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Real option valuation for reserve capacity

John Moriartya,∗, Jan Palczewskib

aSchool of Mathematical Sciences, Queen Mary University of London, E1 4NS, UK
bSchool of Mathematics, University of Leeds, Leeds LS2 9JT, UK

Abstract

Motivated by the potential use of electricity storage to smooth fluctuations in
supply and demand, we study the problem of writing American-type call options
when the holder’s exercise strategy is of threshold type (so that the time of
exercise is known, but random). The writer must provide physical cover by
buying and storing the asset before selling the option. We optimise the writer’s
strategy for a single option and for an infinite sequence of options, these two
strategies being different. The latter is motivated by the lifetime valuation
of an energy storage unit when used as reserve capacity in a power system.
Our stochastic process is a Brownian motion representing the real-time system
imbalance, and which we rescale to represent an imbalance price. The single
option leads to an optimal stopping problem in which the principle of smooth
fit may be violated and the stopping region may be disconnected. The lifetime
analysis uses techniques and results for the single option to construct a certain
fixed point characterising the value function.

Keywords: Applied probability, OR in energy, real option, power system
balancing, capacity market

1. Introduction

In an electrical power system, unexpected variations in both generation and
load give rise to imbalance which is costly to correct. Various solutions to
this challenge have been proposed, including dynamic consumer pricing mech-
anisms (Tsitsiklis and Xu 2015). This paper is motivated by an alternative or
complementary solution using electricity storage to smooth such variations. In
particular we study the design of financial-type option contracts on this ancillary
service.

It is common for the writer of a call option to hedge their position and in
the Black-Scholes world this may be achieved by dynamic delta hedging (Hull
2006), whereby more of the underlying stock is bought as the stock price rises,
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and vice versa. Where trading activity has an impact on the market price, the
“buy high and sell low” nature of dynamic hedging may therefore exacerbate
extreme fluctuations of market prices. If the buyer of a call option wishes to
help stabilise or balance the market price, dynamic hedging therefore conflicts
with this objective.

“Buying low and selling high”, a reverse of delta hedging, is a fundamental
investment strategy which can have the advantage of stabilising the market. Its
design and optimisation has received recent attention in the context of quan-
titative finance under a variety of asset price models (see, for example, Zhang
(2001), Zhang and Zhang (2008), Zervos et al. (2013)). Suppose now that the
underlying asset must be bought and stored before a call option can be written
on it: in other words, that the option must be physically covered. This incen-
tivises the option writer to buy and store the underlying when it is cheap, while
the call option itself can deliver the asset when it is expensive. This requirement
therefore leads to an alternative hedging strategy for the call option which is
compatible with market balancing. Since the asset purchase can be timed flex-
ibly, our study falls within the scope of real options analysis (Boomsma et al.
2012). This approach can be contrasted with studies which look at the impact
of storage on price formation through direct trading in energy (see, for example,
Gast et al. (2013)).

A certain agent is deemed to require supply of an asset when a stochastic
process, which represents its price, first lies above a pre-determined threshold.
At that point a second agent must provide one unit of the asset to the first agent,
who pays a reward in exchange. The first agent may also pay an initial premium
which is additional to the reward. Optimally timing both the purchase of the
underlying asset and the writing of the option is an optimal stopping problem
that the second agent solves.

This problem may be interpreted as the second agent writing a call option
of American style on the underlying asset. Valuing such contracts by optimis-
ing the option holder’s strategy is a classical application of optimal stopping
theory (Peskir and Shiryaev 2006, Chapter VII); we reverse this setup, fixing
the holder’s strategy and using optimal stopping theory to optimise the writer’s
actions. Our motivation comes from a problem of providing reserve capacity in
power systems (see, for example, Just and Weber (2008)) and from assuming
that the underlying asset is electricity in an imbalance market. In this moti-
vating problem we model the price as a function of the instantaneous level of
imbalance in the power system, that is supply minus load; the first agent is the
network operator who uses the option (among other interventions) to keep the
imbalance close to zero, and the second agent is the operator of an electricity
storage facility such as a grid-scale battery. While the storage operator is con-
cerned with maximising profit (the expected net present value of the cashflows
described in the problem), the network operator is assumed to be concerned pri-
marily with the physical stability of the power system. It is for this reason that
the network operator’s exercise strategy is assumed to be specified exogenously,
rather than resulting from an economic optimisation.

Our setup leads to an optimal stopping problem in which the principle of
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smooth fit (see, for example, Peskir and Shiryaev (2006)) may be violated and
the stopping region may be disconnected. The methodological approach we take
for the single option is similar to that in Carmona and Dayanik (2008), which
considers finite sequences of American type options. By adding a fixed point
argument we go further, obtaining the optimal strategy and lifetime valuation
when an arbitrarily large number of exercises is permitted. The fixed point is
constructed using techniques and results for the single option case. Our stochas-
tic process is a Brownian motion representing the real-time system imbalance,
and which we rescale to represent an imbalance price. This lifetime analysis
may be regarded as a single project valuation model for an electricity store (cf.
Hach et al. (2016) and references therein).

The paper is organised as follows. Subsection 1.2 introduces the model
with main findings summarised in Subsection 1.3. Section 2 analyses the single
option, and in Section 3 we perform the lifetime analysis. Appendices contain
auxiliary results and detailed proofs for the single option setup.

1.1. Real Options approach

We employ the Real Options approach (see, e.g., Brennan and Schwartz
(1985), Guthrie (2009)) in which the dynamics of the underlying stochastic pro-
cess are under the physical (real) measure. The alternative of pricing under a
martingale measure leads to delta hedging strategies of the type “buy high and
sell low” (Hull 2006), which exacerbate extreme market prices. In our motivat-
ing application, an electricity balancing market trades real-time adjustments to
generation and load and the market price should be driven by a model of the
system imbalance process (Xt)t≥0. Through the prediction of load (see, for ex-
ample, Hahn et al. (2009) and references therein), the imbalance process should
have zero mean at all times and following Gast et al. (2013) we model X as a
Brownian motion. In addition to being an approximation to other zero-mean
diffusion processes over short time intervals, the choice of Brownian motion en-
ables the explicit analysis which follows in this paper. We note here that the
diffusion X has natural boundaries at positive and negative infinity, which plays
a role in the methodology of Section 2.2.

1.2. Balancing markets

In order to move between the modelling of imbalance and the related ques-
tion of price modelling we consider the UK Balancing Mechanism, which exists
to equalise electricity supply and demand close to real time. In this market
parties submit offers to increase generation or decrease consumption, and bids
to decrease generation or increase consumption. National Grid, the network
operator in the UK, seeks to correct the prevailing imbalance at least cost by
taking the lowest-priced offers or accepting the highest-priced bids, subject to
system constraints (see, for example, Elexon Limited (2015)). Figure A.1 in the
Appendix provides a histogram of the main system price obtained in this way,
over a two and a half year period. This distribution of prices is not centred and
is heavily skewed to the right. We take account of these empirical features in a
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straightforward manner by applying a convex transformation f to the imbalance
process X, where

f(x) := D + de−bx, (1)

and b, d > 0. Thus our model has an ‘imbalance price’ process (f(Xt))t≥0

which is a shifted exponential Brownian motion, and is simply a rescaling of the
physical imbalance process. Here the minus sign in the exponent means that
positive values of the imbalance correspond to the oversupply of the asset, and
vice versa. We note that the price process f(Xt) has a natural lower boundary
at D, in the terminology of Borodin and Salminen (2012, Chapter 2), i.e., the
price cannot reach it.

1.3. Main results

We derive the option writer’s optimal policy under the above setup and the
corresponding option value in both the single and lifetime problems. These
two policies are different in general and the single option, in addition to being
a ‘basic unit’, is of independent interest as it exhibits three different types of
optimal stopping region. We show that the possible types are:

(a) a half-line,

(b) a bounded interval,

(c) a union of two disjoint intervals.

The smooth fit property may not hold at the (finite) boundaries of the optimal
stopping region in each of the above cases. This variety of solution types,
which is rather unusual in the literature on one-dimensional optimal stopping
problems, can be anticipated: lower price levels mean a lower cost for purchasing
the asset but also a longer time until the reward is received. The parameter-
dependent interplay between these opposing considerations therefore determines
the precise form of the solution.

In our motivating problem, energy is stored in a single battery of unit ca-
pacity and so in order to ensure delivery of the energy when needed, a second
option may be written only after the first option has been exercised and the
battery has been replenished. The investment value of the battery when used
as reserve capacity is therefore equal to the value of an infinite sequence of such
real options, which we call the ‘lifetime valuation’ (a somewhat related study
may be found in Carmona and Ludkovski (2010), where the value of gas storage
units used for price arbitrage is derived using a numerical approach). We show
that the lifetime value is finite when the sum of the single contract payments
(initial premium and reward) is strictly less than the imbalance price upon ex-
ercise. We obtain the writer’s optimal policy and the corresponding lifetime
value.
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2. Single call option

In this section we formulate the writer’s optimal strategy as an optimal stop-
ping problem (Section 2.1), present the solution method and geometric analysis
of the obstacle (Sections 2.2 and 2.3) and give an overview of the set of opti-
mal strategies depending on the parameter values, from which the option value
follows directly. The detailed case by case analysis is given in the appendices
(Sections C.1 to C.3). We conclude by discussing whether the contract, once
optimised from its writer’s point of view, indeed stabilises the imbalance process
(Xt)t≥0, or equivalently the price process (f(Xt)t≥0).

2.1. An optimal stopping problem

For any x ∈ R, take a Brownian motion X = (Xt)t≥0 which starts at x and
is defined on a filtered probability space (Ω,F , (Ft),P

x) with E
x denoting the

expectation with respect to P
x. Following Borodin and Salminen (2012, p. 18

and p. 163), the hitting time of the point y ∈ R by X has the Laplace transform

E
x{e−rτy} = e−a|y−x|, r ≥ 0, (2)

where a =
√
2r and τy = inf{t ≥ 0 : Xt = y}. We define φ(x) = e−ax

and ψ(x) = eax as the decreasing and increasing solutions respectively of the
ordinary differential equation 1

2u
′′ = ru.

Recalling the sign convention in (1), the time of exercise by the first agent
is

τ̂e = inf{t ≥ 0 : Xt ≤ x∗}
where x∗ is a fixed threshold. Writing Kc ≥ 0 for the reward and taking r > 0
as the continuously compounded interest rate, the expected net present value
of the reward is

hc(x) = E
x{e−rτ̂eKc} =







Kc, x < x∗,

Kce
−a(x−x∗), x ≥ x∗.

(3)

When the contract is entered the writer receives the premium pc ≥ 0. If the
writer has already purchased the asset, their problem of optimal entry into the
single option contract is

wc(x) = sup
τ

E
x{e−rτ

(

pc + hc(Xτ )
)

}.

We observe immediately that the solution to this problem is trivial: for any
ω ∈ Ω, taking τ(ω) = 0 is optimal for the sample path X(ω) = (Xt(ω))t≥0

since (i) the option premium pc is received immediately, and (ii) the reward Kc

is received at the earliest opportunity (which is the first hitting time by X(ω)
of (−∞, x∗]). The stopping time τ ≡ 0 is therefore optimal: if the asset has
already been purchased, the option is written immediately and its value is

wc(x) = pc + hc(x).
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In our setup the asset has not initially been purchased. The writer’s problem
of optimally timing the purchase is therefore the following optimal stopping
problem, which is solved in the remainder of this section:

Vc(x) = sup
τ

E
x{e−rτh(Xτ )}, (4)

where h is the value of the contract net the purchase price of the asset:

h(x) = −f(x) + wc(x) = −f(x) + pc + hc(x). (5)

Remark. Henceforth, we use the term ‘stopping’ as shorthand for ‘purchasing
the asset and immediately writing the option contract’.

2.2. Solution method and terminology

As discussed in the Introduction, the optimal stopping problem (4) is non-
standard. In particular the parametric nature of the threshold x∗ means that the
value function may not be differentiable at x∗ or, in the terminology of optimal
stopping, the smooth fit property may not hold at x∗. Instead of applying par-
ticular conditions such as smooth fit we therefore choose instead a constructive
solution technique, namely the characterisation of the value function through
the smallest concave majorant of a modified payoff function, appealing to results
originating from Dynkin (1965) and Dynkin and Yushkevich (1969). Since the
payoff h of the optimal stopping problem (4) is bounded on compact sets and
we have

0 ≤ lim sup
x→∞

h+(x)

ψ(x)
≤ lim sup

x→∞

pc +Kce
−a(x−x∗)

eax
= 0

and

lim sup
x→−∞

h+(x)

φ(x)
= 0

we may specialise Proposition 5.12 of Dayanik and Karatzas (2003) to give

Proposition 2.1. Let F (x) := ψ(x)/φ(x) = e2ax and let W : [0,+∞) → R be
the smallest nonnegative concave majorant of

H(y) :=







h(F−1(y))
φ(F−1(y)) , y > 0

0, y = 0.
(6)

Then Vc(x) = φ(x)W (F (x)) and the optimal stopping time is τ∗ := inf{t ≥
0 : Xt ∈ Γ}, where Γ = {x ∈ R : Vc(x) = h(x)}, and Γ = F−1(Γ̂) where
Γ̂ = {y > 0 :W (x) = H(x)}.

Because of the duality between Vc and W in Proposition 2.1 we shall refer
to both as value functions; similarly, Γ and Γ̂ will be called stopping regions.
Due to the continuity of the payoff functions H,h and value functions W,Vc,
both sets are closed. For readability, values in the original scale of the process
Xt will be denoted by x whereas points in the transformed scale (through the
mapping F ) will be denoted by y.
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2.3. Geometry of the obstacle

To find the majorant in Proposition 2.1 we partition the space of parameters
(x∗, D, d, b, r,Kc, pc) according to the geometry of the obstacle H in equation
(6), making it straightforward to construct the majorant W on each parameter
set in the partition. In this subsection we perform preliminary calculations
which will be used repeatedly, collecting results in Table 1 for convenience.
Noting that F−1(y) = ln(y)/(2a), φ(F−1(y)) = y−

1

2 and putting y∗ = F (x∗)
gives

H(y) =
pc + hc(F

−1(y))− f(F−1(y))

φ(F−1(y))
=











g(y), y ≥ y∗,

ĝ(y), 0 < y < y∗,

0, y = 0,

where

g(y) = y
1

2

[

pc −D − d y−
b
2a

]

+Kc

√
y∗,

ĝ(y) = y
1

2

[

Kc + pc −D − d y−
b
2a

]

.
(7)

Define also

η(y) = y
1

2

[

pc −D − d

(

1 +
b

a

)

y−
b
2a

]

+ 2Kc

√
y∗,

so that 1
2η(y) = g(y)−yg′(y) is the intercept at the vertical axis for the tangent

to g at y. So the equation η(y) = 0 is equivalent to the tangent at y passing
through the origin, i.e., to g(y)/y = g′(y). Define the following values in [0,∞]
(these values play a key role in Section 3 and in Section C in the Appendix,
with the convention that 1/0 = ∞):

Ym =





[

pc −D

d
(

1− b
a

)

]+




−2a/b

, Yc =





[

pc −D

d
(

1− b2

a2

)

]+




−2a/b

,

Ŷm =





[

Kc + pc −D

d
(

1− b
a

)

]+




−2a/b

, Ŷc =





[

Kc + pc −D

d
(

1− b2

a2

)

]+




−2a/b

,

so that Ym locates the turning point for g and Yc ≥ Ym (the inequality is strict
when Ym is finite) locates the change between convexity and concavity for g with
corresponding relationships for the hats ĝ, Ŷm, Ŷc; Yc also locates the turning
point of η (see Table 1). Note also that Yc ≥ Ŷc and Ym ≥ Ŷm when b < a and
that the opposite inequalities hold when b > a.

The smallest nonnegative concave majorantW is equal to H in the stopping
region, while outside the stopping region it lies above H and is linear. Whenever
such a straight line segment is tangential to H at (y,H(y)) we shall say that the
smooth fit condition holds at y. For investigation of the smooth fit condition for
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Table 1: Summary of the monotonicity and convexity properties of functions g, ĝ, η and their
limits at 0 and ∞. We define sgn(0) · ∞ differently depending on the relation between b and
a: when b < a we put sgn(0) · ∞ = −∞; otherwise, sgn(0) · ∞ = 0.

b < a b > a

to Left to Right to Left to Right

Ym g decreasing g increasing g increasing g decreasing

Yc

g convex g concave g concave g convex
η decreasing η increasing η increasing η decreasing

Ŷm ĝ decreasing ĝ increasing ĝ increasing ĝ decreasing

Ŷc ĝ convex ĝ concave ĝ concave ĝ convex

Limits at 0 at ∞ at 0 at ∞
g Kc

√
y∗ sgn(pc −D) · ∞ −∞ sgn(pc −D) · ∞+Kc

√
y∗

ĝ 0 sgn(Kc + pc −D) · ∞ −∞ sgn(Kc + pc −D) · ∞
η 2Kc

√
y∗ sgn(pc −D) · ∞ −∞ sgn(pc −D) · ∞+ 2Kc

√
y∗

y < y∗, let ŷb be the solution to ĝ(y)/y = ĝ′(y):

ŷb =





[

Kc + pc −D

d(1 + b
a )

]+




−2a/b

with the convention that ŷb = ∞ when the solution does not exist. If ŷb < ∞
then

ĝ′(ŷb) = (Kc + pc −D)
2b

a+ b
, ĝ′′(ŷb) = −(Kc + pc −D)

b

a
,

so that when Kc + pc > D, the function ĝ is strictly increasing, concave and
positive at ŷb. For investigation of the smooth fit condition for y > y∗ we note
the following Lemma.

Lemma 2.2. If b 6= a then there is at most one root yb of η in (0,∞) satisfying
g′′(yb) ≤ 0.

Proof. The half-line (0,∞) partitions into two intervals I1, I2 such that g is
strictly convex on the interior of I1 and is strictly concave on the interior of I2
(see Table 1). Since η is also monotone on each of these intervals, there can be
at most one root yb of η in the concavity interval I2.

Remark. Although there is no closed formula for the unique root in the above
lemma, if it exists then it may be found quickly by Newton-Raphson iteration
or a bijection method using the monotonicity of η on the interval I2.

2.4. Optimal stopping solutions and real option valuation

A detailed analysis of the single option is presented in Appendix C. The
stopping regions are of one of four types depending on the parameter combi-
nation. In six different parameter blocks the stopping region is empty. In the
remaining parameter blocks the stopping region is of one of the following forms:
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Figure 1: Illustrative plots for the single option obstacle and stopping region (thick horizontal
line). The dashed vertical lines mark y∗. In panels a) and d) the least nonnegative concave
majorant W is shown in blue (where W coincides with H) and red (otherwise).

a) b)

c) d)
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Figure 2: An illustrative plot of H for the single option when b < a, in case A, with y∗ < Yc

and with a non-degenerate left part to the stopping region (the same graph is depicted in both
panels).

(a) a half-line, (b) a bounded interval, (c) a union of two disjoint intervals, with
combinations of smooth or non smooth fit at the finite boundaries of these in-
tervals. Figures 1 and 2 show how each of the above forms of stopping region
arises as a result of the geometry of the obstacle H. Panels (a)-(c) of Figure
1 depict the case of a bounded interval, together with the different possibilities
for its positioning around the kink of the obstacle at y∗. A half-line stopping
region is shown in Panel (d). A case of two disjoint intervals, unusual in the
literature on optimal stopping problems, is presented in Figure 2. Here it is
optimal to stop in an interval to the left of x∗, where the reward is both posi-
tive and immediate. To the right of x∗ (see the right panel) the reward is not
immediate and depends on future randomness: one prefers to wait until either
the positive immediate reward is again available (at x = x∗), or alternatively
the imbalance x is sufficiently high. In the latter case one purchases power at a
low price, loads the storage and issues the option, leading to a sufficiently large
expected profit.

In all cases the stopping region is strictly separated from the point y = 0
and W is linear between 0 at 0 and H at the left-most point of the stopping
region. By Proposition 2.1, the option value at point x = F−1(y) in the original
scale of the process (Xt)t≥0 is Vc(x) = φ(x)W (F (x)). The principle of smooth
fit holds at all finite boundary points except y∗: since H is non-differentiable at
y∗, if it is a boundary point then the principle of smooth fit cannot hold there.

2.5. Qualitative remarks on the parameter ranges

In this section we give interpretations of the main parameter regimes, namely
the relationships between pc and D and between a and b. We begin with the
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easy observation that the contract is worthless to the seller if the total payment
pc+Kc does not exceed the initial purchase price of the underlying asset, so this
sum must be strictly greater than D in order to obtain a positive real option
value.

2.5.1. Relation between pc and D

When pc < D the initial cashflow pc−f(x) is negative (equation (1)) and as
x increases to infinity the expected discounted value of the reward decreases to
zero (equation (3)) so the gain h(x) from stopping eventually becomes negative
(equation (5)); the stopping region is therefore bounded in all cases (Figure 1,
panels a to c). Conversely, when pc > D the stopping region is unbounded
(Table 1, panel d), c.f. Tables C.1 - C.3 in the Appendix.

2.5.2. Relation between a and b

More generally, when pc < D the balance between the negative initial cash-
flow pc− f(x) and the positive future reward becomes crucial. Indeed, stopping
at x > x∗ is optimal if this negative initial cashflow is sufficiently compensated
by the expected value of the reward Kc received when the process X falls to
the level x∗. This is in turn determined by the relation between a =

√
2r and

b, r being the rate at which future payoffs are discounted, while b governs the
speed at which the price process moves. In particular, if a > b then it is never
optimal to wait for a favourable movement of the price process: this means it is
not optimal to enter the contract when x > x∗. In this case the stopping region
is either empty (when Kc + pc ≤ f(x∗)) or lies to the left of x∗, where stopping
means that the reward is received immediately (Figure 1, panel a). When a < b
the stopping region may contain points to the right of x∗, depending again on
the balance between the initial loss and the future reward (Figure 1, panels b
and c).

2.6. From stopping policies to power system balancing

We now examine the implications of these optimal stopping regions for our
original problem of option hedging in the context of balancing a power system.
In our model there are two physical transfers: (a) power is drawn from the
network by the storage operator (at the ‘stopping time’ studied above), and (b)
power is delivered to the network by the storage operator (when the imbalance
next falls below the level x∗). Assuming that the store is small compared to
the power system, these physical transfers will be balancing in nature if (a)
takes place when the imbalance is strictly positive and (b) takes place when
the imbalance is strictly negative. Clearly the network operator will choose the
parameter x∗ < 0. The storage operator optimally chooses their strategy for
transfer (a) given the problem parameters, and in principle this could occur
at negative imbalance values. It is therefore desirable for balancing that the
left endpoint xΓ of the stopping region be strictly positive. In the transformed
coordinates of Figure 1, this corresponds to stopping regions which are either a
bounded interval (panel c) or half-line (panel d) with left endpoint yΓ > f(0) =
1.
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Having established which parameter-dependent hedging strategies are desir-
able to the network operator, in Section 3 we now return to the perspective of
the storage operator. In particular we next derive the lifetime value of such
options. This analysis may be used to inform assessments of the commercial
viability of electricity storage capital infrastructure.

3. Lifetime valuation

In this section we obtain the optimal strategy in our setup when the second
agent writes an infinite sequence of call options by repeating the cycle presented
above. We keep the same notation as Section 2.

3.1. Fixed point method: operators T and T̃
We first define two related operators (one for each scale) for which we seek

fixed points. The operator T (whose domain will be specified later, see Lemma
3.1) is defined by a string of operations. Take a non-negative function ξ(x)
which should be thought of as the continuation value after a contract has been
exercised. As before, the option is exercised at the stopping time τ̂e = inf{t ≥
0 : Xt ≤ x∗} when the imbalance process reaches x∗ or below and the payoff is
now Kc + ξ(Xτ̂e), making the expected payoff equal to

hξc(x) := E
x
{

e−rτ̂e
(

Kc + ξ(Xτ̂e)
)}

=

{

[

Kc + ξ(x∗)
] φ(x)
φ(x∗) , x > x∗,

Kc + ξ(x), x ≤ x∗.

When the continuation value ξ is included, the optimal stopping problem (4)
therefore becomes

T ξ(x) = sup
τ

E
x{e−rτhξ(Xτ )}

where
hξ(x) = −f(x) + pc + hξc(x).

Lemma 3.1. Assume that ξ is non-negative and lim supx→−∞ ξ(x)eax < ∞.
Then T ξ(x) is non-negative and finite for any x ∈ R. Moreover, T ξ(x) =
φ(x)W (F (x)), where W is the smallest non-negative concave majorant of

H̄(y) =
√
y(−D − de−(b/2a) ln(y) + pc) +

{

[

Kc + ξ(x∗)
]√
y∗, y > y∗,

[

Kc + ξ(F−1(y))
]√
y, y ≤ y∗,

and
lim

x→−∞
eaxT ξ(x) = lim sup

x→−∞
ξ(x)eax, lim

x→∞
e−axT ξ(x) = 0.

Proof. First we verify the conditions of Dayanik and Karatzas (2003, Propo-
sition 5.12), i.e., that the following limits are finite:

lim sup
x→−∞

(hξ)+(x)

φ(x)
, lim sup

x→∞

(hξ)+(x)

ψ(x)
.

12



Indeed,

0 ≤ lim sup
x→∞

(hξ)+(x)

ψ(x)
≤ lim sup

x→∞

1

ψ(x)

(

pc +
[

Kc + ξ(x∗)
] φ(x)

φ(x∗)

)

= lim sup
x→∞

pc
ψ(x)

+
Kc + ξ(x∗)

φ(x∗)
lim sup
x→∞

1

F (x)
= 0

and

0 ≤ lim sup
x→−∞

(hξ)+(x)

φ(x)
≤ lim sup

x→−∞

ξ(x)

φ(x)
= lim sup

x→−∞
ξ(x)eax <∞

by the assumptions of the lemma. Under the above conditions the value function
is finite, i.e., T ξ(x) < ∞ for any x ∈ R and T ξ(x) = φ(x)W (F (x)), where W

is the smallest non-negative concave majorant of (hξ)(F−1(y))
φ(F−1(y)) . This quotient

simplifies to H̄ in the lemma as follows:

(hξ)(F−1(y))

φ(F−1(y))
=

√
y(−D − de−bF−1(y) + pc) +

(hξc)(F
−1(y))

φ(F−1(y))
.

We also use the equality 1/φ(x∗) = 1/φ(F−1(y∗)) =
√
y∗.

Define operators M and T̃ by

Mν(y) =
ν(F−1(y))

φ(F−1(y))
, (8)

T̃ = M◦ T ◦M−1. (9)

The operator T̃ is on the y scale, so it acts on the space of transformed obstacles
for which the solution of an optimal stopping problem is given by finding the
smallest non-negative concave majorant. This will be useful in finding a fixed
point of T̃ and hence, equivalently, of T . (To verify the formulas (8) and (9)
note that M−1ν(x) = φ(x)ν(F (x)).)

Lemma 3.2. Assume that ζ is non-negative and lim supy↓0 ζ(y) < ∞. Then

T̃ ζ(y) is non-negative and finite for any y > 0. Moreover, T̃ ζ is the smallest
non-negative concave majorant of

H̄(y) =
√
y(−D − dy−b/2a + pc) +

{

Kc
√
y∗ + ζ(y∗), y > y∗,

Kc
√
y + ζ(y), y ≤ y∗.

(10)

Proof. The proof relies on inserting ξ(x) = φ(x)ζ(F (x)) in Lemma 3.1 and
then simplifying the expression for H̄.

The operator T is monotone in the sense that if ξ1 ≤ ξ2 then T ξ1 ≤ T ξ2.
Moreover, T ξ ≥ 0 for any continuous function ξ satisfying the assumptions of
Lemma 3.1 so T 0 ≥ 0. These properties imply that

T n+10 = T n
(

T 0
)

≥ T n0

13



and, consequently, the sequence (T n0)n≥1 is non-decreasing and the limit

V := lim
n→∞

T n0

is well defined (although it may be infinite). We will call it the lifetime value
function. Indeed, T n0 is the value function for the problem with at most n
options sold. In the limit, one obtains the value attainable by an option writer
who does not face any constraints on the number of options written. Our plan
for the solution of the lifetime problem is the following:

Objectives 3.3. 1. find a fixed point ζ∗ of the operator T̃ , then ξ∗ =
M−1ζ∗ is a fixed point of T ,

2. show that the corresponding optimal stopping time is the first hitting time
of a set Γ whose left endpoint is strictly greater than x∗,

3. use step 2 to prove that limn→∞ T n0 = ξ∗.

The rest of this section is organised as follows. We address step 3 in Subsec-
tion 3.2, in Subsection 3.3 we establish a sufficient condition for the finiteness
of the lifetime value function, and in Subsection 3.4 we carry out steps 1 and 2.

3.2. Convergence to the lifetime value function

We begin by addressing step 3 of Objectives 3.3. Recalling that T 0 = Vc,
the value function for the single option, we conclude that V 6= 0 (and hence
that the perpetual regime is profitable) if and only if Vc 6= 0. Indeed, if Vc = 0
then trivially limn→∞ T n0 = 0. On the other hand, if T 0 6= 0 (i.e., it is
strictly positive for some arguments), then the limit limn→∞ T n0 6= 0 since the
sequence (T n0) is non-decreasing.

Lemma 3.4. Let ξ, ξ′ be two continuous non-negative functions with ξ satisfying
the assumptions of Lemma 3.1. Assume that ξ ≥ ξ′ and that the stopping region
Γ for T ξ satisfies Γ ⊂ [x′,∞) for some x′ > x∗. Then

‖T ξ − T ξ′‖# ≤ ρ‖ξ − ξ′‖#,

where ρ = e2a(x
∗−x′) < 1 and ‖f‖# = |f(x∗)| is a seminorm on the space of

continuous functions. Moreover we have the following uniform estimate: for all
x ∈ R,

0 ≤ T ξ(x)− T ξ′(x) ≤ ‖ξ − ξ′‖#. (11)
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Proof. Let τ∗ = inf{t ≥ 0 : Xt ∈ Γ}. Then, by monotonicity of T , we have

0 ≤ T ξ(x)− T ξ′(x)

≤ E
x
{

e−rτ∗

(

−D − de−bXτ∗ + pc +
[

Kc + ξ(x∗)
]φ(Xτ∗)

φ(x∗)

)}

− E
x
{

e−rτ∗

(

−D − de−bXτ∗ + pc +
[

Kc + ξ′(x∗)
]φ(Xτ∗)

φ(x∗)

)}

= E
x
{

e−rτ∗

(

[

ξ(x∗)− ξ′(x∗)
]φ(Xτ∗)

φ(x∗)

)}

= ‖ξ − ξ′‖# E
x
{

e−rτ∗ φ(Xτ∗)

φ(x∗)

}

.

This proves (11). Let xΓ = minΓ. By assumption we have xΓ > x∗, so for
x ≤ x∗ it follows that

E
x
{

e−rτ∗ φ(Xτ∗)

φ(x∗)

}

=
ψ(x)

ψ(xΓ)

φ(xΓ)

φ(x∗)
= ea(x+x∗−2xΓ) ≤ ρ.

The main assumption in the proof of the above lemma is the strict separation of
the stopping region for T ξ from x∗ by x′ > x∗. This will be a crucial assumption
in the following lemma which establishes conditions under which a fixed point
of T is the lifetime value function.

Lemma 3.5. Assume that there exists a fixed point ξ∗ of T in the space of
continuous non-negative functions and the corresponding optimal stopping time
is a first hitting time of a closed set Γ ⊂ (x∗,∞). Then there is a constant ρ < 1
such that ‖ξ∗−T n0‖# ≤ ρn‖ξ∗‖# and ‖ξ∗−T n0‖∞ ≤ ρn−1‖ξ∗‖#, where ‖·‖∞
is the supremum norm.

Proof. Let xΓ = minΓ. Clearly, ‖ξ∗ − 0‖# < ∞. By virtue of Lemma 3.4
with x′ = xΓ, we have ‖T n0 − ξ∗‖# ≤ ρn‖0 − ξ∗‖# for ρ = e2a(x

∗−xΓ) < 1.
Hence, T n0 converges exponentially fast to ξ∗ in the seminorm ‖ · ‖#. Using
(11)

‖ξ∗ − T n0‖∞ = ‖T ξ∗ − T ◦ T n−10‖∞ ≤ ρn−1‖ξ∗‖#.

We have, therefore, demonstrated in Lemma 3.5 that if there exists a fixed
point ξ∗ of T with a corresponding optimal stopping time given by a closed
stopping set Γ and contained in (x∗,∞) then ξ∗ is the lifetime value function.
Moreover, the convergence of T n0 to ξ∗ is exponential in the supremum norm.

3.3. A bound on the contract payments

In order to address the first step in Objectives 3.3 we henceforth assume
that

pc +Kc < f(x∗). (12)

This assumption means that the contract offers a discount relative to the market:
the total cost of the contract (ignoring the time value of money) is strictly
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less than the price of the asset at the exercise time. This can be seen as a
natural condition in our setup, as follows. If pc + Kc > f(x∗) then buying
the asset in the market for the price f(x∗) is cheaper than paying pc +Kc for
the delivery of one unit of the asset under the contract. Thus when Xt = x∗,
the contract is attractive to the second agent but is not attractive to the first
agent. Alternatively when pc + Kc = f(x∗) the second agent can only make
a profit by purchasing the asset and selling the option when Xt > x∗ (and so
f(Xt) < f(x∗) = pc + Kc). In this case the contract is not attractive to the
first agent, since the alternative of depositing pc in the bank and purchasing the
asset in the market when its price reaches x∗ is guaranteed to be cheaper (or
has identical cost if pc = 0).

The following lemma also shows that condition (12) is sufficient for the
finiteness of the lifetime value function.

Lemma 3.6. Assume condition (12) and that T 0 6= 0. Then

1. T 0 > 0,

2. Γn ∩ (−∞, x∗] = ∅, where Γn is the stopping region for T n0 = T (T n−10),

3. the functions T n0 are strictly positive and uniformly bounded in n,

4. the limit V = limn→∞ T n0 exists and is a strictly positive bounded func-
tion.

Proof. 1. By assumption there is x such that T 0(x) > 0. For any other
x̂ consider the following strategy: wait until the process (Xt) hits x and then
proceed optimally. This results in a strictly positive expected value: T 0(x̂) > 0.
By the arbitrariness of x̂ we have T 0 > 0.

2. Assume that x ∈ Γn ∩ (−∞, x∗]. Then in the optimal stopping problem
T n0, if the process starts from x then the asset is bought immediately and the
option is both written and exercised immediately, resulting in the payoffs

T (T n−10)(x) = −f(x) + pc +Kc + T n−10(x) < T n−10(x)

by recalling the condition (12) and f(x) > f(x∗). Consequently, the above in-
equality contradicts that T n0, n ≥ 0, is a non-decreasing sequence of functions,
which we have established previously.

3. The monotonicity of T and statement 1 guarantee that if T 0 > 0 then
T n0 > 0 for every n. Inequality (12) implies that there is x′ > x∗ such that
pc + Kc < f(x′). We claim that the stopping region for every iteration T n0

must be included in (x′,∞). Assume the opposite, i.e., that for some n this is
not true. Let Γ be the optimal stopping region for T ξ, where ξ = T n−10. Let
xΓ = minΓ ≤ x′ (the set Γ is closed). Recall that xΓ > x∗ by statement 2.
Then

T ξ(x∗) = E
x∗

{

e−rτxΓ

(

pc − f(xΓ) +
(

Kc + ξ(x∗)
)

E
xΓ{e−rτx∗ }

)}

< ξ(x∗),

as f(xΓ) ≥ f(x′) > pc +Kc, where τz := inf{t ≥ 0 : Xt = z}. This contradicts
the monotonicity of the sequence T n0. Consequently, the stopping region Γ for
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each iteration T n0 has an empty intersection with the interval (−∞, x′]. Using
this fact we obtain

T n+10(x∗) = E
x∗

{

e−rτxΓ

(

pc − f(xΓ) +
(

Kc + T n0(x∗)
)

E
xΓ{e−rτx∗ }

)}

≤ E
x∗{

e−rτxΓ (pc +Kc + T n0(x∗))
}

≤ e−a(x′−x∗)
(

pc +Kc + T n0(x∗)
)

,

(using equations (2)), where xΓ > x′ is the left end of the stopping region for
T (T n0). Therefore, T n+10(x∗) ≤ (pc + Kc)

ρ
1−ρ =: M . Also T n+10(x) ≤

pc +Kc + T n0(x∗) ≤ pc +Kc +M for any x.
4. By the monotonicity of T n0 there exists a limit V which is bounded from

above by pc +Kc +M .

3.4. Solutions for the lifetime problem

We now complete Objectives 3.3 by carrying out steps 1 and 2. Finding a
fixed point of T is equivalent to finding a fixed point of T̃ . In Section 2 we
have studied the particular problem of evaluating T 0 or, equivalently, T̃ 0. Our
results (see also Appendix C) show that when the stopping region Γ of the single
option has empty intersection with (−∞, x∗] as specified in Section 3.3, the set
Γ̂ (the coincidence set of W and H which we also call the stopping region) is of
the form [A,B], where B ∈ R ∪ {∞} and A > y∗. We concluded that in such
cases the smooth fit principle holds at A and the value function T̃ 0 is linear
between 0 at 0 and H(A) at A. We will now show that a similar form for the
value function persists with iterations of the operator T̃ .

Assume that T̃ 0 6= 0 (otherwise, the perpetual value function is zero). De-
note by γ1 the slope of T̃ 0 at 0, i.e., T̃ 0(y) = γ1y for y ∈ (0, y∗]. By equations
(10), when T̃ is again applied to ζ1 = T̃ 0 only the ‘continuation value’ ζ1 on
(0, y∗] plays a role and so the form of ζ1 outside the interval (0, y∗] is irrelevant
for the operator T̃ . Let H̄1 be the obstacle H̄ in (10) when we set ζ = ζ1, i.e.,

H̄1(y) = H(y) + γ1 min(y, y∗),

where H is the obstacle in the one-option case (see the beginning of Section 2.3).
In the proof of Lemma 3.6 we showed that the stopping region corresponding to
T̃ ζ1 has an empty intersection with (0, y∗]. Therefore T̃ ζ1, being the smallest
non-negative concave majorant of H̄1, is a straight line between 0 and the left
end of the stopping region, in particular, for y ∈ (0, y∗]. Since H̄1(y) is non-
positive in a sufficiently small neighbourhood of 0 (see the properties of ĝ, c.f.
Table 1 and equations (C.1) and (C.2) in the Appendix) we conclude that this
straight line has zero intercept (it passes through 0 at 0). Denote its slope by γ2.
Iterating this argument we obtain that T̃ n0(y) = γny on (0, y∗] for a sequence
(γn)n≥1 of positive numbers. The functions T̃ n0 increase to ζ∗ = MV , cf.
Lemma 3.6. Therefore, ζ∗(y) = γ∗y for y ∈ (0, y∗] with γ∗ = limn→∞ γn. We
summarise our findings in the following lemma.

Lemma 3.7. If (12) holds then ζn = T̃ n0 is linear on (0, y∗]: ζn(y) = γny for
y ≤ y∗. Further, the limit ζ∗ = limn→∞ T̃ n0 is linear on (0, y∗]: ζ∗(y) = γ∗y
for y ≤ y∗.
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In order to address step 2 of Objectives 3.3 we proceed now to finding explic-
itly the initial slope γ∗ of the function ζ∗ and the stopping region Γ̂ of T̃ ζ∗. Let
A = min Γ̂ be the left end of the stopping region corresponding to the obstacle
H̄. The following lemma, which echoes the second part of Lemma 3.6, implies
that A > y∗:

Lemma 3.8. Assume (12) and V 6= 0. Then the stopping region Γ for T V
must have an empty intersection with (−∞, x∗]. Or, equivalently, the stopping
region Γ̂ corresponding to T̃ ζ∗ must have an empty intersection with (0, y∗].

Proof. Otherwise, for any x ∈ Γ ∩ (−∞, x∗] using (12) and Lemma 3.7 we
have T̃ ζ∗(y) = pc + Kc − f(x) + ζ∗(y) ≤ γ∗y − δ with y = F (x) and δ =
f(x∗)−pc−Kc > 0. On the other hand, for any n we have T̃ ζ∗(y) ≥ T̃ T̃ n0(y) =
T̃ n+10(y) = γn+1y. Hence γ∗y− δ ≥ γn+1y for n ≥ 0. This contradicts that γ∗

is the limit of γn.

If, as we hope, ζ∗ is the fixed point of T̃ sought in step 1 of Objectives 3.3
then it is also the smallest concave majorant of H̄ (with ζ = ζ∗). In this case
ζ∗ is linear at least on (0, A). Further, since Γ is closed we have from Lemma
3.8 that A > y∗ and so, since H̄ is differentiable at A, the principle of smooth
fit would hold there. We will therefore search for A such that the straight line
y 7→ γ∗y is tangent to H̄ at A. This leads to the following characterisation of
A:

H̄(y) < γ∗y on (0, A),

H̄(A) = γ∗A,

H̄ ′(A) = γ∗.

(13)

We will use this characterisation to explicitly find A and γ∗.
Substituting (10) (with ζ = ζ∗ and using Lemma 3.7) into the last two

equations of (13) and eliminating γ∗ we obtain

η̄(A) := (pc−D−dA− b
2a )

(√
A+

1√
A
y∗
)

− bd

a
A

1

2
− b

2a (1−A−1y∗)+2Kc

√
y∗ = 0.

We conclude this section with the case by case analysis, which is summarised
in Table 2, with the graphical form of solutions presented in Table 1. In each
case we verify that equations (13) are satisfied. Using equations (7) we define
for any γ > 0:

gγ(y) = g(y) + γy∗, ĝγ(y) = ĝ(y) + γy.

3.4.1. Case b > a

We have limy↓0 ĝγ(y) = −∞, ĝγ is increasing and strictly concave, and
g′γ(y) < ĝ′γ(y) for γ > 0 (see equation C.1 in Appendix and Table 1).

Case pc ≥ D: In this case gγ is concave on (0,∞). By Lemma 3.8 the stopping
region is contained in (y∗,∞). Let us find the tangency point, i.e., search
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Table 2: Stopping regions for the lifetime problem.

Parameters Stopping region Figure 1

b > a

pc ≥ D Γ̂ = [A,∞) d

pc < D
η̄(Ym) ≥ 0 and Ym > y∗ Γ̂ = [A, Ym] c

otherwise Vc = 0

b = a
pc > D Γ̂ = [A,∞) d

pc ≤ D Vc = 0

b < a
pc > D Γ̂ = [A,∞) d

pc ≤ D Vc = 0

for a root η̄(A) = 0. Notice that η̄(y∗) = 2
√
y∗(pc + Kc − f(x∗)) < 0 and

limy→∞ η̄(y) = ∞. Since

η̄′(y) =
1

2
(1− y−1y∗)y−

1

2

(

dy−
b
2a

( b2

a2
− 1

)

+ pc−D
)

> 0 on (y∗,∞), (14)

there is exactly one point A > y∗ such that η̄(A) = 0. Moreover, γ∗ = g′γ(A) =
g′(A) > 0 since g′ > 0 on (0,∞) (see Table 1 and recall that Ym = ∞). Noting
that H̄ is strictly concave now and the line y 7→ γ∗y is tangent to H̄ at A, it
dominates H̄ strictly everywhere apart from A satisfying therefore the inequal-
ity in (13). In view of the previous discussion, A and γ∗ uniquely determine ζ∗.
Indeed, knowing ζ∗ on (0, y∗] is sufficient for the operator T̃ and we extend ζ∗

to the whole domain by applying T̃ . Consequently, the perpetual value function
V = M−1ζ∗ (c.f. Lemma 3.5) and the stopping region corresponding to T̃ ζ∗ is
Γ̂ = [A,∞).

Case pc < D: Recall the definitions of Yc, Ym and that Yc > Ym.
For any γ > 0, the function gγ is strictly increasing on (0, Ym) and strictly

decreasing on (Ym,∞). It is strictly concave for y < Yc and strictly convex for
y > Yc. A fixed point of T̃ is characterised by the system (13), whose solution
can be found by considering the zeros of the function η̄. Clearly, η̄(y∗) < 0,
but contrary to the previous case we have limy→∞ η̄(y) = −∞. Since η̄ is
strictly increasing on (y∗, Yc) and strictly decreasing on (Yc,∞) (see the deriva-
tive equation (14)), the equation η̄(y) = 0 has a solution iff η̄(Yc) ≥ 0. Any
solution A > Ym violates the condition γ∗ = g′γ(A) > 0. Hence, the operator T̃
has a fixed point determined by (13) iff η̄(Ym) ≥ 0 and Ym > y∗. This solution
can be efficiently found numerically due to the monotonicity of η̄ on [y∗, Ym].
It is again clear by the strict concavity of H̄(A) on (0, Ym) that the inequality
in (13) is satisfied. The stopping region corresponding to this fixed point is
[A, Ym]. We show below that other combinations of parameters lead to a trivial
value function for the perpetual regime.

Ym ≤ y∗: Using the notation from Section 2, the function H is strictly
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decreasing on (y∗,∞). Hence the stopping region Γ̂ for the one-option case
lies in the interval (0, y∗], so from Section 3.3 it must therefore be empty and
Vc = V = 0.

Ym > y∗ and η̄(Ym) < 0: Assume that T 0 6= 0. By Lemma 3.6 the
perpetual value function V is well-defined, finite and strictly positive. Hence
the assumptions of Lemma 3.2 are satisfied and the stopping problem T ζ∗,
where ζ∗ = MV , has a non-trivial solution given by a stopping region Γ̂. By
Lemma 3.8 its stopping set Γ̂ must have an empty intersection with (0, y∗] and
yΓ := min Γ̂ ∈ (y∗,∞). The smallest non-negative concave majorant of H̄ must,
therefore, meet H̄ smoothly at yΓ and the characterisation of equations (13)
must hold. This contradicts the assumption η̄(Ym) < 0. Consequently, T 0 = 0

and the perpetual value function is zero.

3.4.2. Case b = a

When pc > D, the solution follows identical lines as for b > a. When
pc ≤ D, we have V = 0. Indeed, the condition pc +Kc < f(x∗) from Section
3.3 is expanded as pc +Kc < D + d(y∗)−1/2. This implies that g(y∗) = (pc −
D)

√
y∗ + Kc

√
y∗ − d < 0, which, together with g being non-increasing (see

Subsections C.2.3 and C.2.4 in the Appendix), gives T̃ 0 = 0.

3.4.3. Case b < a

If pc ≤ D then (12) yields g(y∗) = (pc +Kc − f(x∗))
√
y∗ < 0 and T̃ 0 = 0

(see Subsection C.1.1 in the Appendix) so that V = 0.
If pc > D then Vc 6= 0 from Section C.1.2 in the Appendix and hence

V 6= 0. Let Γ̂ be the stopping region corresponding to T̃ ζ∗ with ζ∗ = MV and
yΓ = min Γ̂ ∈ (y∗,∞). We will show that yΓ ≥ Yc and H̄ ′(yΓ) = γ∗ with γ∗

being such that ζ∗(y) = γ∗y for y ∈ (0, yΓ]. Recall that gγ∗ shares convexity
properties with g, i.e., it is strictly convex on (0, Yc) and strictly concave on
(Yc,∞). A concave majorant of a strictly convex function can coincide with
this function only at the ends of the domain interval. Since gγ∗ is strictly
convex on (y∗, Yc) so yΓ /∈ (y∗, Yc). By concavity of H̄ = gγ∗ on [Yc,∞) the

smallest concave majorant of H̄ coincides with H̄ on Γ̂ = [yΓ,∞). Appealing to
continuous differentiability of gγ∗ proves that there must be a smooth fit at yΓ,
i.e., the derivatives of H̄ and its smallest concave majorant ζ∗ must be equal:
H̄ ′(yΓ) = γ∗ (recall that ζ∗ is a fixed point of T̃ ).

It remains to find yΓ explicitly. Above discussion shows that A = yΓ > y∗

and γ∗ > 0 satisfy the system of two equations in (13). We have η̄(y∗) < 0 and
limA→∞ η̄(A) = ∞. Since η̄ is decreasing on (0, Yc) and increasing on (Yc,∞),
there is a unique root A of η̄ on (max(y∗, Yc),∞). Since Ym < Yc we have
γ∗ = g′(A) = g′γ(A) > 0.

Summarising, there is a unique solution of the system of equations (13) with
constraints A > y∗ and γ∗ > 0. This corresponds to a fixed point of T̃ with the
stopping region Γ̂ = [A,∞).
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4. Discussion and conclusions

The real-time balancing of electrical power systems is a challenging prob-
lem which has intertwined technical and economic perspectives. In this context
we have studied the possible introduction of American-style call options in an
imbalance market, physically hedged by using a storage device. We have ob-
served that if the option writer purchases the underlying when the imbalance
is already negative, this would have the clearly unintended consequence of in-
stantaneously worsening the imbalance. In particular, delta hedging, which is a
classical approach in mathematical finance, would have this effect.

In this paper we have shown that by requiring physical cover, such options
may be designed without this unintended consequence. In particular we have
identified explicit conditions under which the storage operator has a positive
expected economic profit from the option, and, further, the underlying is only
bought when the imbalance is positive. This analysis is relevant to parties
involved in the design of contracts for power system balancing. Further we have
computed analytically the value to the storage operator of one such contract and
the lifetime value of a sequence of such contracts. This analysis is relevant to
commercial operators of electricity storage, to establish the commercial viability
of capital investments under such contracts.

It would be interesting to study a quantitative measure of the contribution
of such options to the balancing challenge. This would involve significant extra
complexity beyond the scope of the present work as we do not model price im-
pact. Since emerging electricity storage technologies are often embedded within
the electricity distribution network, the network power flow equations would
play a role. The latter study would essentially be one of time-domain power
system simulation under uncertainty in the context of power systems engineer-
ing. In contrast, our requirement in this paper is merely that the introduction
of option contracts should not have the unintended consequence of exacerbating
(rather than reducing) imbalance and should also provide a commercial oppor-
tunity to the storage operator, provided that the capital cost of the store is
sufficiently competitive.
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Appendix A Plots of UK system prices

Figure A.1 provides a histogram of the UK main system price, which is
used in the imbalance mechanism, between 2nd June 2013 and 12th January
2016. The boxplot is displayed in Figure A.2. The data was obtained from the
ELEXON Portal.
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Figure A.1: Histogram of main UK system price, 2nd June 2013 to 12th January 2016.

0 100 200 300 400

Figure A.2: Boxplot of main UK system price, 2nd June 2013 to 12th January 2016.

Appendix B Auxiliary results for smooth fit

This appendix provides several results concerning the existence of points of
smooth fit.

Lemma B.1. Let h : [x, z] → R for some x > 0 and z ∈ (x,∞] satisfy h(x) = 0
and h′(y) ≥ h(y)/y for y ∈ (x, z). Then h ≥ 0.

Proof. Let g = −h. Then g′(y) ≤ g(y)/y and Gronwall’s lemma yields g(y) ≤
g(x)e

∫
y

x
u−1du = 0.

Lemma B.2. Let f be a continuously differentiable function on [0, A) for A ∈
(0,∞]. Assume that f(y) = 0 for some 0 < y < A, limy→A f(y) > 0 and
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limy→A f
′(y) ≤ 0. Then there is a point z ∈ [y,A) such that f(z)/z = f ′(z) ≥ 0.

Moreover, there is at most one such point on each interval of strict concavity of
f (concavity is sufficient at the ends of the interval).

Proof. Let y1 < A be the largest root of f (its existence is guaranteed by
limy→A f(y) > 0). Then y1 > 0 and f(y) > 0 on (y1, A). Define ξ(y) =
f(y) − f ′(y)y. Clearly, ξ(y1) ≤ 0. If there is y2 > y1 such that ξ(y2) > 0 then
by continuity ξ must have a root z between y1 and y2. Since f(z) ≥ 0 then
f ′(z) ≥ 0.

Assume, for a contradiction, that ξ(y) ≤ 0 on [y1, A) and take any x ∈
(y1, A). Let g be the solution to the ODE: g(y) − g′(y)y = 0 for y ∈ [x,A),
g(x) = f(x), i.e., g(y) = yf(x)/x ≥ f(x). Let h = f − g. By Lemma B.1,
h ≥ 0, i.e., f ≥ g on [x,A). When A < ∞ then since limy→A f

′(y) ≤ 0 we
have limy→A ξ(y) ≥ limy→A f(y) ≥ limy→A g(y) ≥ f(x) > 0, a contradiction.
Otherwise A = ∞ and limy→∞ h′(y) ≤ −f(x)/x < 0, which contradicts the
positivity of h.

Assume further that f is concave on [a, b] and strictly concave inside of this
interval. Roots of ξ define tangents to f of the form x 7→ x f(y)/y. Due to
concavity the function f is majorised by its tangents. Hence, if there are two
roots y1, y2 of ξ then these tangents have to coincide. This is impossible due to
strict concavity.

Corollary B.3. Point z in the above lemma can be chosen such that f is not
strictly convex in its neighbourhood.

Proof. Assume that f is strictly convex on (l, r). This implies f(y1) > f(y2)+
f ′(y2)(y1 − y2) for any y1, y2 ∈ (l, r) and y1 < y2. Rearranging the terms yields

ξ(y2) = f(y2)− f ′(y2)y2 < f(y1)− f ′(y2)y1 < f(y1)− f ′(y1)y1 = ξ(y1),

where we used the fact that f ′(y1) < f ′(y2) following from strict convexity.
Hence, ξ is strictly decreasing on intervals of strict convexity of f . Similarly,
ξ is non-increasing on intervals of convexity of f and non-decreasing on the
intervals of concavity of f .

Let z be the point constructed in the proof of Lemma B.2. Assume that f
is strictly convex in the neighbourhood (l, r) of z. Then ξ(y) < 0 on (z, r]. This
implies that there is a root of ξ on (r, A). Let ẑ be the root on (r, A) closest
to r. Then ξ < 0 on (z, ẑ) and if f were strictly convex around ẑ then f would
decrease to 0 at ẑ, a contradiction. This implies that f is not stricty convex
around ẑ.

Corollary B.4. Assume that f is continuously differentiable on [0,∞) and
strictly convex on (0, r). If f(0) = 0, limy→∞ f(y) > 0 and limy→∞ f ′(y) ≤ 0
then there exists z > 0 such that f(z)/z = f ′(z) ≥ 0.

Proof. If there is y > 0 such that f(y) = 0 then the result follows from Lemma
B.2. Otherwise, assume that f > 0 on (0,∞). Define ξ(y) = f(y) − f ′(y)y.
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Then ξ(0) = 0 and ξ is decreasing on the interval of strict convexity (0, r).
Hence ξ(r) < 0. Arguments from the proof of Lemma B.2 imply that there is
y2 > r such that ξ(y2) > 0. This combined with the continuity of ξ yields that
there is a root z of ξ on (r, y2). Recalling that f(z) > 0 we obtain f ′(z) > 0.

Lemma B.5. Assume that function f is continuously differentiable on [0,∞),
convex on [0, ȳ] and increasing on [ȳ,∞) for some ȳ > 0 and that the following
hold:

f(0) = 0,

lim
y→∞

f(y) > 0,

lim
y→∞

f ′(y) = 0.

Then there is a point y ∈ [ȳ,∞) such that f(y)/y = f ′(y). Moreover, if f is
strictly concave on (ȳ,∞) then this point is unique.

Proof. If there is y ≥ ȳ such that f(y) ≤ 0, then the result follows from Lemma
B.2. Otherwise, f > 0 on [ȳ,∞). Define ξ(y) = f(y)− f ′(y)y. By convexity of
f , f(0) ≥ f(ȳ)+f ′(ȳ)(0− ȳ). Hence, ξ(ȳ) ≤ 0. Existence of y such that ξ(y) > 0
completes the proof due to continuity of ξ. Assume, by contradiction, that ξ ≤ 0
on [ȳ,∞). Let g be the solution to the ODE: g(y)−g′(y)y = 0, g(ȳ) = f(ȳ), i.e.,
g(y) = yf(ȳ)/ȳ. Let h = f − g. By Lemma B.1, h ≥ 0, i.e., f ≥ g on [ȳ,∞).
But then limy→∞ f ′(y) ≥ f(ȳ)/ȳ > 0, a contradiction. Uniqueness is proved
identically as in Lemma B.2.

Appendix C Single option: case-by-case analysis

Notice that g(y∗) =
√
y∗
(

pc +Kc − f(x∗)
)

, hence its sign is determined by
the relation between pc +Kc and f(x∗). This will be useful in interpreting the
conditions arising in the analysis below.

For the convenience of the reader we state the derivatives of g, ĝ and η:

η′(y) =
1

2
y−

1

2

[

pc −D − d

(

1− b2

a2

)

y−
b
2a

]

,

g′(y) =
1

2
y−

1

2

[

pc −D − d

(

1− b

a

)

y−
b
2a

]

,

ĝ′(y) =
1

2
y−

1

2

[

Kc + pc −D − d

(

1− b

a

)

y−
b
2a

]

,

g′′(y) =
1

4
y−

3

2

[

D − pc + d

(

1− b2

a2

)

y−
b
2a

]

,

ĝ′′(y) =
1

4
y−

3

2

[

D −Kc − pc + d

(

1− b2

a2

)

y−
b
2a

]

.

(C.1)

A summary of the results for each case is collected in Tables C.1-C.3. Graphs
showing the shape of the obstacle and related stopping regions are located in
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Table C.1: Stopping regions for the single option when b < a. Whenever the stopping region
is trivial we write Vc = 0.

Stopping regions in the case b < a.

Parameter range Stopping region Figure C.2

pc ≤ D

Kc + pc ≤ D Vc = 0

Kc + pc > D
Kc + pc ≤ f(x∗) Vc = 0

Kc + pc > f(x∗) Γ̂ = [min{ŷb, y∗}, y∗] a

pc > D

Kc + pc ≤ f(x∗) Γ̂ = [yb,∞) d

Kc + pc > f(x∗)
Case A

y∗ ≥ Yc Γ̂ = [min(ŷb, y
∗),∞) e

y∗ < Yc Γ̂ = [min(ŷb, y
∗), y∗] ∪ [y

(1)
b

,∞) f & Fig. 2

Case Ac Γ̂ = [yb,∞) d

Figures C.1 and C.2 with links in the last column of the aforementioned tables
for guidance. For futher clarity, the graphs in Figure C.1 display the smallest
concave majorant of the obstacle in red and blue. The blue region, which is
where the majorant coincides with the obstacle, defines the stopping region.

C.1 Solutions in the case b < a

A summary of the results of this subsection is presented in Table C.1.

C.1.1 Case pc ≤ D

When Kc + pc ≤ D: Each of Ym, Yc, Ŷm, Ŷc are equal to positive infinity, hence
g and ĝ are decreasing on (0,∞). Combining this with ĝ(0) = 0 makes H non-
positive and W zero everywhere, giving Vc = 0.
When Kc + pc > D: ĝ is 0 at 0, then decreases and, if Ŷm < y∗, later increases,
to meet g at y∗. Also g is decreasing everywhere as Ym = ∞. Hence, g(y∗) ≤ 0
makes H non-positive and W zero everywhere, giving Vc = 0. When g(y∗) > 0
we have Vc 6= 0, the stopping region Γ̂ has right endpoint y∗ and exercise is
profitable at y∗. We have Γ̂ = [min{y∗, ŷb}, y∗] (see panel (a) in Figure C.1).
Note that the smooth fit condition never holds at the right end of the stopping
region, and holds at the left end only if ŷb < y∗.

C.1.2 Case pc > D

Both functions g and ĝ are convex close to 0 (decreasing then increasing)
and then concave, increasing without bound, and so the majorant W is nonzero
and Vc 6= 0.

g(y∗) ≤ 0: There exists y0 ≥ y∗ such that g is nonpositive on (0, y0] and
positive on (y0,∞). Since g(y) grows to infinity as y → ∞ and limy→∞ g′(y) = 0,
by Lemma B.2 in the Appendix there exists a point yb ≥ y0 such that the tangent
to g at yb crosses the origin, i.e., g

′(yb) = g(yb)/yb and g
′(yb) > 0 since g(yb) > 0.

This point can be taken on the concave part of g (so that yb ≥ Yc) by Corollary
B.3. Then it is unique by Lemma 2.2 and we conclude that Γ̂ = [yb,∞).
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Figure C.1: Illustrative plots for the single option obstacle and stopping region (thick hori-
zontal line). The dashed vertical lines mark y∗. The least nonnegative concave majorant W
is shown in blue (where W coincides with H) and red (otherwise).

a)

b)
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Figure C.2: Illustrative plots for the single option obstacle and stopping region (thick hori-
zontal line). The dashed vertical lines mark y∗.

a) b)

c) d)

e) f)
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When g(y∗) > 0 let y′ := min(ŷb, y
∗). We distinguish between the following

two cases:

• Case A: g(y)/y ≤ ĝ(y′)/y′ for all y > y∗ and hence the majorant coincides
with H at y′ (note that ĝ is concave at ŷb)

• Case AC : there exists ỹ > y∗ with g(ỹ)/ỹ > ĝ(y′)/y′ and so the majorant
does not coincide with H anywhere on [0, y∗]. If the majorant touches H
then it must do so to the right of y∗ and then smooth fit holds.

Lemma C.1. Case AC holds if and only if both of the following conditions hold:

1. η has a root yb > max(y∗, Yc),

2. g′(yb) > ĝ(y′)/y′.

Proof. Suppose first that case AC holds. For condition 1, apply Lemma B.5
to the function g(1)(y) = g(y∗+y)−g(y∗) on [0,∞) (taking ȳ = max(0, Yc−y∗))
to establish the existence of a smooth fit point ỹ

(1)
b . Let y

(1)
b = ỹ

(1)
b + y∗. Since

we are in case AC , it is easy to see that the tangent to g at y
(1)
b has a negative

intercept at the vertical axis, i.e., η(y
(1)
b ) < 0 and since η → ∞ as y → ∞ it

follows that η has a root yb in [y
(1)
b ,∞). Since the tangent at yb must strictly

dominate H on [0, y∗], condition 2 follows.
Conversely, if conditions 1 and 2 hold then the conclusion follows by the

definition of η.

Case A and y∗ ≥ Yc: H is concave at every point in [y′,∞) (because ĝ is
steeper at y∗ than g and both are concave there) so Γ̂ = [y′,∞).

Case A and y∗ < Yc: ThenH is convex on (y∗, Yc). The problem decomposes
into (i) finding the smallest non-negative concave majorant of ĝ on [0, y∗] and
(ii) finding the smallest non-negative concave majorant of the function g(1)(y) =
g(y∗ + y)− g(y∗) on [0,∞). The majorant in (i) coincides with ĝ on [y′, y∗] and
is linear on (0, y′). Since limy→∞ g(1)(y) = ∞ and the derivative converges
to 0 as y → ∞, there exists a unique point zb such that g(1) and its smallest
nonnegative concave majorant coincide exactly on [zb,∞) (apply Corollaries B.3
and B.4 in the Appendix and recall that Yc > y∗). Note that zb > 0 since g(1)

is strictly convex on (0, Yc − y∗). Clearly, y
(1)
b := y∗ + zb is a unique solution

of g(y)−g(y∗)
y−y∗

= g′(y) > 0. We will show that the smallest nonnegative concave
majorant of H is given by

W (y) =























ĝ(y′)
y′

y, y < y′,

ĝ(y), y′ ≤ y ≤ y∗,

g(y∗) + g′(y
(1)
b )(y − y∗), y∗ < y < y

(1)
b ,

g(y), y
(1)
b < y.

If y′ < y∗, then ĝ is concave on [y′, y∗] and lies below the tangent at y∗. We
infer the concavity of W at y∗ from this and the fact that ĝ majorises H. When
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Table C.2: Stopping regions for the single option when b > a. When the stopping region is
trivial we simply write Vc = 0.

Stopping regions in the case b > a.

Parameter range Stopping region Figure C.2

pc ≥ D
ŷb ≤ y∗ Γ̂ = [ŷb,∞) e

ŷb > y∗ Γ̂ = [max(yb, y
∗),∞) d

pc < D

Kc + pc < D Vc = 0

Kc + pc ≥ D

Kc + pc ≤ f(x∗)
Ym ≤ y∗ or g(Ym) ≤ 0 Vc = 0

Ym > y∗ and g(Ym) > 0 Γ̂ = [yb, Ym] c

Kc + pc > f(x∗)
g′(y∗) > g(y∗)/y∗ Γ̂ = [yb, Ym] c

g′(y∗) ≤ g(y∗)/y∗ Γ̂ = [min(ŷb, y
∗),max(Ym, y∗)] b

y′ = y∗ the concavity at y∗ follows from the condition A; concavity at other

points is trivial. Finally, we conclude that Γ̂ = [y′, y∗] ∪ [y
(1)
b ,∞), see panel (b)

in Figure C.1. The principle of smooth fit fails at y∗.
Case AC : By Lemma C.1 yb lies in (max(y∗, Yc),∞), a region in which H is

equal to g, concave, and increasing. We conclude that Γ = [yb,∞).

C.2 Solutions in the case b > a

A summary of the results of this subsection is presented in Table C.2.

C.2.1 Case pc ≥ D

In this case each of Ym, Yc, Ŷm, Ŷc are equal to positive infinity. Noting that
ĝ′(y∗) > g′(y∗), H is concave and increasing without bound so that Vc 6= 0. The
tangency points ŷb and yb are uniquely defined. Then Γ̂ = [A,∞) where A = ŷb
if ŷb ≤ y∗ and A = max(yb, y

∗) otherwise. Note that there is no smooth fit at
A when yb ≤ y∗ ≤ ŷb.

C.2.2 Case pc < D

When Kc + pc ≥ D: Ŷc, Ŷm are equal to +∞ while Yc, Ym lie in (0,∞) so
that ĝ is increasing and concave, making H concave on (0,max(y∗, Yc)) and
both convex and decreasing on (max(y∗, Yc),∞). Notice that if Ym ≤ y∗ then
the stopping region Γ̂ has an empty intersection with (y∗,∞) and the value
function W is constant on [y∗,∞).

If ĝ(y∗) = g(y∗) ≤ 0 then the problem reduces to finding a non-negative
concave majorant of g. In this case, if Ym ≤ y∗ or g(Ym) ≤ 0 then Vc = 0.
Otherwise, Vc > 0 and there exists a unique solution yb of η(y) = 0 on (y∗, Ym)
such that g′(yb) > 0 (uniqueness follows from Lemma 2.2, existence is easy).
The stopping region has the form Γ̂ = [yb, Ym].

If ĝ(y∗) = g(y∗) > 0 and g′(y∗) > g(y∗)/y∗ then Ym > y∗. Since η(y) =
2(g(y) − g′(y)y) we have η(y∗) < 0 and η(Ym) > 0, so by the continuity and
monotonicity of η(recall that Yc > Ym) there exists a unique solution yb of
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Table C.3: Stopping regions for the single option when a = b. Whenever the stopping region
is trivial we write Vc = 0.

Stopping regions in the case b = a.

Parameter range Stopping region Figure C.2

pc > D

yb ≥ y∗ Γ̂ = [yb,∞) d

ŷb < y∗ Γ̂ = [ŷb,∞) e

yb < y∗, ŷb ≥ y∗ Γ̂ = [y∗,∞)

pc = D
Kc

√
y∗ − d > 0 Γ̂ = [min(ŷb, y

∗),∞) e

Kc

√
y∗ − d ≤ 0 Vc = 0

pc < D
Kc + pc ≤ f(x∗) Vc = 0

Kc + pc > f(x∗) Γ̂ = [min{ŷb, y∗}, y∗] a

η(y) = 0 on (y∗, Ym), and we have g′(yb) > 0. It follows also that the tangent
at yb goes through 0 (has a null vertical intercept). By concavity of H on (0, yb)
it majorises H there. Hence, the stopping region is Γ̂ = [yb, Ym].

Alternatively, suppose that both g(y∗) > 0 and g′(y∗) ≤ g(y∗)/y∗. Then
since ĝ′(y∗) > g′(y∗), the problem decomposes into (i) finding the smallest
non-negative concave majorant of ĝ on [0, y∗] and (ii) finding the smallest
non-negative concave majorant of the function g(1)(y) = g(y∗ + y) − g(y∗) on
[0,∞). The majorant in (i) coincides with ĝ on [min(ŷb, y

∗), y∗], whereas the
majorant in (ii) coincides with g(1) on [0,max(Ym − y∗, 0)]. The overall stop-
ping region and majorant are then recovered by adjoining these parts, so that
Γ̂ = [min(ŷb, y

∗),max(Ym, y
∗)]. Notice that when ŷb > y∗ there is no smooth fit

at the left end of the interval Γ̂.
Kc + pc < D: we have ĝ < 0 on (0,∞) and g < ĝ on (y∗,∞), so that H ≤ 0

and Vc = 0.

C.3 Solutions in the case b = a

A summary of the results of this subsection is presented in Table C.3.
Although there does not seem to be any economic rationale behind this border
case, the analysis simplifies:

g(y) = (pc −D)
√
y +Kc

√
y∗ − d,

g′(y) =
1

2
y−

1

2 (pc −D),

g′′(y) =
1

4
y−

3

2 (D − pc),

ĝ(y) = (Kc + pc −D)
√
y − d,

ĝ′(y) =
1

2
y−

1

2 (Kc + pc −D),

ĝ′′(y) =
1

4
y−

3

2 (D −Kc − pc).

(C.2)
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C.3.1 Case pc > D

Here g, ĝ and hence alsoH are strictly concave and increasing without bound
so Vc 6= 0 and the stopping region Γ̂ will be of the form [A,∞). We have

yb = 4

(

d−Kc
√
y∗

pc −D

)2

, ŷb = 4

(

d

Kc + pc −D

)2

.

If yb ≥ y∗ then A = yb and smooth fit holds; otherwise, if ŷb < y∗ then A = ŷb
and smooth fit holds. If both yb < y∗ and ŷb ≥ y∗ then smooth fit does not
hold and A = y∗.

C.3.2 Case pc = D

The function g is constant and ĝ is increasing and concave. Hence Vc 6= 0
precisely when Kc

√
y∗ − d > 0, in which case Γ̂ = [A,∞) with A = min(ŷb, y

∗).

C.3.3 Case pc < D

In this case g is strictly convex and strictly decreasing and also ĝ(0) < 0,
so Vc 6= 0 if and only if g(y∗) > 0. In this case the stopping region is Γ̂ =
[min{ŷb, y∗}, y∗].
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