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Fig. 1. The schematic diagram showing the formation of kinking failure mode and its
geometry; (a) in plane buckling of 0° fibres with an initial fibre misalignment g,

(b) deformation of 0° fibres via fibre microbuckling mechanism when it is loaded in
compression o”, and (c) fibres kinking phenomena causing catastrophic fracture of the
UD laminate. The kink band geometry: w = kink band width, = boundary orientation
and @ = ¢,+y= inclination angle.
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Fig. 2. (a) A typical compressive stress-strain response of a UD HTS40/977-2

laminate [20]; (b) schematic representation of UD specimen loaded in compression; and
(c) schematic diagram of various types of failure specimens according to ASTM D3410
and D6641.
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Fig. 3. Characteristics of fractured specimen; (a) the overall view of the actual fractured
specimen of UD HTS40/977-2 composite laminate. Fracture surface is at an angle
B=10°to 25° which is called kink band inclination angle; (b) SEM micrograph of the
fractured surface (top view); and (c) SEM micrograph illustrating tensile and
compressive surfaces on an individual failed fibre due to microbuckling.



Fig. 4. Optical microscopic across width view (at 200x magnification) of UD
HTS40/977-2 CFRP composite laminate. Kink band width, w = 60 pm to 100 um (or =

8 to 15 fibre diameters) and kink band inclination angle, 8= 10° to 25°.
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Fig. 5. (a) In-plane shear stress-strain response of a [+45],s HTS40/977-2 composite

laminate and (b) failed specimen.



Fig. 6. Budiansky’s fibre kinking model with schematic geometry of a kink band
width, w oriented at an angle, @ to the 1-direction (fibre direction) and reaction forces
of the material loaded in compression.
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Fig. 7. Theoretical compressive stress-strain response of the UD HTS40/977-2

composite laminate after the initiation of fibre microbuckling.
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Fig. 8. (a) A schematic of fibre microbuckling mode [24] (b) Free body diagram for a
fibre element [4]. P = Axial compressive force, Q = Transverse shear, M = Bending
moment, p = Applied distributed axial force, ¢ = Applied distributed transverse force,

m = Applied distributed bending moment.
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Fig. 9. (a) Fibre amplitude V normalised by initial fibre imperfection V, versus applied
compressive stress, 0. (0, =1059 MPa, is the critical stress at which fibre
microbuckling is triggered); and (b) compressive strength prediction using combined
modes model and comparison between predicted and measured compressive failure
strengths of the UD HTS40/977-2 CFRP composite laminate.
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Figure 10: The effects of non-linear shear stress-strain (7 -7) response on the
compressive strength of the UD HTS40/977-2 composite laminate; (a) Variation of 0°
fibre amplitude with applied stress of the UD HTS40/977-2 laminate (b) Compressive
strength prediction using combined modes model.
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Figure 11: Measurement of shear yield stress and strain using nonlinear shear stress-
strain diagram to study the effects of initial fibre misalignment on the compressive
strength of the HT'S40/977-2 UD composite laminate.
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Figure 12: The effects of initial fibre misalignment on the compressive strength of the
UD HTS40/977-2 composite laminates; (a) Variation of 0° fibre amplitude with applied
stress on the UD HTS40/977-2 laminate (b) Compressive strength prediction using

combined modes model.

2.2 4
2 4
4 a
1.8 A
20 i
S 1.6 1
1.4 A i P
1.2
1 - :
0 200 400 600 800 1000
Applied stress (MPa)
— & —lamda=10df

‘ —— lamda=8df

—=— lamda=12df —= - lamda=15df ‘
(a)

2 -
i A
A
1.8 A
o 1.6+
2 |
g e
1.4 A ’
=
12 1 pre=u
1 — T
0 200 400 600 800 1000 1200
Applied stress (MPa)
——Vf=50% - » - Vf=55%
—— Vf=60% — —Vf=65%

(b)

Figure 13: Variation of 0° fibre amplitude with applied stress on the UD HTS40/977-2
laminate at various (a) initial half-wavelengths of the fibre and (b) fibre volume

fractions.
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Figure 14: The effects of initial half-wavelength of the fibre and fibre volume fraction
on the compressive strength of the UD HTS40/977-2 composite laminates.
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Figure 15: The effects of fibre types and properties on the compressive strength of the
UD HTS40/977-2 composite laminate; (a) Variation of 0° fibre amplitude with applied
stress on the UD HTS40/977-2 laminate (b) Compressive strength prediction using
combined modes model.
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