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Agent  based  modelling  is a methodology  for  simulating  a variety  of  systems  across  a  broad  spectrum  of
fields. However,  due  to  the  complexity  of the  systems  it is  often  impossible  or  impractical  to  model  them
at  a one  to  one  scale.  In  this  paper  we  use  a simple  reaction  rate  model  implemented  using  the  FLAME
framework  to  test  the  impact  of  common  methods  for reducing  model  complexity  such  as  reducing  scale,
increasing  iteration  duration  and  reducing  message  overheads.  We  demonstrate  that  such approaches  can
have  significant  impact  on  simulation  runtime  albeit  with  increasing  risk  of  aberrant  system  behaviour
gent-based computational model
omplexity
imitations
cale
terations
untime

and  errors,  as  the complexity  of  the  model  is reduced.
©  2016  The  Authors.  Published  by  Elsevier  Ireland  Ltd.  This  is an open  access  article  under  the  CC  BY

license  (http://creativecommons.org/licenses/by/4.0/).
odel reduction

. Introduction

Agent based modelling (ABM) is a methodology (Niazi and
ussain, 2011) for modelling complex systems used in a large
ariety of scientific fields from engineering and manufacturing
o biology, ecology and social sciences (Coakley et al., 2006;
eissenberg et al., 2008; Holcombe et al., 2012; Grimm and
ailsback, 2005; Shen et al., 2006; Macy and Willer, 2002). ABM
ses a bottom up approach where agents are autonomous entities
epresenting individual components of the system being modelled
nd system level behaviour is an emergent property of the actions
nd interactions of the various agents. However in many cases the
ystems being modelled may  be comprised of millions or poten-
ially billions of components and a model faithfully incorporating
ach individual as an agent may  be either impossible to run on cur-
ent hardware or have a runtime or volume of output data that
ake simulations impractical to perform. In these cases using ABM
equires greater levels of abstraction to be employed within the

odel in order for it to be practical. Marked abstractions can be
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justified in cases where system behaviour is the focus of the analy-
sis and the status of individual agents is not central to the output of
the simulation. Hence as long as the abstraction is limited, so that
the model is unaltered at the level of overall functionality, reduced
complexity simulations still provide useful outputs.

Here we use a simple ABM based on a chemical reaction as
described previously (Andrews and Bray, 2004; Pogson et al., 2006),
and which has recently been expanded upon to explore spe-
cific aspects of biological regulatory systems (Pogson et al., 2008;
Rhodes and Smith et al., 2015), to assess the impact of reducing
model complexity on performance and system level output. The
aims were to determine the degree to which simulations could be
simplified without losing system level output while maintaining
the core system design.

2. Material and methods

2.1. Agent based model

To test the impact of varying settings within a simulation we

used a simple model of a reaction between two  different types of
agents which combine to form a third in a one to one ratio (A + B
−> C). The agents move within a bounded volume of space by a
random walk implementation of Brownian motion and will interact
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Fig. 1. Agent concentrations in a typical simulation.
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into their local vicinity. Messages can contain general information
oncentration of Agents A,B and C over time in a typical simulation run for the
eaction A + B −> C.

ith each other within a given range based on their affinity and the
imulation settings (Pogson et al., 2006; Pogson et al., 2008). Fig. 1
emonstrates the output of a typical simulation using a starting
oncentration of A which is 2 times that of B. This simple reac-
ion model was used in favour of a more complex system for the
ests for several reasons. Firstly the reaction is a single step pro-
ess involving only one interaction between agents which allows
valuation by simply measuring agent population levels. While in a
ore complex system in which there are more reactions or multi-

le reactions per agent, changes/errors in system behaviour could
e masked through feedback mechanisms. In addition, agent based
odels are based on the idea of system level behaviour emerging

rom many low level interactions such as this reaction. If complexity
hanges do not impact the behaviour of the low level interactions
hen the emergent behavior should remain the same independent
f the number of low level interactions within the system.

The ABM was developed in FLAME (Greenough et al., 2008) a
latform designed for high performance and parallel processing of
gents. In FLAME agents are modelled as state machines with mem-
ry, using transition functions between states which can read and
rite to the agent’s memory. Communication in FLAME is achieved

ntirely by messages which can by input and output by transition
unctions and are available to all agents simultaneously. In order
o maintain synchronicity a function that needs to read a mes-
age must wait until all message outputs from all agents have been
ompleted before it can begin. This synchronous messaging system
llows agents to be processed in parallel across multiple proces-
ors and eliminates the impact of the order in which agents are
rocessed on the behaviour of the model.

.2. Model complexity reduction

.2.1. Scale
The scale of the simulation (the number of agents) was  adjusted

ver a range of 2000 fold to a level at which the system no longer
ccurately represented the behaviour of the complete population.
he reduction in the number of agents is compensated by a pro-
ortional increase in their interaction volumes. As interactions take
lace within a 3-D environment, a fixed distance interaction range
roduces a sphere volume of space around the agent in within
hich interactions can occur. Hence as the volume of a sphere

s proportional to the cube of its radius, the interaction range is

odified by the cube-root of the scale change according to the

ormula:
range = baseRange × ( 3

√(1/modelScale))
ms 147 (2016) 21–27

Therefore if the population is halved, the volume of the sphere of
interaction range is doubled. The sphere of interaction determines
the rate at which agents can interact and so in this simulation is
acting as a rate constant modifier. The rate of this particular reac-
tion is dependent on the rate constant and concentrations of both
reagent agents and hence halving both concentrations (by reduc-
ing the scale by half) would result in a reduction in reaction rate to
one quarter without modifying the rate constant. By changing the
interaction range to double the rate constant while halving both
agent concentrations the overall reaction rate is halved with the
aim of having the percentage of agents reacting over a given time
remaining the same.

2.2.2. Time step
To assess the impact of less frequent updating and consequent

loss of detail on system behaviour, the length of each iteration
was increased. Agent behaviour was maintained by proportionally
changing the movement and interaction volume of each agent, with
a doubling of the time step resulting in a doubling of the interaction
volume according to the formula:

range = baseRange × ( 3
√(timeStep))

In this case an increase in interaction range adjusts the rate
constant to increase the effective reaction rate per iteration to com-
pensate for a reduced number of iterations per simulation. The
reaction rate measured per second should however remain the
same as each iteration represents a longer period of time.

Agent movement uses a random walk implementation of Brow-
nian motion with the length of each random step governed by a
diffusion coefficient. Hence the change in size of each random step
is proportional to the root of the change in time step according to
the formula:

distance = (
√

(diffusion × timestep))
Table 1 shows the parameters used in the reaction model. The

simulation environment was modelled as a simple sphere with
agents bound within its volume (derived from the environment
radius parameter) and remaining the same size throughout the
tests. The numbers of agents in the starting iteration was adjusted
over a range of 2000 fold to adjust the scale of the simulation
with the interaction range adjusted as previously described. The
time step was  increased up to 600 fold with interaction volume
increased proportionately. The diffusion coefficient remained con-
stant throughout all tests while the distance of each random walk
step varied with time step, as described above.

Simulation starting states used agents generated in random
positions throughout the simulation environment so that each run
tested a unique set of interactions between agents. To determine
if complexity reductions increased the variance of the system level
output produced by these random starting states, each test was
repeated 5 times.

2.3. Agent messaging

Agent based models rely on the ability of agents to communi-
cate with each other in order for complex behaviour to emerge.
Agent interactions can produce conflicts that need to be resolved
for example when multiple agents attempt to interact with a single
other agent. Depending on the complexity of the conflict resolu-
tion system implemented in the model errors in interactions can
occur. Next simulations were designed to investigate the overheads
and impact of conflict resolution within the broadcast messaging
system of the FLAME framework. In this framework agents commu-
nicate entirely through messages, which can be sent and received
such as a location broadcast or be designated for a specific agent
such as a request for interaction. This broadcast message system
is one of many types used in ABM however all systems need the
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Table  1
Simulation parameters.

Variable Formulae Symbol Value at Model Scale 1 and Timestep 0.1

Environment radius 17.5 �m
Model Scale modelScale 1
Diffusion Coefficient diffusion 5 × 10−5 cm2/s
Timestep length timestep 0.1 s
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Interaction range (radius) baseRange 

Starting Agent population − Agent A 

Starting Agent population − Agent B 

bility for agents to communicate and that communication makes
p part of each iteration’s computational overhead.

Illustration of results of interaction checks performed using
arying systems. No messaging (A) can result in loss or duplication
f agents. Interaction confirmation (B) can solve the loss or dupli-
ation errors but can miss potential interactions that can occur (C).
ooping interaction confirmations (D), show how the second loop
f checks picks up the interactions missed in the initial interaction
onfirmation check.

.3.1. No messaging
If an agent is within interaction range with another it assumes

nteraction occurs with no communication between the agents. If
ore than one agent is within interaction range with another they
ill both assume reaction has occurred and alter state, generating

rrors within the simulation. In the example in Fig. 2A two  agents of
ype A assume binding with one agent of type B, depending on the
mplementation of the interaction this will lead to either an overall
oss of one type A agent and the formation of one type AB or the
verall creation of a duplicate type B agent due to the formation of
wo type AB agents.

.3.2. Interaction confirmation
One agent type sends requests for interaction to the nearest

nteracting agent within range and the responding agent sends out
 single message to confirm the reaction can occur to the closest
gent it received a request from. This process will eliminate the
oss/duplication errors that occur with no messaging, therefore if
wo agents both request interaction with the same agent, that agent
ill respond to only one with a confirmation, illustrated in Fig. 2B.
owever as in Fig. 2C if an agent (A2) requests an interaction and

s denied due to a closer agent being confirmed a potential interac-
ion with a more distant agent (A2 and B2) can be missed leading
o errors from lost interactions.

.3.3. Looping interaction confirmation
Messaging occurs in the same way as with Interaction confir-

ation (Fig. 2C) but repeats the cycle of messages until all possible
nteractions have occurred (Fig. 2D). This eliminates both error from
oss/duplication and error from lost interactions but at the cost of
ncreased computing overhead.

We  tested the impact of having no messaging versus a full
ooping confirmation system in terms or both runtime and duplica-
ion error rate under varying density settings. For each density we
djusted the volume of the simulation environment while main-
aining total agent numbers hence forcing the agents into higher
r lower concentrations and therefore increasing the likelihood of
reating an interaction conflict.

. Results and discussion
.1. Scale and time step

From the results shown in Fig. 3A, the simulations in which
he scale of the model was reduced, the adjustments to interac-
0.3 �m
300 × modelScale
600 × modelScale

tion range adjusting the rate constant of the reaction appear to
compensate for the variation in agent concentrations. The results
demonstrate that the overall system behaviour remained largely
unchanged across several fold reduction in model scale. However,
as the reductions became more extreme (2000 fold, less than 100
total agents) the system behaviour began to deviate noticeably and
eventually break down. Reducing the scale and the total number of
agents in the simulation lowers the number of agent interactions to
be processed per iteration, reducing runtime. Similarly as the data
produced per iteration includes all agents, the size of the simulation
output files was proportionally reduced.

We see a similar impact on system level output when increasing
iteration time steps, leaving the output consistent across alteration
of several fold but diverging at extreme changes (600 fold) (Fig. 3B).
Increasing the length of each time step reduces the total num-
ber of iterations required and results in a decrease in the overall
runtime, which is roughly proportional for the majority of incre-
ments. However a minimum simulation runtime overhead appears
to remain at the extreme time steps, preventing any further reduc-
tion in runtime. As the number of iterations processed is reduced
proportionally to the time step, so is the amount of simulation
data output. As agent movement in this simulation uses a ran-
dom walk implementation, each agent moves in random jumps
in each iteration, as the length of iterations increase so does the
length of the jump. At very large time-steps agents may  traverse a
large proportion on the simulation environment in a single itera-
tion. As the reaction model in this case was  designed with an empty
environment, large distance steps had little consequence on the
simulation with the agent distribution remaining spread through-
out the simulation volume throughout the tests (Fig. 3D). However
in a simulation with physical obstacles, large distance time-steps
may  impact agent movement leading to noticeable divergence in
system behaviour.

Combining both time step increases and scale reductions
showed similar overall behaviour, but with divergence presenting
earlier (20 fold time step and 30 fold scale) when combined than
by changing either parameter alone (Fig. 3C). In addition, runtime
reductions were slightly greater when combining changes in time
step and scale, demonstrating that effects on runtime improve-
ments and simulation divergence were additive.

Despite the system level output varying due to changes of scale
and time-step, the variance between individual runs at any setting
remained highly consistent despite the random starting locations
of each agent. At the highest scale the standard deviation (SD) over
5 runs was 0.0004 at the end time point, while reducing the scale by
100 fold only increased the SD to 0.0041. Further halving in scale
to the point where the simulation broke down did increase the
variance to 0.0296. Similarly an increase in time-step by 600 fold
changed the SD from 0.0041 to 0.0082. This demonstrates that up to
the point where simulation behaviour breaks down these complex-
ity changes do not make the variance between runs significantly

higher and accurate readings can be obtained by few simulation
run repeats. (A) Scale of simulation was adjusted by varying agent
numbers by indicated proportion and interaction volumes by the
inverse amount. Time step was  fixed to 1 in each case. (B) Time step
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Fig. 2. Agent interactio

or each iteration was varied, increasing movement and interaction
olumes by indicated amount and reducing total number of itera-
ions by the same proportion. Scale was fixed to 200 in each case.
C) Scale and time step were varied simultaneously by indicated
mounts. Graphs display percentage of total number of agent type

 reacted (left) and total simulation time (right). (D) Agent distri-
ution throughout simulation volume at different equivalent time
oints with time step adjusted 100 fold. Colours represent differ-
nt agent types, Red − A, Green − B, Blue − C. Pictures are from

 single simulation run for each time step setting, using the same
nitial agent distribution.

.2. Agent messaging and density

Forcing agents into higher concentrations by increasing density,
ncreases the number of potential interactions in each iteration and
hus increases the number of potential conflicts to be resolved. As
an be seen in Fig. 4A, without a robust messaging system con-
rolling potential interaction conflicts, a large number of erroneous
nteractions can occur, which may  have a significant impact on
ystem level behaviour. It can also be seen that conversely when
nteractions are much rarer, the likelihood of conflict is reduced
nd very few errors occur even without robust interaction checks.
owever from the runtime results in Fig. 4B we can see that the
verhead of implementing the interaction confirmation loops is
easonably small when there are few conflicts to be resolved. At
igher densities with larger number of conflicts, the message over-
ead becomes much higher resulting at the highest density with
oughly 75% of the runtime being taken up by interaction resolu-
ion. Therefore we conclude that interaction confirmation is most
ostly on simulation runtime and although reducing the robustness
f messaging would have a large impact on runtime it would also
ignificantly increase error rate. In order to reduce both runtime
y limiting messaging and error rate by minimizing interactions,
he simulation density needs to be reduced to levels where inter-
ction conflict is minimal and either the error rate is tolerable or
he overhead of interaction confirmation is negligible. However,

etermining a tolerable error rate also depends on the nature of
he interactions within the simulation. In some simulations interac-
ions may  feedback on themselves or from one another in a positive
r negative manner. Negative feedback may  reduce the impact of
ict resolution systems.

errors by self-regulating the system to compensate, whereas errors
in positive feedback systems will compound leading to greater and
greater error rates. An example of positive feedback can be seen
in Fig. 4C in which the simple reaction model has had the addi-
tion of a disassociation mechanic which reverts agent C back to
agents A and B after a fixed delay. In this system which does not
include messaging, interaction errors cause duplication of agents
as illustrated in Fig. 2, after dissociation these additional agents
can rebind causing further errors. The repeated binding errors gen-
erate increasing numbers of erroneous agents leading to creation
of far more of agent C than should have been possible from the
starting agent concentrations. With messaging enabled (Fig. 4D)
the system does not produce these errors and stabilizes at equi-
librium between binding and dissociation. The difference between
messaging systems in this model demonstrates the low tolerance
for errors and the large changes in system output resulting from
such positive feedback systems.

In the investigation of scale and time step we explored two
methods of reducing simulation density which may  help reduce
this messaging overhead. Decreasing the simulation scale reduces
the total number of agents and therefore the number or interactions
occurring in each iteration, lowering the message system overhead
in addition to the previously described runtime reductions. How-
ever the likelihood of conflict per agent will remain unchanged
leading to errors without interaction confirmation. Reducing the
time step of each iteration spreads interactions over multiple time
points decreasing the effective density of the simulation and the
likelihood of conflict. Reducing time step sufficiently will reduce
error rates to a low enough level that message confirmation can be
removed in favour of performance. However, reducing time steps
increases the total number of iterations and hence runtime as previ-
ously shown, and may  not result in an overall performance increase.
Hence with some testing of tradeoffs between scale, time step, mes-
sage overhead and error rate, runtimes and data output can be
optimized while maintaining acceptable accuracy of system level
output.

Error rate as percentage of total number of interactions result-
ing in agent duplications at varying simulation density (A) Runtime

for simulations of varying density with no messaging or full con-
firmation loop messaging (B), results show messaging overhead
correlates with number of interaction conflicts to resolve. Agent
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Fig. 3. Impact of adjusting s
oncentration in the simple reaction model with addition of dissoci-
tion of reacted agents, using no messaging (C) or full confirmation
oop messaging (D). Duplication errors occurring without messag-
nd time step on simulation.
ing can feedback resulting in increasing error over time whereas
with messaging the system reaches equilibrium between binding
and dissociation.
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Fig. 4. Impact of Messaging 

.3. NF�B signaling pathway model

To determine if these modifications could be applied to more
omplex models we tested scale and timestep changes on the ABM
odel developed as part of our previous work (Rhodes and Smith

t al., 2015). This model is a cellular biological simulation of activa-
ion of the NF�B signaling pathway which contains multiple types
f protein and receptor agents. The model features several types of

nteractions including binding, dissociation, transport, changes of
tate, agent destruction and creation and hence should be a more
igorous test of the complexity changes. Simulations were run in
his model at three complexity levels, with the higher complexity

odel simulating approximately a 1:1 ratio of agent:protein and
 s time steps. The medium complexity model was implemented
ith 10 fold-reduced scale, 10 fold increased time step and message

onfirmation present but limited to only the densest of agent inter-
ctions and the lowest complexity test was performed by reducing
cale and increasing timestep by a further 10 fold. The results shown
n Fig. 5A demonstrate the activation of several proteins within
he signal pathway that activate each other in a cascade starting
ith MyD88 activation by a cell surface receptor. The high and
edium complexity simulations show signal amplification through

he cascade with similar peaks of activity in terms of both time and
ntensity. However the low intensity model simulations resulted in
rogressive dampening of activation through the pathway, demon-
trating a significant reduction in the number of agent interactions
ccurring in a manner similar to that of the reaction rate tests. In
ig. 5B and C can be seen two typical system level outputs of the
imulation, in which both the medium and the high complexity
imulations agree well with in vitro data (Yang et al., 2003; Carlotti

t al., 1999). The low complexity model however shows only a small
hange in these outputs, showing that the signal dampening effects
f the complexity changes lead to almost no change at the bottom
eraction Error and Runtime.

of the signal pathway. The reduction in complexity from high to
medium resulted in a reduction in running time to less than 1/100th
of the time required for the more complex model.

The results demonstrate the ability to significantly improve sim-
ulation performance without losing system level behaviour. We
believe that through complexity changes such as these, improve-
ments to runtimes can be achieved in a variety of ABMs, especially
those with large numbers of relatively simple agents such as sig-
nalling pathways, cellular models (Kaul et al., 2013) and population
models (Mathevet et al., 2003). Because of inherent differences in
agent behaviour, interactions and environment between different
ABM models, it is difficult to derive general rules regarding the
effect of complexity on ABM output. However our data show that
reduction in complexity may  be a valuable consideration in design
or optimisation specifically of large scale ABMs.

Protein activation cascade shows consistent amplification
through the signal pathway at high and medium complexity but a
dampening of signal at low complexity (A). Simulated degradation
of I�B (B) and ratio of nuclear to cytoplasmic NF�B (C) over 60 min
of stimulation with the cytokine interleukin1- (IL-1), are consis-
tent between high complexity (blue) and medium complexity (red)
models, but greatly reduced in low complexity simulations (green).
Total simulation runtime (D) reduced over 100 fold from high to
medium complexity and over a further 100 fold from medium to
low complexity.

4. Conclusions

We  have used a simple chemical reaction ABM to study the

impact of reducing simulation complexity on the system level out-
put and simulation runtime. We  have shown the number of agents
and the length of time step can be varied by several orders of mag-
nitude and still produce very similar system level behaviour while
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http://dx.doi.org/10.1371/journal.pone.0129888.
Shen, W.,  et al., 2006. Applications of agent-based systems in intelligent

manufacturing: an updated review. Adv. Eng. Inf. 20 (4), 415–431.
Yang, L., et al., 2003. RelA control of I�B� phosphorylation. J. Biol. Chem. 278 (33),

30881–30888.
Fig. 5. Impact of co

aving a large impact on runtime and data output. We  also show
hat a lack of robust interaction messaging can lead to large error
ates and yet the overhead of those robust checks can be significant.
herefore engineering the simulation in a way that generates less

nteraction conflict can provide large benefits in accuracy and/or
untime.

ABMs are rarely expected to produce perfect predictions, but are
ccepted as abstractions and used to identify trends in behaviour of
he simulated system under specific conditions. Therefore the ben-
fits of these complexity reductions in terms of runtime and data
utput may  well outweigh any small inaccuracies in the simulation
utput.
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