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ABSTRACT 

This study investigates the failure mechanisms of unidirectional (UD) HTS40/977-2 

toughened resin composites subjected to longitudinal compressive loading. A possible 

sequence of failure initiation and propagation was proposed based on SEM and optical 

microscopy observations of failed specimens. The micrographs revealed that the 

misaligned fibres failed in two points upon reaching maximum micro-bending 

deformation and two planes of fracture were created to form a kink band. Therefore 

fibre microbuckling and fibre kinking models were implemented to predict the 

compressive strength of UD HTS40/977-2 composite laminate. The analysis identified 

several parameters that were responsible for the microbuckling and kinking failure 

mechanisms. The effects of these parameters on the compressive strength of the UD 

HTS40/977-2 composite systems were discussed. The predicted compressive strength 
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using a newly developed combined modes model showed a very good agreement to the 

measured value. 
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1. Introduction 

Over the past three decades, much effort has been devoted to understand the 

failure mechanisms and develop models for predicting the strength of UD and 

multidirectional laminates loaded in compression. In polymer composites, the 

identification of critical failure modes is not easily accomplished because fracture of 

composites is usually instantaneous and catastrophic. Several types of possible failure 

modes, such as Euler buckling or macrobuckling of the specimen, crushing of the 

specimen end and longitudinal splitting, interfacial failure, elastic microbuckling of 

fibres, plastic microbuckling of fibres in a kinking mode and shear failure of the 

specimen, have been observed and reported in previous studies [1-18]. Among all 

failure modes, the fibre microbuckling failure mode is recognized as the dominant 

compressive failure mechanism in currently used continuous fibre/polymer matrix 

composite systems.  

The earliest development of fibre microbuckling failure models presented that 

the continuous fibres are usually represented by initially straight long columns that 

support most of the applied loads [14]. The microbuckling of the fibres occurs when the 

system is loaded in compression and this leads to catastrophic failure at the maximum 

applied load. However, the obvious imperfection observed in manufactured continuous 



FRP composites is fibre waviness or fibre misalignment, as shown in Fig. 1(a), therefore 

the fibres cannot be treated as straight and parallel layers [15]. The compressive failure 

is, most probably, caused by the local instability of fibres embedded in the matrix. The 

local instability of the FRP composites may be nucleated locally by fibre waviness, free 

edge region, resin rich region and poor fibre-matrix interfacial bonding [12]. This 

locally initiated failure propagates under incremental load through the laminate and thus 

creates a narrow zone called kink band width within the 0
o
 plies, which lose structural 

integrity and collapse as shown in Fig. 1(c). Fibre waviness or fibre misalignment has 

been reported to have a detrimental effect in CFRP systems by numerous 

researchers [5-12]. Since the fibre waviness can not be avoided during the 

manufacturing processes, this imperfection should be taken into consideration in the 

prediction of overall strength of the CFRP systems when loaded in compression.  

In this study, the failure mechanisms of UD HTS40/977-2 toughened resin 

composites subjected to longitudinal compressive loading were investigated. The 

compression and in-plane shear tests were conducted based on CRAG test method [19] 

and ASTM standards. A possible sequence of failure initiation and propagation was 

proposed based on SEM and optical microscopy observations of failed compression 

specimens. Fibre microbuckling and fibre kinking failure models were implemented to 

predict the compressive strength of UD HTS40/977-2 composite laminate such as 

Budiansky’s model [18], Berbinau’s model [12] and a newly developed combined 

modes model. The effects of several parameters, such as shear stress-strain properties, 

initial fibre misalignment, initial half wavelength, fibre diameter and its properties, fibre 

volume fraction and manufacturing methods on the compressive strength of the UD 

HTS40/977-2 composite systems were also discussed.  



 

2. Experimental Details 

2.1 Materials and test procedures  

The specimens were fabricated from carbon fibre/epoxy pre-impregnated tapes 

of 0.27 mm thickness and 300 mm tow width. The prepreg tapes were made of UD 

continuous high tensile strength carbon fibres (Toho Tenax HTS40 12K 800tex) pre-

impregnated with Cycom

977-2 toughened epoxy resin. This is the same toughened 

resin used in modern aircraft construction such as Boeing 787 and Airbus A380. The 

HTS40/977-2 prepreg tapes are commercially available and supplied by Cytec 

Engineered Materials Ltd. The pre-impregnated HTS40/977-2 tapes were hand lay-up to 

manufacture an eight-ply UD panel and a [±45°]2s laminate. The laminates were cured 

in the hot press at 177
o
C for 3 hours in accordance to standard curing cycle 

recommended by manufacturer.  

The compression test was conducted in accordance to CRAG test method [19] 

and ASTM Standards D3410 and D6641. A short gauge-length [0]8 specimen of 10 mm 

to 13 mm was used to evaluate UD material compressive properties. 120Ω strain gauges 

were used to monitor the degree of Euler bending, measure the axial strain, and to 

determine the compressive modulus and the Poisson’s ratio of the UD laminate. A 

250 kN servo-hydraulic machine with the Imperial College of Science Technology and 

Medicine (ICSTM) test fixture design [16] was used to determine the compressive 

behaviour of the UD laminate at a constant compression rate of 1 mm/min. Several tests 

were stopped before the final failure occurred in order to examine the initial failure 

mode. The fractured specimen was prepared using the standard metallographic 

technique to be observed under the optical microscope at 50x to 1000x magnification. 



The post-failure surfaces of the compression specimens were also observed under 

Scanning Electron Microscopy (SEM) to identify the failure mechanisms involved 

during compression. 

The in-plane shear test was a uniaxial test of a ±45o laminate and performed in 

accordance with the CRAG test method [19] and ASTM Standards D3518 and D3039. 

The tensile load was increased uniformly, at 5 mm/min testing speed rate, to cause 

failure within 30-60 seconds. A specimen of 100 mm gauge length was used to evaluate 

in-plane shear properties. The in-plane shear stress in the material coordinate system 

was directly calculated from the applied axial load whilst the related shear strain was 

determined from the longitudinal and the transverse normal strain data collected by the 

strain gauges.  

Full details on the characterization methods and experimental techniques had 

been documented previously by Jumahat et al [20]. The compressive stress-strain and 

in-plane shear stress-strain responses and failure characteristics were described in 

sections 2.2 and 2.3 for modelling purposes. The overall properties of the material used 

in this study were summarized in Table 1. These parameters will be used to predict the 

compressive strengths of UD HTS40/977-2 composite laminate using several types of 

failure models as summarized in Table 2.  

 

2.2 Compressive properties and failure modes 

Previous work by Jumahat et al [20] has shown that the compressive stress-strain 

response of the UD HTS40/977-2 composite laminate was linear up to a strain of 0.6%, 

as shown in Fig. 2(a), with the elastic modulus of 112 GPa. Fig. 2(a) shows that at 

higher strains the response becomes non-linear and the tangential modulus at failure is 



42% lesser than that of the initial linear part. This material softening is due to the 

damage in the form of fibre microbuckling (fibre instability failure mode) and plastic 

deformation of the resin. Catastrophic failure occurred at the average failure stress of 

1396MPa and the strain at failure of -1.5%. The acceptable failure modes and areas of 

the UD composite laminate after compression are described by ASTM Standards D3410 

and D6641. The overall specimen failure schematics are shown in Fig. 2(c). The 

fractured specimen of UD HTS40/977-2 after being loaded in compression is illustrated 

in Fig. 3(a). This is an acceptable failure mode according to ASTM Standards D3410 

and D6641, which is identified as transverse shear near top grip/tab failure mode (code 

TAT).  The initial failure mode was examined using an optical microscope at 200x 

magnification as shown in Fig. 4. Fig. 4 reveals that the failure was initiated by fibre 

microbuckling. The fibres break at two points, and create a kink band inclined at an 

angle of approximately β = 18o to the transverse direction (see Fig. 4). The fibres within 

the band were rotated by the angle of φ = 35o from the initial fibre direction, and the 

kink width w = 60-100 µm was approximately equal to 8-15 fibre diameters (df = 7 µm). 

Post-failure examination of the fractured surfaces using a scanning electron microscope 

revealed also the fibre microbuckling failure mechanism as shown in Fig. 3. Fig. 3(c) 

shows the tensile and compressive surfaces on an individual fibre which failed due to 

fibre microbuckling.  

 

2.3 In-plane shear properties 

Fig. 5(a) shows the in-plane shear stress-strain response of [±45]2s HTS40/977-2 

composite laminate. The shear yield strength and initial fibre misalignment of the 

composite were measured using a similar method applied in Lee [16]. The shear yield 



strength was 52 MPa at shear yield strain of 1.8% and the average initial fibre 

misalignment was 0.92
o
. The elastic shear modulus at 0.25% shear strain was 4.4 GPa 

and the plastic shear modulus measured using tangent at yield point was measured 

680 MPa. The in-plane shear strength and the corresponding shear strain were 

101.12 MPa and 17%, respectively. The analytical equation as described in Fig. 5 was 

used in the modelling work.  

 

3. Compressive strength prediction models for UD HTS40/977-2CFRP composites   

In this study, the fibre microbuckling model developed by Berbinau et al. [12] 

and kink band model developed by Budiansky [18] were used to predict the 

compressive strengths of the UD HTS40/977-2 toughened composite systems. The 

experimentally observed fracture mechanisms involved both fibre microbuckling and 

subsequent plastic kinking. Therefore a combined modes model, which incorporated 

elastoplastic behaviour of shear stress-strain response, in the fibre microbuckling model 

was developed in conjunction with the plastic kinking model. This combined modes 

model was then used to predict the strength of UD HTS40/977-2 composite laminate. 

The physical and mechanical properties data obtained from the experimental work were 

incorporated into various models as summarized in Table 2.   

 

3.1 Fibre kinking model  

The theory for failure of composites in a kink mode, as illustrated in Figures 1 

and 6, was proposed by Budiansky [18]. Fibre kinking is a result of the combination of 

compression and shear loadings. Budiansky’s model assumes elastic-perfectly plastic 

matrix behaviour. The model suggests that when the elastic shear stress limit (the shear 



yield point) is reached, the plastic deformation takes place causing failure. The 

compressive strength of UD laminate using kinking model, which was derived in [4,18], 

can be determined using the following equation: 
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where τy is the in-plane shear yield strength, σTy is the transverse yield strength, γy is the 

shear yield strain, φo is the initial fibre misalignment angle and β is the kink band 

inclination angle of the composite. For a very small β, equation (1) yields at a minimum 

value of shear yield stress and the general expression for the compressive buckling 

stress is given by equation (2).  
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Fig. 7 shows the theoretical compressive stress σc versus fibre rotation response Φ 

graph for HTS40/977-2 CFRP composite system. This graph was developed based on 

equation (2). The curve, as shown in Fig.7, describes the post buckling behaviour of the 

UD composite material which consists of (a) initiation of HTS40 fibres microbuckle, (b) 

the fibres breakage, (c) the matrix or interface between the matrix and the fibres fails 

and finally (d) the overall composite collapses. The predicted compressive strength of 

the UD laminate using Budiansky’s model is about 1529 MPa (point B, Fig. 7). The 

system is assumed to fail when the elastic shear yield point is reached and plastic 

deformation has taken place causing catastrophic failure at point B. Equation (1) 

predicts the longitudinal compressive strength is 1588 MPa which is higher than the 

measured compressive strength.  



 

3.2 Fibre microbuckling model  

A unique fibre microbuckling model based on an initial sinusoidal shape of fibre 

has been developed by Berbinau et al [12], which accounts for all the factors that affect 

the compressive failure strength in UD fibre-reinforced composites such as non-linear 

shear stress-strain response, fibre type, fibre dimension and property, fibre volume 

fraction and configuration of fibre waviness (wavelength and misalignment angle). 

Berbinau’s model assumes that the fibre acts as an Euler slender column supported by a 

non-linear matrix. Based on the fact that carbon fibres in the 0
o
 UD laminates are not 

perfectly aligned with the loading direction, up to 5
o
 fibre misalignment, 

Berbinau et al [12] modelled the initial fibre waviness by a sin function v0(x) as shown 

in Fig. 8(a). A sine function v0(x) is characterised by its amplitude V0 and its half-

wavelength λ0 as follows: 
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Fig. 8 shows when the compressive load is applied the misaligned fibre deform into a 

new sine function v(x) of amplitude V and half-wavelength λ. The function v(x) is given 

by: 
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Based on the assumption of fibre buckling in-phase (fibres kink in-phase with one 

another), all fibres deform the same way therefore p = q = 0.  Additionally, a constant 

axial force P is used to reduce the equilibrium conditions for the transverse forces and 

bending moments into the following equilibrium equation: 
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Substitute equations (6) to (9) into equation (5) hence the equation becomes: 
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where Ef and If are the elastic modulus and the second moment of area of the fibre 

respectively, Af is the fibre diameter, Vf is the fibre volume fraction, ( )γepG12  is the 

experimental nonlinear shear modulus in a function of the shear strain, eG12  and 
pG12  are 

the elastic and plastic in-plane shear modulus, respectively and yτ  and ultτ  are the yield 

and ultimate shear stress, respectively. The analytical shear stress-strain equation for 

toughened resin composite systems, as shown in Fig. 5(a), is given by: 
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In this study, Equation (10) was solved numerically using the Fortran 

programming language. This programme was compiled and executed via commercial 

Fortran compiler to predict the compressive strength of UD HTS40/977-2 CFRP 

composite. The result was given by a relationship between the applied compressive 



stress σ∞ and the maximum amplitude V of the buckled fibre during uniaxial 

compression. Failure of the UD material occurred when the fibre amplitude V started to 

increase asymptotically. Fig. 9 (a) presents the maximum amplitude V of the 0
o
 buckled 

fibre versus the applied stress σ∞ for UD HTS40/977-2 composite laminate. The curve 

shows that V increases slowly with increasing applied stress σ∞ and then grows 

exponentially until it reaches the maximum strength σo
 
where the curve increases 

asymptotically. The predicted longitudinal compressive strength was 1059 MPa, which 

was 24% lower than the experimentally measured compressive strength.  

 

3.3 Combined modes model (fibre microbuckling and plastic kinking)  

 The combined modes model was developed based on Berbinau et al. [12] fibre 

microbuckling model and Budiansky [18] fibre kinking model. Berbinau’s model 

underestimates the actual compressive strength value because the predicted compressive 

strength is the critical stress at which the fibres fail via microbuckling rather than the 

final failure stress of the whole laminate caused by both fibre microbuckling and plastic 

kinking mechanisms. 

In the fibre microbuckling analysis (section 3.2), the compressive strength of the 

composite depends only on the strength properties of the misaligned fibre, which is 

supported by the non linear matrix, without taking into account the additional 

compressive strength of the laminate after the fibres break, which is governed by plastic 

deformation of the composites. The plastic deformation of the composite after the fibre 

breaks should be included into the compressive strength model to predict the actual 

compressive strength based on the actual phenomena observed through the experiment.  



The plastic kinking failure mechanism is incorporated into the model as the 

following equation: 

kinkingplasticingmicrobucklfibrec  σσσ +=  (12) 

where the additional compressive strength caused by plastic deformation, σplastic kinking of 

the composite can be determine using modified Budiansky’s model as the following: 
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The actual predicted compressive strength using combined modes model, 

equation (12), was 1334 MPa which gave an accurate value of predicted compressive 

strength as shown in Fig. 9(b). Therefore the combined modes model was the most 

suitable model to predict the compressive strength of UD toughened resin composite 

laminates. 

 

4. Factors influenced the compressive strength of UD HTS40/977-2 CFRP 

composites   

The fibre waviness of 0
o
 fibre induced significant matrix shear stresses and 

strains for a given axial compressive stress level. Experimental observation in [21] 

showed that as the shear modulus and the shear yield strength of the laminate increased, 

the compressive strength also increased. In this study, the effects of various parameters 

on the compressive strength of UDHTS40/977-2 CFRP composite were examined using 

combined modes model (Eqn. 12). The shear yield stresses of 45 MPa to 68 MPa and 

initial fibre misalignments of 1
o
 to 5

o
 were used in the analysis since these were 

normally observed values in CFRP composites. 8 to 15 fibre diameters of initial half 

wavelength were used as input parameter in the analysis since these values were 



observed experimentally. The normally observed fibre volume fractions for CFRP 

composites of 0.55 to 0.65 were used in the analysis. The parametric study was 

conducted based on programme outline in Table 3. Additionally, the effects of fibre 

types and properties, such as HTS40, T800 and IM7, on the compressive strength of the 

HTS40/977-2 UD composite laminate were also studied.  

 

4.1 The effects of non-linear shear stress-strain response  

The shear stress-strain behaviour of UD HTS40/977-2 composites, which have 

maximum shear strength of 85 MPa, 115 MPa and 130 MPa, was predicted using 

equation (11). The input data were summarized in Table 3. The effects of shear 

properties on the compressive strength of the UD HTS40/977-2 composite laminates are 

illustrated in Fig. 10. Fig. 10(a) shows that the predicted fibre microbuckling 

compressive stress increases with the increasing shear strength. The fibre microbuckling 

compressive stresses increase of about 11%, 24% and 36% at shear strengths of 

101 MPa, 115 MPa, and 130 MPa, respectively. The total compressive strength is 

predicted using combined modes model, as shown in Fig. 10 (b). This analysis showed 

that shear properties had a great influence on the overall compressive strength of the 

CFRP composites. A system which has higher shear properties improves the 

compressive strength, due to the stiffer matrix which provides a better support to the 

fibre against failure and thus more stress is needed to deform the composite structures.   

 

4.2 The effects of initial fibre misalignment angle  

The non-linear shear stress strain diagram was used to determine the shear yield 

stress and strain at several initial fibre misalignment angles as illustrated in Figure 11. 



The input data, which were determined from Figure 11, were summarized in Table 2. 

The effects of initial fibre misalignment on the compressive strength of the UD 

HTS40/977-2 composite laminates are illustrated in Figure 12. Figure 12(a) shows that 

the microbuckling stress drops from a value of 919 MPa at 1
o 
initial fibre misalignment 

to a value of 648 MPa at 2
o 
initial fibre misalignment and decreases to 330 MPa at 5

o 

initial fibre misalignment. A huge reduction in compression strength of about 30%, 46% 

and 64% at 2
o
,
 
3
o
 and 5

o
 initial fibre misalignment, respectively, indicate that this 

parameter gives the most significant effect to the strength of the UD composite laminate 

compared to shear stress-strain properties. A better CFRP system can be achieved if the 

initial misalignment of the fibre can be minimized.  

Figure 12(b) shows the total compressive strength which consists of fibre 

microbuckling and plastic kinking failure stresses. A smaller initial fibre misalignment 

angle leads to a higher compressive strength. Theoretically, the smaller initial fibre 

misalignment gives the better stability of the fibre against the microbuckling stress. The 

compressive failure strength of HTS40/977-2 systems which has initial fibre 

misalignment of 5
o
 is 61% lower than that of 1

o
 initial fibre misalignment. A small 

variation of fibre waviness in the CFRP composites provides better fibre stability 

against microbuckling hence supports more load. Therefore a system which has small 

fibre waviness results in the better compressive properties because the stability of the 

whole structure is highly dependent on the effectiveness of the carbon fibres supporting 

the load. The fibre waviness is very difficult to control during the manufacturing 

processes. Investigation on development of toughened resin is very important to 

improve the properties of the matrix supporting the fibres such as minimizing 

coefficient thermal expansion mismatch between the matrix and the fibres during curing 



which can lead to a low fibre misalignment. A low fibre waviness and high shear 

properties are desirable in the advanced CFRP composite systems.  

 

4.3 The effects of initial half wavelength 

In this study, the initial fibre half wavelength was measured from a microscopic 

observation of the 0
o
-ply, as illustrated in Fig. 4. For the UD HTS40/977-2 system the 

fibre half-wavelength was equal to the kink band width of 60 µm to 100 µm. Hence, the 

fibre half-wavelength was of the order of 8 to 15 fibre diameters. The effects of fibre 

initial half-wavelength on the compressive strength of the UD HTS40/977-2 composite 

laminates are illustrated in Figures 13(a) and 14. Figure 13(a) shows that the fibre 

microbuckling stress drops from a value of 1071 MPa at λo= 56 µm (≈8df) to a value of 

919 MPa at λo= 70 µm (≈10df) and decreases to 797 MPa at λo= 105 µm (≈15df). The 

microbuckling stress reduces for about 14%, 21% and 26% at 70 µm, 84 µm and 

105 µm fibre initial half-wavelengths, respectively. It shows that this parameter gives 

significant effect to the strength of the UD composite laminate. The shorter length of the 

initial half-wavelength gives a better resistance to fibre microbuckle deformation hence 

increase the compressive stress needed to break the fibre. Figure 14 shows that the 

compressive failure strength at λo= 105 µm (≈15df) is about 10% lower than that of 

λo= 70 µm (≈10df) and about 20% lower than that of λo= 56 µm (≈8df). This shows that 

a shorter fibre initial half-wavelength provides better fibre stability against 

microbuckling hence supports more load.  

 

4.4 The effects of fibre volume fraction and manufacturing methods  



Fibre volume fraction is one of the most important parameters in compressive 

strength predictions. In this analysis, a range of fibre volume fractions from 55% to 65% 

was used, as these are normally observed values for CFRP composites. Fibre volume 

fraction is dependent on the production or manufacturing processing methods used to 

fabricate the CFRP composite laminate. In this study, the fibre volume fractions of the 

UD HTS40/977-2 system cured using hot press and autoclave were 58% and 62%, 

respectively. These values were measured using image analyzer technique. 

The effects of fibre volume fraction on the compressive strength of the UD 

HTS40/977-2 composite laminates are illustrated in Figures 13(b) and 14. Figure 13(b) 

shows the fibre microbuckling stress increases from a value of 835 MPa at Vf = 50% to a 

value of 1086 MPa at Vf = 65%. The microbuckling stress increases from about 10%, 

20% and 30% at 0.55,
 
0.6 and 0.65 fibre volume fractions, respectively. It shows that 

this parameter gives significant effect to the strength of the UD composite laminate. The 

higher amount of fibre volume fractions the stronger the CFRP composites. This is 

because most of the load which is applied to the CFRP composites is supported by the 

fibre. After the fibre fails, the load is supported by the strength of the matrix. Figure 14 

shows that the compressive failure strength at Vf = 55% is about 8% higher than that of 

Vf = 50% and about 14% lower than that of Vf = 65%. This shows that a higher fibre 

volume fraction provides better fibre stability against microbuckling hence supports 

more load.  

In order to study the effects of manufacturing processes on the compressive 

strength, the prepreg was cured in two different ways, hot press and autoclave methods. 

Using the same prepreg materials, the hot press method yielded Vf = 58% while the 

autoclave produced a composite with Vf = 62%. The overall compressive strength of 



CFRP composite manufactured using autoclave method was 1308 MPa which is 10% 

higher than CFRP composite prepared using hot press method as shown in Figure 14. 

This improvement in compressive strength is mainly due to the increase in fibre volume 

fraction, additionally factors such as consolidation of the fibres and reduced void 

content, will also contribute to this observed improvement in compressive strength. A 

high quality CFRP composite manufactured using an autoclave can have as high as 65% 

fibre volume fraction. Therefore the selection of manufacturing methods is very 

important to determine the overall performance of the CFRP composite system.  

 

4.5 The effects of fibre types and properties  

Three types of graphite fibres, IM7, T800 and HTS40, were used to study the 

effects of fibre type and properties on the compressive strength of UD CFRP 

composites. The properties of Hercules IM7 and Toray T800 were available elsewhere, 

eg. [22] and the manufacturer datasheets.  The fibre microbuckling stress of the CFRP 

system that used T800 carbon fibre has the highest critical stress of 977 MPa compared 

to CFRP made of HTS40 and IM7 carbon fibres as shown in Fig. 15(a). The overall 

compressive strength of T800/977-2 CFRP composite is 1250 MPa which is 3% and 

1.5% higher than HTS40/977-2 and IM7/977-2 CFRP composite, respectively. HTS40 

has bigger fibre cross-section area compared to IM7 and T800, however the 

compressive strength of HTS40/977-2 is lower than that of IM7/977-2 and T800/977-2 

systems. This is because IM7 and T800 types of carbon fibres have higher modulus of 

elasticity compared to HTS40 carbon fibre.  

 

5. Conclusions 



In this study, fibre kinking and fibre microbuckling models have been 

implemented to predict the compressive strength of the UD HTS40/977-2 toughened 

composite laminate. SEM micrograph revealed that the failure of the UD HTS40/977-2 

composite laminate was initiated by fibre microbuckling and subsequent plastic kinking 

of the materials. Therefore a combined modes model was developed to predict the 

compressive strength of the system. The combined modes model yielded a successful 

compressive strength prediction in which the predicted compressive strength was in a 

good agreement to the measured value. Considering all the parameters that had been 

investigated, the in-plane shear properties and the initial fibre misalignment angle 

between the fibres and the loading axis were identified as the most critical parameters 

that affect the compressive strength of the UD toughened composite laminates. 
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