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Fig. 1. The schematic diagram showing the formation of kinking failure mode and its 

geometry; (a) in plane buckling of 0
o
 fibres with an initial fibre misalignment φo, 

(b) deformation of 0
o
 fibres via fibre microbuckling mechanism when it is loaded in 

compression σ∞, and (c) fibres kinking phenomena causing catastrophic fracture of the 

UD laminate. The kink band geometry: w = kink band width, β = boundary orientation 
and Φ = φo+γ = inclination angle. 
 

 

0

200

400

600

800

1000

1200

1400

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Compressive strain (%)

C
o

m
p

re
s

s
iv

e
 s

tr
e

s
s

 (
M

P
a

)

 
 

     

 

              

 

Fig. 2. (a) A typical compressive stress-strain response of a UD HTS40/977-2 

laminate [20]; (b) schematic representation of UD specimen loaded in compression; and 

(c) schematic diagram of various types of failure specimens according to ASTM D3410 

and D6641. 
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Fig. 3. Characteristics of fractured specimen; (a) the overall view of the actual fractured 

specimen of UD HTS40/977-2 composite laminate. Fracture surface is at an angle 

β=10o to 25o which is called kink band inclination angle; (b) SEM micrograph of the 

fractured surface (top view); and (c) SEM micrograph illustrating tensile and 

compressive surfaces on an individual failed fibre due to microbuckling. 
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Fig. 4. Optical microscopic across width view (at 200x magnification) of UD 

HTS40/977-2 CFRP composite laminate. Kink band width, w = 60 µm to 100 µm (or ≈ 
8 to 15 fibre diameters) and kink band inclination angle, β = 10o to 25o. 
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Fig. 5. (a) In-plane shear stress-strain response of a [±45]2s HTS40/977-2 composite 

laminate and (b) failed specimen. 
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Fig. 6. Budiansky’s fibre kinking model with schematic geometry of a kink band 

width, w oriented at an angle, Φ to the 1-direction (fibre direction) and reaction forces 

of the material loaded in compression. 
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Fig. 7. Theoretical compressive stress-strain response of the UD HTS40/977-2 

composite laminate after the initiation of fibre microbuckling. 
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Fig. 8. (a) A schematic of fibre microbuckling mode [24] (b) Free body diagram for a 

fibre element [4]. P = Axial compressive force, Q = Transverse shear, M = Bending 

moment, p = Applied distributed axial force, q = Applied distributed transverse force, 

m = Applied distributed bending moment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. (a) Fibre amplitude V normalised by initial fibre imperfection Vo versus applied 

compressive stress, σ∞. (σo =1059 MPa, is the critical stress at which fibre 

microbuckling is triggered); and (b) compressive strength prediction using combined 

modes model and comparison between predicted and measured compressive failure 

strengths of the UD HTS40/977-2 CFRP composite laminate.  
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Figure 10: The effects of non-linear shear stress-strain (τ -γ) response on the 
compressive strength of the UD HTS40/977-2 composite laminate; (a) Variation of 0

o
 

fibre amplitude with applied stress of the UD HTS40/977-2 laminate (b) Compressive 

strength prediction using combined modes model. 
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Figure 11: Measurement of shear yield stress and strain using nonlinear shear stress-

strain diagram to study the effects of initial fibre misalignment on the compressive 

strength of the HTS40/977-2 UD composite laminate. 
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Figure 12: The effects of initial fibre misalignment on the compressive strength of the 

UD HTS40/977-2 composite laminates; (a) Variation of 0
o
 fibre amplitude with applied 

stress on the UD HTS40/977-2 laminate (b) Compressive strength prediction using 

combined modes model. 
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Figure 13: Variation of 0
o
 fibre amplitude with applied stress on the UD HTS40/977-2 

laminate at various (a) initial half-wavelengths of the fibre and (b) fibre volume 

fractions. 
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Figure 14: The effects of initial half-wavelength of the fibre and fibre volume fraction 

on the compressive strength of the UD HTS40/977-2 composite laminates. 
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Figure 15: The effects of fibre types and properties on the compressive strength of the 

UD HTS40/977-2 composite laminate; (a) Variation of 0
o
 fibre amplitude with applied 

stress on the UD HTS40/977-2 laminate (b) Compressive strength prediction using 

combined modes model. 
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