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What does this study add?  
 Testing of the impact of modifying maintained attentional bias on vulnerability to an acute pain 

stressor.  
 Findings suggested that retraining rapid attentional bias using short exposure durations conferred 

greater analgesic benefit, in comparison with both the slower bias and sham-training. 
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ABSTRACT 

Background: Noxious attentional bias is thought to confer vulnerability to pain, suggesting that 

modifying the bias could reduce pain outcomes. Herein is presented a randomised controlled trial to 

test the effects of retraining the dot probe attentional bias at short versus long stimulus durations 

towards neutral stimuli, and away from threat stimuli, on acute pain experience, in comparison with a 

placebo control group. Methods: Eighty-one pain-free volunteers, blinded to condition, were 

randomised to complete either one of two neutral bias modification programs in which words were 

presented for 500 ms (ABM-500; n = 28) or 1250 ms (ABM-1250; n = 26), or to a sham training 

program that included both stimulus durations (ABM-Placebo; n = 27). Testing took place in a 

university laboratory. At post-training, participants completed the pain-inducing ‘cold pressor task’, 

and measures of pain severity, threshold and tolerance were taken. Attentional bias was also measured 

at pre- and post-training. Results: Findings indicated that ABM-500 reliably increased pain threshold 

and tolerance, in comparison with the control group. In contrast, ABM-1250 did not affect any of the 

pain outcomes. Expected ABM effects on attentional bias were not evident at the group level, but 

nevertheless ABM-500 bias reduction was significantly associated with increased pain tolerance. 

Conclusions: These findings suggest that retraining attention at short stimulus exposure durations is 

relatively more efficacious in promoting transfer of attentional retraining effects to real-world acute 

pain stressors, in comparison with both the longer stimulus duration and ABM-Placebo.  
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1. INTRODUCTION 

The disproportionate allocation of attentional resources to pain-related cues over competing 

information (attentional bias) putatively increases vulnerability to pain (see (Crombez et al., 2013; 

Schoth et al., 2012) for review). Yet, evidence for this causal relationship is sparse. Cross-sectional 

studies point to the importance of distinguishing between processes involved in the early orienting 

and maintenance of attention (Allport 1989; LaBerge 1995; Mogg et al., 2004; Schoth et al., 2012), 

with increasing evidence that persistent pain-related attentional bias is particularly evident within 

maintained attention (1250 ms; (Liossi et al., 2009; Liossi et al., 2011). However, it remains unclear 

whether biased maintained attention is also a vulnerability factor to acute pain experience. 

Using experimental pain induction techniques with healthy participants can help to 

disentangle the contribution of attentional bias in pain. McGowan and colleagues showed that 

attentional bias modification (ABM) towards pain words (versus a group trained away from 

threat/towards neutral information) decreased pain threshold and increased pain severity (McGowan 

et al., 2009) (but see (Sharpe et al., 2015)). Remarkably, in a test of its clinical utility, a single session 

of rapid ABM (training attention towards neutral words/away from pain words presented for 500 ms) 

alleviated acute low back pain at 3-month follow-up (Sharpe et al., 2012). ABM effects have been 

promising in acute and experimental pain contexts, although there have been inconsistent findings, 

perhaps due to the non-unitary involvement of attention in acute and persistent pain (Todd et al., 

2015). 

Initial studies of ABM for pain have demonstrated effects of retraining early orienting (500 

ms; (McGowan et al., 2009; Sharpe et al., 2015), and one study incorporated two stimulus durations 

(500 and 1250 ms) into a single training program for persistent pain (Schoth et al., 2013). However, 

no studies have examined the timecourse of ABM using an experimental pain paradigm. Using the 

cold pressor task (CPT), this study will build on previous work by testing the impact of modifying 

attentional bias on acute pain. Using the dot-probe task (MacLeod et al., 2002), attentional bias will 

be targeted at early and later stages of attention through administering two neutral retraining 

programs, characterised by their different stimulus exposure durations (500 versus 1250 ms). The 

impact of these timings on CPT pain experience and response, as well as change in bias, will be 

assessed in comparison with a placebo control group. 

Drawing on attentional theories of pain (e.g. (Legrain et al., 2011)), and previous research 

(e.g. (Liossi et al., 2009; Liossi et al., 2011; McGowan et al., 2009), we predicted that participants in 

the active ABM conditions will  attain higher pain threshold and tolerance and report lower levels of 

pain severity (primary outcomes) during the CPT, in comparison with an ABM-Placebo control group 

trained towards threat and neutral. The use of two stimulus duration groups will permit us to evaluate 

the optimal timecourse of ABM for pain. Given the paucity of literature on the timecourse of 

attentional retraining for acute pain, we hold an open hypothesis about which timepoint will be most 

effective. 
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2. METHODS 

2.1 Design 

A single-blind, placebo-controlled, parallel group design with balanced randomisation was 

conducted to assess whether ABM-500 or ABM-1250 would be more efficacious in terms of their 

superiority over the control condition. Primary outcomes were pain threshold, tolerance (total and 

pain, which was total tolerance minus threshold) and severity taken at 30 seconds into the CPT. 

2.1 Participants 

A CONSORT diagram (Schulz et al., 2010) depicting participant flow through the study is 

presented in Figure S1. Eighty-five volunteers, recruited in February and March 2014 and May 2015, 

from the University of East Anglia completed the study in exchange for course credit. Data collection 

ended when numbers had been met. Four participants were excluded1, leaving a total of 81 for 

analysis (mean age = 19.98, SD = 2.15; age range 18 - 28; 58 females). Inclusion criteria were: aged 

18-35 years (this comparatively low age cut off was selected in view of age-related changes in 

attention orienting; e.g. (Allard and Kensinger 2014); fluent English speaker (due to the verbal nature 

of the task); normal or corrected-to-normal vision; and able to read and understand text displayed on a 

computer screen. A number of exclusion criteria were applied to ensure suitability of the cold pressor 

task: current acute (> 4/10 VAS) or chronic pain or history of chronic pain within the past six months; 

history of cardiovascular disorder; history of fainting or seizures; history of frostbite; presence of 

open cuts or sores on the left hand or forearm; history of Raynaud’s syndrome; any current medical 

condition; and recent use of analgesics (within the past six hours; cf. (von Baeyer et al., 2005). Using 

an online research randomiser program (www.randomizer.org), participants were allocated to one of 

three conditions with minimisation (Taves 1974) to ensure gender distribution was approximately 

equal: ABM-500 (n = 28); ABM-1250 (n = 26); and ABM-Placebo (n = 27). Participants were 

unaware of their condition allocation. Data collectors and assessors were not blinded to group 

assignment. 

2.2 Materials 

Cold pressor task (CPT) 

Contact with cold can induce a complex pain experience (Davis 1998). Specialised cold-

resistant ion channels operate within peripheral nociceptors to sense pain at very low temperatures 

and protect the body from frost-damage (Jarvis et al., 2007); in addition, it is thought cold-induced 

vasoconstriction of the blood vessels produces ischemic pain during the CPT (Ahles et al., 1983; 

Jones and Sharpe 2014). The cold pressor apparatus comprised a Techne B-18 stainless steel water 

bath (L530 mm by W375 mm by H172 mm) with TE-10D thermoregulator and RU-200 dip cooler, 

                                                           
1 The four participants were excluded due to: technical problems (2), interruptions (2). Some additional 
individuals, who did not fulfil inclusion criteria, attended the laboratory for a demonstration of some aspects of 
the procedure in exchange for course credit, in accordance with School regulations. 

http://www.randomizer.org/
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which maintained the circulating deionised water temperature at 5°C (set point accuracy ±1°C; 

temperature stability ±.01°C; Bibby Scientific Limited). This set-up adhered to published 

recommendations for laboratory cold pressor equipment (von Baeyer et al., 2005), and has been 

implemented in other experimental pain studies using student and adult samples (Verhoeven et al., 

2010). The water was continuously circulated to ensure no localised warming occurred around the 

arm. A second tank was used where water was maintained at room temperature (20.3°C, ±0.7°C). To 

standardise skin temperature prior to cold pressor immersion, all participants first submerged their left 

arm in the room temperature water tank for one minute. Participants were then instructed to lower 

their left arm into the cold water to a depth of 8 cm above the wrist (as indicated by the experimenter) 

and to “leave (their) arm in the water for as long as possible”. They were also asked to keep their hand 

open while it was in the water, and to avoid touching the sides and bottom of the water bath. An 

uninformed ceiling (i.e. participants were not told about the maximum time they would be allowed to 

keep their arm in the cold water) of four minutes was enforced for participant safety, after which time 

results can become confounded due to numbing (von Baeyer et al., 2005).  

Experimental stimuli 

 The experimental stimulus words comprised 24 pain-related words and 24 non-pain 

(‘neutral’) words matched for length and frequency of usage in the Brysbaert database ((Brysbaert and 

New 2009); see Table S1). The pain-related words were selected to be related to the sensory (e.g. 

“ache”) and affective (e.g. “suffer”) aspects of pain, and were taken from previous studies 

investigating attentional bias and its modification in pain (Asmundson et al., 2005; Carleton et al., 

2011; Keogh et al., 2001; Liossi et al., 2009; Liossi et al., 2011; Sharpe et al., 2012). All neutral 

words were related to the category of household items (Donaldson et al., 2007; Liossi et al., 2009; 

Placanica et al., 2002). The resulting 24 word-pairs were then divided into two test sets (each 

comprising 12 word pairs; Table S1). An additional 24 word pairs for the ABM program were 

selected and matched in the same way (Table S1). 

Attentional bias test 

The attentional bias test used a modified form of the probe classification version of the dot-

probe paradigm adapted from MacLeod and colleagues (MacLeod et al., 2002), and was administered 

using E-Prime software (Schneider et al., 2002). It was used to establish each individual’s bias to 

attend to the location of pain-related words relative to non-pain, neutral, words, and was administered 

to all participants at two timepoints in the experimental session (before, and after, ABM). The dot-

probe task comprised 96 trials (12 word pairs randomly presented eight times) with new words 

presented at pre- and post-training and order of test administration counterbalanced across groups. 

Each trial began with a fixation point presented in the middle of a 23 inch computer screen for 500 

ms. This was followed immediately by the matched word pairs (black text on a white background), 

each with one neutral meaning (e.g. “plate”) and one pain-related meaning (e.g. “sharp”). Words were 

separated by a vertical distance of 3 cm, equidistant from the prior position of the fixation point. The 
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test featured two word pair stimulus onset asynchronies (SOA; 500 and 1250 ms) in randomised 

order. After either 500 or 1250 ms an arrow probe (“<” or “>” with equal frequency) appeared in the 

prior location of one of the words. There was a 50:50 distribution of probe presentation in the position 

of the pain-related or neutral word position, and they were presented with equal frequency above and 

below the central fixation point. Participants were required to press the left or right arrow key as 

quickly and accurately as possible, to indicate which direction the arrow was pointing. Faster reaction 

times (RTs) to probes in neutral, non-pain word positions (as opposed to probes in pain, threat word 

positions) indicated a non-pain, neutral, attentional bias (i.e. an ability to focus attention away from 

pain). Each test lasted approximately five minutes. 

Attentional bias modification  

Past research has suggested that a single session of ABM is sufficient to alter attentional bias 

and response to acute stressor tasks, including the cold pressor task (e.g. (McGowan et al., 2009)). A 

single session of ABM was therefore administered comprising 192 trials, using E-Prime (Schneider et 

al., 2002). The critical difference between the attentional bias test and training program was that in the 

active ABM conditions the probe always replaced the neutral word in each word pair. This was 

intended to train attention away from the pain-related stimuli. The 24 word pairs (Table S1) were 

randomly presented eight times in each of the four possible combinations (left arrow top/target top; 

right arrow top/target top; left arrow bottom/target bottom; right arrow bottom/target bottom). 

Participants were instructed to fixate on the centre of the screen throughout and indicate as quickly 

and as accurately as possible whether a left or right facing arrow appeared on screen using the 

corresponding arrow keys on the keyboard (see supplementary material for full instructions). The 

arrow probe disappeared as soon as it was keyed in or after one second. The identity of the arrow 

probe was randomised for each trial. Participants were not given any indication that the ABM 

procedure may affect their experience of pain during the cold pressor task. Within the ABM-500 

program, there was 500 ms, and within the ABM-1250 program, 1250 ms, before the probe appeared 

(manipulated between-groups). A third group of participants completed the ABM-Placebo program, 

which was identical to the attentional bias test (the pain/non-pain words were probed equally), and 

used the same word pairs as in the active ABM programs (Table S1), with 500 and 1250 ms stimulus 

durations randomised.  

Pain measurements during the CPT 

The three primary outcome pain measures were adapted from a previous study investigating 

the impact of ABM on CPT pain (McGowan et al., 2009). They were: pain threshold (time taken in 

seconds for the participant to first register pain); tolerance, which included total tolerance (maximum 

time in seconds the participant was able to keep their arm submerged in the cold water) and pain 

tolerance (total tolerance minus threshold); and pain severity at 30 seconds into the task, as rated on 

an 11-point (0-10) numerical rating scale. NRS rating was repeated at tolerance. 

Self-report measures 
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As well as a demographics questionnaire, seven standard questionnaires were administered 

before the experiment. The first six of these measured cognitive and emotional factors that have been 

identified by past research as vulnerabilities for pain experience and which all have good to excellent 

reported reliability (Cronbach’s alphas), as indicated in parentheses below. These were: the Anxiety 

Sensitivity Index (ASI-3; (Taylor et al., 2007); Į = .93; (Wheaton et al., 2012)), the Fear of Pain 

Questionnaire-Short Form (FPQ-SF; Į = .91; (Asmundson et al., 2008)), the Hospital Anxiety and 

Depression Scale (HADS; (Zigmond and Snaith 1983); Į = .86; (Crawford et al., 2001)), the Pain 

Catastrophizing Scale (PCS; (Sullivan et al., 1995); Į = .96; (Osman et al., 2000)), and the Pain 

Vigilance and Awareness Questionnaire (PVAQ; Į = .88; (McCracken 1997)). The Attentional 

Control Scale (ACS; Į = .88; (Derryberry and Reed 2002)) was also administered, as previous studies 

have suggested that attentional control may affect an individual’s ability to downregulate task 

irrelevant attentional distractors (e.g. (Derryberry and Reed 2002; Sharpe et al., 2012)). 

 Lastly, current pain severity was measured using an 11-point numerical rating scale (NRS) 

for pain, which went from 0 (“no pain”) to 10 (“unbearable pain”). This was given at three time 

points: at baseline, to ensure that the participant was not currently experiencing pain, 30 seconds into 

the cold pressor task, and at tolerance, the end of the task. The pain NRS has high reported test-retest 

reliability (r = .96; (Hawker et al., 2011)) and construct validity, in relation to both healthy 

participants completing the CPT at 5 °C (r = .79 to .81; (Ferreira-Valente et al., 2011)), and chronic 

pain patients (r =  .86 to .95; (Downie et al., 1978; Ferraz et al., 1990; Hawker et al., 2011)). 

2.3 Procedure 

Ethical approval for the study was obtained from the University of East Anglia School of 

Psychology Research Ethics Committee. Two experimenters (JB and KB, a postgraduate student and 

experimental officer, respectively) were counterbalanced across groups. After completing the 

eligibility criteria checklist and giving informed written consent, participants completed paper 

versions of the questionnaire measures. These were always presented in the same order 

(Demographics; ASI-3; FPQ-SF; HADS; PCS; PVAQ; ACS; NRS). Next, participants were seated 

approximately 60 cm from the computer screen and administered the first attentional bias test (either 

version one or two according to counterbalancing). This was followed immediately by one of the 

ABM programs (500, 1250, or Placebo) depending on condition, and finally by the post-training 

attentional bias test (the different version to pre-training).  

Next, participants completed the cold pressor task. First they immersed their left arm in the 

room temperature water tank for one minute, followed immediately by the cold water tank for as long 

as they could do so. Verbal instructions for the task were given from a script so they were 

standardised across experimenters and conditions, and pain threshold and tolerance were recorded 

with a stopwatch. Using the NRS, participants verbally reported pain severity at 30 seconds into the 

task and again at tolerance. Where applicable, at four minutes the researcher asked participants to 

remove their arm from the water (n = 7). 



8 

 

After the cold pressor task, participants were asked to dry their arm thoroughly and flex their 

fingers to ensure circulation was fully restored. Finally, they were debriefed both verbally and in 

writing. Participants were tested individually for one hour. All sessions were completed in the same 

laboratory on campus. 

 

3. RESULTS 

3.1 Group characteristics 

A series of one-way ANOVAs indicated that there were no significant differences between 

groups at baseline in age, anxiety sensitivity, anxiety and depression, fear of pain, pain 

catastrophising, pain vigilance and awareness, perceived attentional control, pain NRS, and attentional 

bias, all Fs < 1.8, ps > .15. A series of chi-squares suggested no significant differences in gender, Ȥ 2 

(2, N = 81) = 0.30, p = .86, or handedness, Ȥ 2 (2, N = 81) = 0.24, p = .89. Summary statistics are 

reported in Table 1.  

Two one-sample t-tests, comparing attentional bias data at test stimulus duration 500 ms (M = 

- 1.05; SD = 19.86), and 1250 ms (M = - 1.77; SD = 21.81), with zero, indicated that, as expected in a 

healthy sample, participants did not exhibit a pain-related attentional bias at either the shorter, t(80) =  

- .476, p = .64 (two-tailed), d = .05, or longer, t(80) = - .730, p = .47 (two-tailed), d = .08, stimulus 

duration.  

A series of correlations suggested there were no significant associations between the baseline 

self-report measures and baseline attentional bias indexes, all rs < .15, ps ≥ .20 (for full correlation 

matrix, see Table S3). 

-INSERT TABLE 1 HERE- 

3.2 Data processing 

 Applying previously reported moderate effect sizes of ABM for pain (McGowan et al., 2009), 

power calculations suggested 26 participants would be required per group to achieve 80% power at 

.05 alpha. First, test trials with errors were discarded (1.55% of the data) prior to the calculation of 

median reaction times for each participant in each condition. Next, the attentional bias data (extracted 

medians for each trial type and derived bias indexes) were checked for normality within each 

condition; skewness and kurtosis coefficients fell within the recommended range of  ± 2 (Curran et 

al., 1996), and therefore parametric tests performed. 

 High ABM accuracy across conditions suggested good program fidelity: all participants fell 

within three standard deviations of the condition mean, and number of accurate responses (out of a 

possible 192 trials) did not differ significantly between the ABM-500 (M = 188.1; SD = 3.62); ABM-

1250 (M = 189.8; SD = 2.03) and ABM-Placebo (M = 188.5; SD = 3.78) groups, F (2, 78) = 1.82, p = 

.17, Ș2 = .045.    
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Next, the CPT pain outcomes were assessed for normality in the same way, revealing that the 

Numerical Rating Scale data were normally distributed. The threshold and tolerance data exhibited 

positive skew and kurtosis within all three conditions. Inspection of box and whisker plots indicated 

there were three extreme outliers in the threshold data, and four extreme outliers in the tolerance data. 

In view of these findings, extreme outliers that fell more than three standard deviations from the group 

mean were replaced with the next extreme plus one (4 data points; one case in each condition) 

(Tabachnick and Fidell 2001). The main analyses were a series of one-way analyses of variance 

(ANOVAs) conducted on this dataset (Babu et al., 1999; Glass et al., 1972; Lix et al., 1996; 

Tabachnick and Fidell 2001). 

Next, to test the hypothesis that ABM-500 and ABM-1250 would modify attentional bias in 

comparison with sham training, the attentional bias data were analysed using a mixed-model ANOVA 

with group (ABM-500, ABM-1250, ABM-Placebo) as the between-subjects factor. In the first 

instance, time (pre, post-training), stimulus duration (500, 1250 ms), target position (behind pain 

word, behind neutral word) and pain word position (top, bottom) were included as the within-subjects 

factors. Where relevant, significant interactions were followed up with ANOVAs and t-tests 

conducted on the attentional bias indexes (MacLeod et al., 1986; MacLeod et al., 2002). Effect sizes 

and their confidence intervals were calculated using R with MBESS (Kelly 2007a; 2007b; 2015). 

Finally, to test the hypothesis that there would be an association between change in attentional 

bias over the training period and change in the key pain outcome measures, attentional bias 

‘improvement’ scores were calculated by subtracting the relevant attentional bias index at pre-training 

from the corresponding index at post-training, such that a more positive value represented a greater 

shift towards a more neutral attentional bias (MacLeod et al., 1986; MacLeod et al., 2002; Sharpe et 

al., 2012). Where outcomes were not normally distributed (the change scores were normally 

distributed, whilst, as discussed above, the threshold and tolerance data were positively skewed), 

Spearman rho correlations were reported.  

The primary outcome measures for the present study were the CPT pain measurements (pain 

severity at 30 s; threshold; tolerance); the secondary outcome measure was the relative change in 

attentional bias at each test stimulus duration (500 ms; 1250 ms) between ABM groups, which tested 

the putative mechanism of action. 

3.3 Main outcome analyses: impact of ABM at 500 versus 1250 ms and Placebo Control Groups on 

CPT pain outcomes 

Total tolerance 

  One extreme outlier (>3SD from the mean) was identified and replaced with the next extreme 

plus one (Tabachnick and Fidell 2001). Results of the one-way ANOVA indicated a statistically 

significant effect, F(2, 78) = 5.43, p = .006, Ș2 = .12, meaning that the groups differed in how long 

they kept their arm submerged in the cold water during the cold pressor task. LSD contrasts revealed 

that participants in the ABM-500 had a higher total tolerance (M = 101.54s, SD = 84.11s) than 
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participants in the ABM-1250 group (M = 45.50s, SD = 29.28, p = .002, d = 0.87, 95% CI [0.31, 

1.41]) and control group (M = 61.31s, SD = 66.36s, p = .024, d = 0.62, 95% CI [0.08, 1.16]), whereas 

there was no difference between the ABM-1250 and control group, p = .38, d = 0.24, 95% CI [-0.78, 

0.30] (see Figure 1). These findings supported the hypothesis that participants in the ABM-500 would 

have a higher total tolerance than control participants, whereas there was no evidence that training 

attentional bias in the 1250 ms, maintained attention condition affected total tolerance, in comparison 

with controls. 

-INSERT FIGURE 1 HERE- 

Pain tolerance (total tolerance minus threshold) 

  One extreme outlier (>3SD from the mean) was identified and replaced with the next extreme 

plus one (Tabachnick and Fidell 2001). Results of the one-way ANOVA indicated that, as expected, 

there was a significant difference between groups F(2, 78) = 4.10, p = .020, Ș2 = .10. Follow-up LSD 

contrasts showed that participants in the ABM-500 had a higher pain tolerance (M = 82.72s, SD = 

83.78s) than participants in the ABM-1250 group (M = 34.84s, SD = 28.72, p = .007, d = 0.76, 95% 

CI [0.21, 1.30]) and, at a trend-level, than the control group (M = 50.05s, SD = 61.92s, p = .058, d = 

0.52, 95% CI [-0.02, 1.05]), whereas there was no difference between the ABM-1250 and control 

group, p = .38, d = 0.24, 95% CI [-0.78, 0.30] (see Figure 1). Corresponding with the above finding 

for total tolerance, ABM-500 provided superior analgesic effects to ABM-1250 for CPT pain 

tolerance, as individuals in this group were able to keep their arm submerged in cold water for longer 

following first registering pain. 

Pain threshold 

  Two extreme outliers were identified (>3SD from the mean) and replaced with the next 

extreme plus one (Tabachnick and Fidell 2001). Results indicated that, as predicted, there was a 

reliable difference between the groups, F(2, 78) = 3.40, p = .038, Ș2 = .08. Follow-up LSD contrasts 

showed that participants in the ABM-500 group had a higher pain threshold (M = 16.85s, SD = 

12.41s) than participants in the ABM-1250 group (M = 11.14s, SD = 7.00s; p = .032, d = 0.59, 95% 

CI [0.05, 1.13]) and control group (M = 10.87, SD = 8.36; p = .024, d = 0.62, 95% CI [0.08, 1.16]), 

whereas there was no difference between the ABM-1250 and control group; p = .92, d = 0.03, 95% CI 

[-0.51, 0.57] (Figure 2). Hence, these results supported the prediction that participants in the ABM-

500 would take longer to first register pain than control participants. There was no evidence that 

training attentional bias in maintained attention (ABM-1250 group) affected this outcome, in 

comparison with placebo. Instead, results suggested that ABM-500 (early orienting) was superior to 

ABM-1250 (maintained attention) for increasing pain threshold. 

-INSERT FIGURE 2 HERE- 

Numerical Rating Scale at 30 seconds 

  Some participants (n = 23) reached tolerance and withdrew their arm from the water before 30 

seconds, leaving data for 58 participants available for this analysis. A chi-square confirmed CPT 
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withdrawal did not vary between groups, Ȥ 2 (2, N = 81) = 0.25, p = .88. Results of the one-way 

ANOVA suggested the effect of ABM on pain severity was not statistically reliable, F(2, 55) = 2.92, p 

= .062, Ș2 = .10, though this trend-level effect was explored with follow-up LSD contrasts that 

suggested participants in the ABM-500 group (n = 21) rated their pain as less severe (M = 5.14, SD = 

1.32) than participants in the ABM-1250 group (n = 18; M = 6.22, SD = 1.48; p = .028, d = 0.72, 95% 

CI [-1.37, -0.08]). There was a trend towards the ABM-500 group reporting less severe pain than the 

control group (n = 19; M = 6.00, SD = 1.67; p = .074, d = 0.58, 95% CI [-1.20, 0.06]), whereas there 

was no difference between the ABM-1250 and placebo group; p = .65, d = 0.15, 95% CI [-0.50, 0.79] 

(see Figure 3), broadly corresponding with the overall pattern of findings thus far.  

-INSERT FIGURE 3 HERE- 

Numerical Rating Scale at Tolerance 

  It was not expected that ABM would impact on perceived pain severity at tolerance in 

comparison with ABM-Placebo, as previous research has suggested that participants reach an average 

of seven to eight out of 10 on the NRS before they feel the need to withdraw their arm (McGowan et 

al., 2009). Indeed, results of the one-way ANOVA revealed no significant difference in mean ratings 

between the ABM-500 (M = 7.29, SD = 1.72; ABM-1250 (M = 7.31, SD = 1.35) and ABM-Placebo 

(M = 7.15, SD = 1.73) groups, F<1. Together with the findings for tolerance reported above, this 

suggests training early orienting modulated the length of time that participants cold withstand the cold 

pressor immersion, and not the pain level at which tolerance occurred. 

3.4 Impact of ABM on attentional bias 

There was no difference in percent error in the target classification task between the ABM-

500 (M = 2.31, SD = 2.68), ABM-1250 (M = 3.09, SD = 2.55) and control (M = 3.94, SD = 3.42) 

groups, F (2, 78) = 2.15, p = .12, Ș2 = .052. Results of the mixed model ANOVA indicated there was 

a main effect of time, F(1, 78) = 4.25, p = .042, Șp
2 = .052, due to faster RTs at post (M = 445.4 ms, 

SD = 44.1) than at pre (M = 453.5 ms, SD = 46.8) ABM, most likely a practice effect. However, there 

was no time by group interaction, F(2, 78) = 2.57, p = .083, Șp
2 = .062, indicating that group did not 

have an overall effect on response times from pre to post training. 

 The only significant interaction with time, and hence relevant to hypotheses, was a three-way 

time by test stimulus duration by group interaction, F(2, 78) = 3.25, p = .044, Șp
2 = .077, which was 

further qualified by the critical four-way time by test SOA by target position by group interaction, 

F(2, 78) = 3.59, p = .032, Șp
2 = .084, suggesting that active ABM, in comparison with ABM-Placebo, 

had a differential impact on reaction times to targets replacing pain words versus neutral words, when 

they were presented for 500 ms versus 1250 ms (mean reaction times and SDs for each condition are 

presented in Table S2).  

 To follow up this four-way interaction, three separate repeated measures ANOVAs were 

conducted within each group with time (pre, post) and test stimulus duration (500, 1250 ms) as the 

within subjects factors. The predicted training effects on attentional bias were not significant within 
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the ABM-500, F(1, 27) = .164, p = .69, Șp
2 = .006, and ABM-1250, F(1, 25) = 2.19, p = .15, Șp

2 = 

.081, groups. Instead, the overall interaction effect appeared to have been driven by an unexpected 

increased dwelling in maintained attention on neutral words within the ABM-Placebo group, F(1, 26) 

= 6.19, p = .020, Șp
2 = .19, from pre (M = - 6.37, SD = 16.44) to post (M = 7.12, SD = 15.58) training, 

t(26) = - 3.12, p  = .004 (two-tailed), d = 0.60, 95% CI [0.19, 1.01]. 

3.5 Correlations 

Change in attentional bias and CPT pain measurements 

To test the predictions that improvements in attentional bias at each stimulus duration would 

be associated with improvements in CPT pain outcomes, a series of Pearson’s or, where data were not 

normally distributed, Spearman’s correlations was conducted within each condition for those pain 

outcomes that were found to differ significantly between conditions (total tolerance; pain tolerance; 

threshold), with attentional bias change scores (measured at 500 ms, 1250 ms) and the relevant CPT 

pain measurements, as the dependent variables. All reported p-values are two-tailed. 

ABM-500 group 

In line with hypotheses, significant moderate positive correlations were found between 

improvement in the training-congruent attentional bias at 500 ms, total tolerance, rs(28) = .431, p = 

.022, and pain tolerance, rs(28) = .437, p = .020 (see Figure 4), suggesting that greater early orienting 

to neutral words over the course of ABM-500 was associated with greater tolerance on the cold 

pressor task. However no association was found between change in attentional bias at 500 ms and 

threshold, r(28) = - .081, p = .68. Change in attentional bias at 1250 ms (the duration that was not 

trained) was not associated with threshold or tolerance outcomes within this condition (all ps > .60). 

-INSERT FIGURE 4 HERE- 

ABM-1250 group 

Positive correlations between improvement in attentional bias at 500 ms (the duration that 

was not trained), total tolerance, rs(26) = .267, p = .19, and pain tolerance, rs(26) = .354, p = .076, did 

not reach significance, suggesting that greater early orienting to neutral words over the course of 

ABM-1250 was not associated with greater CPT tolerance. There was also no association between 

change in attentional bias at 500 ms and threshold, r(26) = - .180, p = .38. Change in attentional bias 

at 1250 ms was not significantly associated with threshold, r(26) = .075, p = .72, total tolerance, 

rs(26) = .292, p = .15, or pain tolerance, rs(26) = .348, p = .082, within this condition. 

 ABM-Placebo group 

Unexpectedly, significant weak to moderate negative correlations were identified between 

change in attentional bias at 500 ms and threshold, rs(27) = - .399, p = .039 (Figure 5a), total 

tolerance, rs(27) = - .445, p = .020, and pain tolerance, rs(27) = - .441, p = .021 (Figure 5b), 

suggesting that greater early orienting towards neutral words from pre to post sham training was 

associated with lower threshold and tolerance times. Similarly, a significant negative moderate 

correlation was identified between change in attentional bias at 1250 ms and threshold, rs(27) = - 
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.420, p  = .029, suggesting greater maintained attention towards neutral words from pre to post sham 

training was associated with decreased threshold. However, corresponding with expectations, the 

associations between change in attentional bias at 1250 ms, total tolerance, rs(27) = - .359, p = .066, 

and pain tolerance, rs(27) = - .315, p = .11, did not reach significance within the placebo group. 

-INSERT FIGURES 5a and 5b HERE- 

Differences in correlations 

 Analyses were conducted to examine whether those correlations identified as significant in 

the ABM-500 group between improvement in attentional bias at 500 ms and pain outcomes differed 

from the equivalent correlations in the control group. Findings indicated that, in line with 

expectations, these correlations were significantly different for total tolerance, Z (N = 55) = 3.29, p = 

.001, and pain tolerance, Z (N = 55) = 3.30, p = .001 (Soper 2014). 

 

4. DISCUSSION  

This study assessed the relative efficacy of modifying attentional bias at 500ms versus 

1250ms on pain severity, threshold, and tolerance during the cold pressor task. Training early 

orienting, and not maintained attention, towards neutral words produced significant increases in pain 

threshold and tolerance, and there was a trend-level reduction in pain severity at 30 seconds, in 

comparison with an ABM-Placebo group. 

Current findings replicated and extended those of McGowan and colleagues (McGowan et al., 

2009). Importantly, both studies found a significant impact of ABM-500 on pain threshold, 

strengthening evidence that the faster bias influences time taken to first register pain. In comparing 

ABM-500 with ABM-Placebo (whereas (Jones and Sharpe 2014; McGowan et al., 2009; Sharpe et al., 

2015)) induced a pain bias in their comparison group), the present study confirmed that neutral ABM-

500 can confer analgesic benefits for acute pain, ruling out the possibility that previously reported 

effects were due purely to hyperalgesia resulting from retraining attention towards pain. Current 

findings align with studies reporting therapeutic effects of ABM for persistent pain (Carleton et al., 

2011; Schoth et al., 2013; Sharpe et al., 2012; Sharpe et al., 2015), providing evidence that attentional 

retraining in early orienting affects fundamental pain processes. The critical finding that analgesic 

effects were evident only when attention was diverted to words presented for 500ms, and not 1250ms, 

suggests that the faster bias was particularly active in detecting acute pain. In conjunction with the 

findings for tolerance, these results correspond with models that conceptualise pain as an alarm signal 

for the body, functioning to divert attention to pain from other ongoing activities and initiate 

protective action (Eccleston and Crombez 1999). 

Whereas present findings indicated a trend-level effect of ABM on pain severity at 30 

seconds, McGowan et al. (McGowan et al., 2009) reported significant ABM-500 effects for this 

outcome. Inspection of means suggested that the neutral ABM-500 group severity ratings were similar 

(current 5.14, SD=1.32 versus 5.16, SD=2.21; (McGowan et al., 2009)), indicating that differences in 
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findings lay in the control groups employed. Diverging from our results, McGowan et al. (McGowan 

et al., 2009; Sharpe et al., 2015) found no difference in total tolerance between groups. This could be 

in part due to methodological differences in the maximum length of cold water immersion imposed: 

whereas participants kept their arm immersed for up to ten minutes (McGowan et al., 2009), and four 

minutes plus threshold (Sharpe et al., 2015) previously, the present study employed an absolute 

ceiling of 4min., after which tolerance results may be disrupted by numbing (von Baeyer et al., 2005).  

In spite of clear evidence that ABM alleviated important aspects of pain experience, the 

predicted group-level training effects on attentional bias were not found. One possibility is that 

detection of ABM effects on attentional bias was overshadowed by the temporal proximity of the 

visual-probe assessments to the cold-pressor task. Alternatively, although it may contribute to 

analgesia, ‘reduction’ in pain-related attentional bias may not be necessary for ABM effects to occur. 

Predictive studies have yielded mixed findings, with some, but not all (e.g. (Munafo and Stevenson 

2003), suggesting that pre-existing attentional avoidance of pain stimuli can be detrimental 

((Lautenbacher et al., 2011; Sharpe et al., 2014), see (Todd et al., 2015) for review). ABM might work 

in part through training the automatic activation of control mechanisms that enable selection of the 

alternative neutral response option when required (Bijleveld et al., 2009; Wiers et al., 2013). If so, 

then change in bias in either direction might index ABM responsiveness. Indeed, in a recent single 

case series reporting analgesic effects of ABM for persistent pain (Schoth et al., 2013), bias moved 

“closer to zero” (p. 240), such that changes in attention were recorded in both directions. Future 

research could examine more closely the impact of ABM on mechanisms of attentional control, and 

its relationship with bias plasticity and symptoms (see also (Kuckertz and Amir 2015)). 

Despite the absence of predicted ABM effects on bias, a more neutral attentional bias at 

500ms was associated with improved pain outcomes within the ABM-500 group. Conversely, neutral 

bias acquisition within the ABM-Placebo group was associated with decreased threshold and 

tolerance. This suggests that whilst sham training towards pain and neutral words affected attentional 

bias (see also (Carlbring et al., 2012; Sharpe et al., 2012), the underpinning mechanism of bias change 

differed in important ways from active ABM. First, repeated presentation of pain words within the 

sham program, in the absence of a trained contingency, could be deleterious for pain outcomes. 

Second, development of a more neutral bias might reflect a self-protective strategy to avoid the pain 

stimuli (that ultimately failed during the acute stressor task, perhaps due to diminution of executive 

control during pain; cf. (Moriarty et al., 2011)). Indeed, there is suggestion that effortful attempts to 

control persistent pain (Eccleston and Crombez 2007), and noxious attentional bias during ABM, can 

paradoxically prioritise the unwanted input (Grafton et al., 2014). Conversely, the relative 

automaticity of implicit CBM effects may endure when executive resources are reduced (Bowler et 

al., 2012). Hence, the current unexpected negative control group correlations highlight the importance 

in active ABM of the probe contingency, and ensuing stimulus-driven cueing of the trained response 

when required, to its efficacy (Wiers et al., 2013). 
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The present study had a number of limitations. First, the dot-probe paradigm was used to 

measure (and modify) attentional bias. Consequently, any resultant attentional change was subject to 

its reliability and validity (Browning et al., 2011), which has been questioned (e.g. (Crombez et al., 

2013; Staugaard 2009). However, the task holds sufficient reliability and sensitivity to assess 

attentional bias change in healthy participants (Browning et al., 2011). It also has a large evidence-

base that spans the emotion and pain literature (see e.g. (Hakamata et al., 2010; Schoth et al., 2012) 

for reviews), enabling comparison across studies. Second, each attentional bias test comprised 96 

trials, which is arguably low and may have compromised the sensitivity of the test to detect bias 

change, but we think this is unlikely as other studies have successfully used similar trials per 

condition (e.g. (Schoenmakers et al., 2010). Nevertheless, future research might consider increasing 

the within-subject power to maximise task sensitivity and reliability. Third, the cold pressor task was 

administered at post-ABM only and hence it is possible that baseline differences in CPT experience 

could have influenced the results. However, our randomisation should have helped to mitigate this. 

Fourth, we did not probe participants’ awareness of hypotheses during debrief, although use of the 

same stimulus words across ABM groups reduces the likelihood of demand characteristics. Fifth, 

future studies should seek to extend these findings beyond the demographics of our student sample. 

The current findings are consistent with cognitive-affective and information processing 

models of pain that suggest attention modulates pain experience and response to pain, such that 

decreased attention to noxious information can increase the length of time it takes before pain is first 

registered, and help make it more bearable (e.g. (Eccleston and Crombez 1999; Pincus and Morley 

2001)). In terms of clinical implications, the findings concerning threshold and tolerance are 

noteworthy. Reduced pain threshold has been reported in individuals with persistent pain (Herren-

Gerber et al., 2004) and is indicative of somatosensory hypervigilance (Van Damme et al., 2015). 

This hypervigilance may lead to increased avoidance of pain-causing activities, deconditioning and 

depression, and increased likelihood of pain, creating a vicious circle (Vlaeyen and Linton 2000; 

2012). As such, quelling excessive attention to pain (increased threshold) and decreasing avoidance 

behaviours (increased tolerance) could help reduce deconditioning and pain-related depression, and 

improve adjustment to pain. However, the generalisability of ABM effects to persistent pain, where it 

is likely that maintained attention has a more prominent role than was observed for acute 

experimentally induced pain (Liossi et al., 2009; Liossi et al., 2011; Schoth et al., 2012), requires 

systematic examination. The ability to increase acute pain threshold could have therapeutic potential 

for acute pain. Present results suggest targeting early attention could be optimal for this type of pain, 

although further research is needed within different pain contexts (i.e. clinical procedural versus 

experimental). The critical role of attention in acute, including procedural, pain experience is 

supported by the current evidence base for distraction therapies (Diette et al., 2003; Malloy and 

Milling 2010). Interestingly, unlike distraction - an explicit strategy for diverting attention from pain - 

ABM is an implicit strategy for attentional diversion that operates at a relatively automatic level of 
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processing (Hertel and Mathews 2011). Recent research has suggested that the efficacy of explicit 

strategies like distraction might be reduced when there is a pre-existing attentional bias to pain (Van 

Ryckeghem et al., 2012), indicating that the two might work in different and potentially 

complementary ways; future research could address this question.  

In summary, the present study has suggested that shorter exposure to the critical stimulus 

trials is relatively more efficacious in promoting transfer of analgesic attentional retraining effects to a 

real-world acute pain stressor task, in comparison with both the longer stimulus duration and ABM-

Placebo. 
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TABLE HEADINGS 

Table 1 Means of Age, Anxiety Sensitivity, Anxiety, Depression, Fear of Pain, Pain Catastrophising, 

Pain Vigilance and Awareness, Attentional Control, Pain NRS, and Attentional Bias with Standard 

Deviations, Gender Ratio and Handedness by Condition 
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FIGURE LEGENDS 

Figure 1 Mean total and pain tolerance (s) by ABM condition (500 ms, 1250 ms, Placebo). Error bars 

represent ± 1 standard error. 

 

Figure 2 Mean threshold (s) by ABM condition (500 ms, 1250 ms, Placebo). Error bars represent ± 1 

standard error. 

 

Figure 3 Mean pain NRS rating at 30 seconds by ABM condition (500 ms, 1250 ms, Placebo). Error 

bars represent ± 1 standard error. 

 

Figure 4 Significant moderate positive correlation between change in attentional bias at 500 ms and 

pain tolerance within the ABM-500 group. 

 

Figure 5a Significant weak to moderate negative correlation between change in AB-500 and 

threshold within the ABM-Placebo group. 

 

Figure 5b Significant moderate negative correlation between change in AB-500 and pain tolerance 

within the ABM-Placebo group. 
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Table 1 

 

Note:a All between-groups comparisons at baseline were non-significant (p > .15). As gender and 
handedness are dichotomous variables, chi-squares were conducted. 

  

 ABM-500          

(n = 28) 

ABM-1250        

(n = 26) 

ABM-Placebo        

(n = 27) 

 

 M SD       M SD M SD F-

value 

Age 19.93 2.09 20.04 2.03 19.96 2.39 0.02 

Female:Malea 19:9  19:7  20:7  0.30 

Right:Left handed   25:3  23:3  23:4  0.24 

ASI-3  19.36 10.13 20.73 10.25 20.59 10.34 0.15 

HADS-Anxiety 7.64 2.84 8.38 3.80 7.37 3.55 0.63 

HADS-Depression 3.14 2.34 2.69 2.59 2.11 1.67 1.48 

FPQ-SF 48.61 8.13 52.04 10.34 52.11 10.49 1.18 

PCS 21.07 8.53 19.38 8.70 19.15 10.30 0.36 

PVAQ 37.43 13.22 35.46 9.56 37.04 10.84 0.22 

ACS 47.00 7.54 46.54 8.47 48.08 7.06 0.27 

NRS-pain severity 0.71 1.05 0.38 0.70 0.33 0.62 1.77 

Attentional Bias-500 -1.04 21.43 -4.19 16.62 1.96 21.26 0.63 

Attentional Bias-1250 -2.12 26.98 3.38 20.11 -6.37 16.44 1.34 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figures 5a and 5b 
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