALS incidence are shared elsewhere. 
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Period 
 
 

1996-2000 
Incidence (n) 

2001-2005 
Incidence (n) 

2006-2010 
Incidence (n) 

2011-2014 
Incidence (n) 

http://www.cso.ie/en/databases/
http://www.r-project.org/
http://www.r-project.org/
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Age 

40-44 1.19 (15) 0.86 (12) 0.90 (14) 0.66 (9) 

45-49 2.50 (29) 1.42 (18) 0.97 (14) 1.61 (20) 

50-54 3.19 (33) 3.57 (42) 2.64 (34) 2.58 (29) 

55-59 5.52 (45) 4.98 (51) 5.26 (61) 5.11 (51) 

60-64 7.96 (57) 7.09 (57) 7.76 (77) 9.47 (84) 

65-69 8.91 (57) 11.66 (79) 9.93 (75) 12.17 (90) 

70-74 12.69 (71) 12.96 (74) 11.62 (71) 12.49 (68) 

75-79 8.04 (35) 11.79 (53) 14.76 (70) 14.79 (62) 

80-84 9.40 (26) 8.19 (25) 10.87 (36) 13.88 (40) 

85-89 8.05 (11) 7.36 (11) 6.10 (11) 10.41 (17) 

Table 1. ALS incidence rates per 100,000 in Ireland between 1996 and 2014 for those 
aged 40-89 at diagnosis. 
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Fig 1A: Mean incidence rate by age of diagnosis (with loess smoother of Į = 0.8 
applied) and corresponding 95% confidence interval.  
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Fig 1B: Mean incidence rate by year of diagnosis (with second degree polynomial 
fitted) and  95% confidence interval.  
 

 

Fig 1C: Mean incidence rate by year of birth (with loess smoother of Į = 0.5 applied) 
and 95% confidence interval. 
 

Figure 1: Average incidence per 100,000 for the age at diagnosis of ALS (Fig 1A), the 
year of diagnosis (Fig 1B) and the birth cohort (Fig 1C). 
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Figure 2: Smoothed loess curve (Į = 0.7) showing trends in incidence rate by year of 
diagnosis for each age group. The solid line represents the overall mean incidence rate 
for all ages for each diagnosis year. 
 

 

 Regression  
Coefficient 

Std. Error 95% Confidence 
Interval 

Age (per 5 years) 0.13 0.02 0.09, 0.16 

Period (per 5 years)a 0.00 0.01 -0.02, 0.02 

Cohort (per 5 years) 0.13 0.02 0.09, 0.17 

 
Table 2: Results of the PLSR linear one-component model of the effects of age, 
period and cohort on ALS incidence. Positive regression coefficients indicate an 
increased effect on ALS incidence for the covariate. (aThe final time period has 4 
years. 95% confidence intervals were obtained using the jack-knifing method). 
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Number of components 
extracted 

R2 value 

1 94.354 

2 97.23 

3 98.27 

4 99.17 

5 99.40 

6 99.43 

23 99.43 

 
Table 3: Percentage variance explained (R2) according to number of components 
extracted by the PLSR model. 
 

 Regression 
Coefficient 

Std. 
Error 

95% 
Confidence 
Interval 

Age Group:    

40-44 -1.24 0.22 (-1.69, -0.80) 

45-49 -0.94 0.19 (-1.32, -0.55) 

50-54 -0.42 0.17 (-0.76, -0.08) 

55-59 -0.06 0.13 (-0.32, 0.20) 

60-64 0.26 0.12 (0.01, 0.51) 

65-69 0.50 0.17 (0.15, 0.85) 

70-74 0.59 0.10 (0.38, 0.80) 
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75-79 0.60 0.14 (0.32, 0.87) 

80-84 0.47 0.12 (0.23, 0.71) 

85-89 0.24 0.15 (-0.06, 0.54) 

Year Diagnosed:    

1996-2000 -0.10 0.10 (-0.29, 0.10) 

2001-2005 -0.07 0.10 (-0.27, 0.13) 

2006-2010 -0.04 0.10 (-0.25, 0.17) 

2011-2013 0.20 0.11 (-0.02, 0.42) 

Birth Cohort:    

1907-1911 0.26 0.27 (-0.29, 0.82) 

1912-1916 0.27 0.14 (-0.03, 0.56) 

1917-1921 -0.00 0.14 (-0.27, 0.27) 

1922-1926 0.36 0.12 (0.12, 0.59) 

1927-1931 0.39 0.16 (0.06, 0.72) 

1932-1936 0.34 0.12 (0.10, 0.57) 

1937-1941 0.15 0.11 (-0.08, 0.38) 

1942-1946 0.07 0.17 (-0.28, 0.42) 

1947-1951 0.16 0.16 (-0.17, 0.49) 

1952-1956 -0.11 0.26 (-0.64, 0.41) 

1957-1961 -0.55 0.26 (-1.07, -0.03) 

1962-1966 -0.46 0.28 (-1.02, 0.09) 

1967-1971 -0.87 0.86 (-2.60, 0.86) 

 
Table 4: Results of the four-component PLSR model with 27 dummy variables for 
each age, period and cohort subgroup. Positive regression coefficients indicate an 
increased effect on ALS incidence for the subgroup (95% confidence intervals were 
obtained using the jack-knifing method). 
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Figure 3A: PLS coefficients by age at diagnosis (with a loess curve of Į = 1 applied) 
and a 95% confidence interval. 
 

 

 

Figure 3B: PLS coefficients by year of diagnosis (with a loess curve of Į = 1 applied) 
and a 95% confidence interval. 
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Figure 3C: PLS coefficients by year of birth (with a loess curve of Į = 0.5 applied) 
and a 95% confidence interval. 
 

 

 

Appendix: Design Matrix for non linear PLSR 
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age period cohort age1 age2 age3 age4 age5 age6 age7 age8 age9 age10 period1 period2 period3 period4 

1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 

1 2 2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 

1 3 3 1 0 0 0 0 0 0 0 0 0 0 0 1 0 

1 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 1 

2 1 2 0 1 0 0 0 0 0 0 0 0 1 0 0 0 

2 2 3 0 1 0 0 0 0 0 0 0 0 0 1 0 0 

2 3 4 0 1 0 0 0 0 0 0 0 0 0 0 1 0 

2 4 5 0 1 0 0 0 0 0 0 0 0 0 0 0 1 

3 1 3 0 0 1 0 0 0 0 0 0 0 1 0 0 0 

3 2 4 0 0 1 0 0 0 0 0 0 0 0 1 0 0 

3 3 5 0 0 1 0 0 0 0 0 0 0 0 0 1 0 

3 4 6 0 0 1 0 0 0 0 0 0 0 0 0 0 1 

4 1 4 0 0 0 1 0 0 0 0 0 0 1 0 0 0 

4 2 5 0 0 0 1 0 0 0 0 0 0 0 1 0 0 

4 3 6 0 0 0 1 0 0 0 0 0 0 0 0 1 0 

4 4 7 0 0 0 1 0 0 0 0 0 0 0 0 0 1 

5 1 5 0 0 0 0 1 0 0 0 0 0 1 0 0 0 

5 2 6 0 0 0 0 1 0 0 0 0 0 0 1 0 0 

5 3 7 0 0 0 0 1 0 0 0 0 0 0 0 1 0 

5 4 8 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

6 1 6 0 0 0 0 0 1 0 0 0 0 1 0 0 0 

6 2 7 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

6 3 8 0 0 0 0 0 1 0 0 0 0 0 0 1 0 

6 4 9 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

7 1 7 0 0 0 0 0 0 1 0 0 0 1 0 0 0 
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7 2 8 0 0 0 0 0 0 1 0 0 0 0 1 0 0 

7 3 9 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

7 4 10 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

8 1 8 0 0 0 0 0 0 0 1 0 0 1 0 0 0 

8 2 9 0 0 0 0 0 0 0 1 0 0 0 1 0 0 

8 3 10 0 0 0 0 0 0 0 1 0 0 0 0 1 0 

8 4 11 0 0 0 0 0 0 0 1 0 0 0 0 0 1 

9 1 9 0 0 0 0 0 0 0 0 1 0 1 0 0 0 

9 2 10 0 0 0 0 0 0 0 0 1 0 0 1 0 0 

9 3 11 0 0 0 0 0 0 0 0 1 0 0 0 1 0 

9 4 12 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

10 1 10 0 0 0 0 0 0 0 0 0 1 1 0 0 0 

10 2 11 0 0 0 0 0 0 0 0 0 1 0 1 0 0 

10 3 12 0 0 0 0 0 0 0 0 0 1 0 0 1 0 

10 4 13 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

 
 
 
 
 
 
 
 
cohort1 cohort2 cohort3 cohort4 cohort5 cohort6 cohort7 cohort8 cohort9 cohort10 cohort11 cohort12 cohort13 

1 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 
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0 0 0 1 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 
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0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 

Appendix: Design matrix with 10 age groups, 4 time periods and 13 birth cohorts. 
 


