

This is a repository copy of *Congenital macrothrombocytopenia* is a heterogeneous disorder in India.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/101702/

Version: Accepted Version

Article:

Ali, S., Shetty, S., Ghosh, K. et al. (5 more authors) (2016) Congenital macrothrombocytopenia is a heterogeneous disorder in India. Haemophilia, 22 (4). pp. 570-582. ISSN 1351-8216

https://doi.org/10.1111/hae.12917

This is the peer reviewed version of the following article: Congenital macrothrombocytopenia is a heterogeneous disorder in India. Ali S, Ghosh K, Daly ME, Hampshire DJ, Makris M, Ghosh M, Mukherjee L, Bhattacharya M, Shetty S. Haemophilia., which has been published in final form at https://dx.doi.org/10.1111/hae.12917. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Congenital Macrothrombocytopenia is a heterogeneous disorder

in India

Shahnaz Ali, Shrimati Shetty, Kanjaksha Ghosh, Martina E. Daly*, Daniel J Hampshire*, Mike Makris*, Malay Ghosh#, Lipilekha Mukherjee#

Department of Haemostasis and Thrombosis, National Institute of Immunohaematology, 13th Floor, KEM Hospital, Parel, Mumbai 400012, Maharashtra, India

*Department of Cardiovascular Science, University of Sheffield, Medical School, Beech Hill Road, Sheffield, South Yorkshire, S10 2RX

#Department of Haematology, NRS Medical College and Hospital, Parikshit Roy Lane, Sealdah, Raja Bazar, Kolkata 700014, West Bengal, India

Correspondence: Dr. S. Shetty, National Institute of Immunohaematology (ICMR), 13th Floor, KEM Hospital, Parel, Mumbai 400 012, India

Phone: 9122 24138518

Fax: 9122 24138521

Email: shrimatishetty@yahoo.com

Running Title: Heterogenous Macrothrombocytopenia

Keywords: Thrombocytopenia, macrothrombocytopenia, giant platelet disorder, GP1b/IX/V complex, MYH9

Abstract

Introduction: Inherited macrothrombocytopenia represents a heterogeneous group of disorders which are characterised by the presence of a reduced number of abnormally large platelets in the circulation, which may or may not be associated with a bleeding tendency. In spite of several causative genes having been identified, the underlying genetic defects remain to be identified in approximately half of the cases.

Aims: To understand the molecular pathology of isolated giant platelet disorder from India.

Materials and Methods: We studied 112 cases who were referred for investigation of macrothrombocytopenia. Agonist induced platelet aggregation and platelet GP1b/IX/V receptor expression were investigated to assess GP1b/IX/V receptor expression and the GP1BA, GP1BB, GP9, ABCG5, ABCG8, TUBB1 and MYH9 genes were analysed to identify candidate gene defects.

Results: Twenty three candidate gene defects were identified in 48 of 112 cases, 20 of which were novel. Of the candidate defects identified, 91% were missense and 9% were nonsense variations. The missense variations were in *GP*9 (9), *ABCG5* (4), *GP1BB* (3), *GP1BA* (3), and *MYH*9 (2), while the nonsense defects occurred in *MYH*9 (1) and *GP1BA* (1).

Conclusions: This study increases the understanding of the molecular basis of an isolated giant platelet disorder, a common heterogeneous condition prevalent in North and Eastern India.

Introduction

Defined as a reduction in the number of platelets in the circulation, thrombocytopenia is usually an acquired disorder. However, defects in the genes regulating megakaryocyte differentiation and platelet production, which result in autosomal dominant or recessive, and X-linked forms of inherited thrombocytopenia, are increasingly being recognised [1-6]. Thus, while previously considered to be a rare disorder, it is now thought that the frequency of inherited thrombocytopenia may be underestimated. The variable clinical expression of inherited thrombocytopenia may contribute to its under diagnosis since some patients are asymptomatic and the relatively mild bleeding symptoms in others can frequently be overlooked until a low platelet count is detected often as part of a routine blood test [7]. In contrast, patients with more severe forms of inherited thrombocytopenia are usually identified early in the perinatal period, or at times of haemostatic challenge. Inherited macrothrombocytopenia, the most frequent form of inherited thrombocytopenia, represents a heterogeneous group of disorders characterised by a reduction in the number and an increase in the size of platelets. The molecular defects have been elucidated in a number of cases. A significant proportion of patients have autosomal dominantly inherited

MYH9-related disorders which are due to defects in *MYH*9 that disrupt the assembly or stability of the myosin complex and cause profound abnormalities in the platelet cytoskeleton that can also be associated nephritis, deafness and cataracts [2].

In 2002, Naina et al. described a form of inherited thrombocytopenia which appeared to be highly prevalent among healthy blood donors in the North-Eastern states of the Indian subcontinent, affecting up to one third of healthy blood donors in West Bengal [5]. Termed Harris Platelet Syndrome (HPS), it was characterized by mild to severe macrothrombocytopenia, normal platelet function and an absence of inclusion bodies in the neutrophils. None of the donors had a history of excessive bleeding. Preliminary family studies suggested an autosomal dominant mode of inheritance and also that defects in MYH9 were not involved. In contrast, none of the randomly selected donors from Tamil Nadu in Southern India were found to have macrothrombocytopenia. The apparent absence of MYH9-RD in HPS that the spectrum of molecular defects suggests underlying macrothrombocytopenia in the West Bengal population differs from that observed in other well characterised cohorts of patients with inherited thrombocytopenia which, to date, have mainly been of European and Eastern origins. These findings also suggest that founder effects may contribute to the high prevalence of macrothrombocytopenia in the North East, compared to the South of India.

In this study we have investigated the clinical expression and molecular basis of inherited macrothrombocytopenia in 112 index cases, the majority of whom originated from West Bengal and the North-Eastern states of India and Nepal. Analysis of genes that have previously been associated with inherited macrothrombocytopenia identified candidate defects in 48 index cases leading us to conclude that inherited macrothrombocytopenia is a heterogeneous disorder in this population.

Materials and Methods

Study subjects and Methods

One hundred and twelve unrelated cases, who were referred to the Department of Haemostasis, National Institute of Immunohaematology, Mumbai or the Department of Haematology, NRS Medical College, Kolkata for investigation of macrothrombocytopenia, were studied. Cases were enrolled in the study if they had a reduced platelet count (<150 X 10⁹/L) and a mean platelet volume (MPV) greater than 10fl which was associated with the presence of giant platelets as revealed by light microscopic examination of a peripheral blood smear. In some cases, the MPV was greater than 18.5fl and could not be determined by the cell counter, but the presence of giant platelets was confirmed by examination of the peripheral blood smear.

All cases had normal anti-platelet antibody [8], and ferritin levels, and were grouped according to whether they had mild (100-150 X 10⁹/L), moderate (50-100 X 10⁹/L) or severe (<50 X 10⁹/L) thrombocytopenia. A detailed clinical history, including age of onset and type of any bleeding symptoms was recorded for each case, using the World Health Organisation (WHO) bleeding scale (grade 0, no bleeding; grade 1, petechiae; grade 2, mild blood loss; grade 3, gross blood loss; grade 4, debilitating blood loss) to score the severity of bleeding symptoms. A family history of bleeding symptoms and information on consanguinity, were also obtained.

Candidate gene defects identified in the index cases were sought in genomic DNA from 100 healthy control subjects (Age Range: 10-65 years; Male/Female: 52/48) all of whom had normal platelet counts (>200 X 10⁹/L), and MPV less than 10 fl and were also enrolled in the study.

The study was approved by the ethics committee and undertaken in accordance with the ethical guidance of the institution involved (No. IIH/IEC/11-2007). Written, informed consent was obtained from all study subjects (cases and controls) prior to the collection of citrated and EDTA blood samples for phenotypic and genotypic analyses.

Laboratory Investigations

Coagulation tests to exclude a plasma factor deficiency included a prothrombin time (PT) with neoplastin CI plus (Diagnostica Stago, Paris, France), activated partial thromboplastin time (APTT) with actin activated cephaloplastin reagent (Dade Behring FSL, Marburg, Germany), and thrombin time (TT) with commercial bovine thrombin (Baxter Diagnostic Inc. Dade Dives-USA). All assays were carried out in a semi-automated coagulometer (Start 4, Diagnostica Stago, France) as described previously [9]. Full blood counts were determined on samples taken into EDTA using the XT-2000i cell counter (Transasia Bio-Medical Ltd, Mumbai, India) within 2 hours of collection. Peripheral blood smears were stained using modified Leishman's stain and evaluated by light microscopy.

Platelet rich plasma (PRP) was prepared by centrifugation at 100g for 10 mins and *in vitro* platelet aggregation in response to ristocetin (0.5 and 1.25 mg/ml), adenosine diphosphate (ADP) (5µM), arachidonic acid (AA) (0.75mM) and collagen (2 µg/ml) was assessed using a lumi-aggregometer (Chronolog, Haverton, PA, USA). Expression of platelet membrane glycoproteins was assessed by flow cytometry in samples of PRP which were diluted with phosphate buffered saline, before being incubated with fluorescein isothiocyanate (FITC) conjugated monoclonal anti-human GPIb (CD42b), GPIX (CD42a) or phycoerythrin (PE) conjugated anti-GPIIb/Illa (CD41a) antibodies, or the appropriate IgG1 and IgG2a isotype control antibodies (BD Biosciences, Pharmingen, San Jose, CA, USA). Following incubation, platelets were analysed for cell bound fluorescence in a FACSCalibur flow cytometer (BD Biosciences, San Jose, CA, USA).

Genotyping Studies

Genomic DNA was extracted from peripheral blood samples using a standard phenol-chloroform method and quantified using a NanodropTM1000 spectrophotometer (Thermo Scientific). Sequencing of coding and non-coding regions of *GP1BA*, *GP1BB*, *GP9*, *TUBB1*, *MYH9*, *ABCG5* and *ABCG8* was then undertaken to identify candidate gene defects.

PCRs contained DFS10X complete reaction buffer and DFS-Taq polymerase (5U/ μ l) (BIORON GmbH, Germany), 10pmoles of each primer, 25mM dNTPs, 25mM MgCl₂ and 100ng of genomic DNA in a final volume of 25 μ l. PCRs were

subjected to an initial denaturation step at 95°C for 5 minutes followed by 35 cycles of denaturation at 94°C for 30 seconds, annealing of the primers at different temperatures for 45 seconds and elongation at 72°C for 1 minute. The final elongation step was carried out at 72°C for 10 minutes before incubating the PCR products at 4°C. The sequences of all primers and annealing temperatures of PCRs are shown in supplementary Table 1. PCR products were purified either by electrophoresis followed by gel extraction (QIAGEN Ltd, Manchester, UK) or by treatment with ExoSAP-IT (GE Healthcare, Little Chalfont, UK), before being sequenced in both directions using BigDye® Terminator v3.1 Cycle Sequencing (Applied Biosystems, Paisley, UK) and sequence analysis was performed on an ABI PRISM 3130xl Genetic Analyzer (Applied Biosystems).

In Silico Analysis

Sequencher v4.9 (http://www.genecodes.com) was used for DNA sequence assembly. The functional importance of candidate missense variations was investigated using Align GVGD (http://agvgd.iarc.fr), Sorting Intolerant from Tolerant (SIFT; http://sift.bii.a-star.edu.sg/) and Polymorphism Phenotyping v2 (PolyPhen-2; http://genetics.bwh.harvard.edu/pph/) [10]. The positions of amino acids and nucleotides were denoted using Human Genome Variation Society (HGVS) nomenclature (www.hgvs.org) and checked using Mutalyzer (https://mutalyzer.nl/check?name). The effects of amino acid substitutions caused by candidate single nucleotide variations on protein stability were predicted using I-Mutant2.0 (http://folding.biofold.org/i-mutant/i<u>mutant2.0.html</u>) [11] and MUpro (http://mupro.proteomics.ics.uci.edu/) [12]. All the above online tools were accessed in December 2014.

Statistical Analysis

Data were analysed using INSTAT Graphpad analyser (graphpad.com/scientific-software/instat/) using Spearman's rank correlation method. *P* values <0.05 were considered significant [13].

Results

Clinical and Phenotypic Features of the Index cases

The clinical features of the index cases are summarised in Table 2. The cases comprised 55 females (median age 25 years; range 8-70 years) and 57 males (median age 30 years; range 8-70 years) (Table 3). The geographic distribution of cases across India is shown in (Fig. 1). Of the cases, 68 (61%) reported no history of bleeding symptoms (grade O), and 44 (39%) of the patients had bleeding manifestations; 6(5%) had grade 1 bleeding (petechiae), 18 (16%) had grade 2 bleeding (mild blood loss), 16 (14%) had grade 3 bleeding (gross blood loss) and only 4 (4%) patients reported grade 4 bleeding symptoms (debilitating blood loss). Predominant clinical manifestations were easy bruising 4 (4%), ecchymosis 8 (7%), epistaxis 18 (16%), frequent gum bleeding 6 (5%), menorrhagia 11 (10%) and a prolonged history of bleeding after trauma 7 (6%). One male, BM35.01, who had a history of frequent gum bleeds and two females who reported menorrhagia, BM78.01 & BM105.01, had previously required transfusions for excessive bleeding. Of the 68 asymptomatic cases, the majority of whom were

identified incidentally during routine analysis of blood samples, 12 had a family history of bleeding and 3 had a personal history of transfusion in the past. There was no known consanguinity amongst the cases studied. The study of inheritance pattern in two index cases (BM15.01 & BM27.01) and their family members showed dominant mode of inheritance (Fig. 2).

Examination of peripheral blood smears, which were available for all but one index case, BM46.01, confirmed the diagnosis of macrothrombocytopenia, and revealed the presence of stomatocytes in the red blood cells from 10 cases (Fig. 3), and the absence of leukocyte inclusion bodies, in all cases. There was a wide variation in platelet count among the cases; 45(40%) had mild thrombocytopenia, 54 (48%) had moderate thrombocytopenia, and 12 (11%) had severe thrombocytopenia which has resulted in their referral for investigation of bleeding problems. One patient had a normal platelet count but the peripheral blood smear revealed the presence of abnormally large platelets. The median MPV among the cases was 13.25 fl (range 12 - 16.5fl). The WHO bleeding score showed a significant inverse correlation with platelet count (P=0.016) and direct significant correlation with MPV (P=0.010) among the cases (Fig 3).

The results of screening coagulation tests were within the normal ranges in all the cases. Platelet aggregation and receptor study showed reduced expression for cases with low platelet count to normal expression for cases with mild to moderate platelet count. Circulating platelet counts were within the normal range (mean platelet count 197.3, SEM 3.275), and peripheral blood smears confirmed the presence of normal sized platelets (mean MPV 11.09, SEM 0.074) in samples from all control subjects.

Genetic Investigations

A total of 23 heterozygous candidate single nucleotide variations (SNVs) affecting GP9 (18 cases), ABCG5 (12 cases), MYH9 (11cases), GP1BA (4 cases) and GP1BB (3 cases) were identified in 48 of the 112 index cases (Table 2). Of these, 21 were non-synonymous variations that predicted amino acid substitutions in the encoded protein. The remaining two were nonsense variations, one in GP1BA and another in MYH9. The majority of the SNVs identified (20/23) were novel. Three SNVs had been previously reported; c.5797C>T (p.Arg1933*) in MYH9, and c.148C>T (p.Arg50Cys) and c.293C>G (p.Ala98Gly) in ABCG5 (Table 2). Ten recurrent SNVs were identified, three in MYH9 (p.Asp1948Asn, n=7; p.Glu1946Lys, n=2; p.Arg1933*, n=2), four in ABCG5 (p.Arg50Cys, n=6; p.Asn551Lys, n=2; p.Ala98Gly, n=2; p.Asp71Asn, n=2) and three in GP9 (p.Ser62Thr, n=4; p.Arg97Pro, n=4; p.Arg39Gly, n=4). No sequence alterations were detected in either TUBB1 or ABCG8 in DNA from the first 50 index cases investigated. These genes were therefore not analysed in the remainder of the cases. None of the alterations identified among the cases, were detected among the control subjects.

Comparison of the allelic distributions of several common polymorphisms of GP9, GPIBA, ABCG5 and TUBB1 revealed a significant association between

two GP9 polymorphisms and macrothrombocytopenia. SNP rs6069 [c.132 G>A (p.Thr44=), a silent change (OR= 0.16 95% CI=0.07-0.37, P< 0.0001)] and rs3796130 [c.466G>A (p.Ala156Thr) (OR= 0.13 95% CI=0.03 to 0.51], P=0.0034)], the risk/rare allele A for both SNP was found to be significantly associated with macrothrombocytopenia (Table 4).

In silico predictions of effects of candidate SNVs

Seventeen of the 20 novel missense changes identified in the study were predicted to be deleterious to protein function and stability (Table 5). Three SNVs, two predicting p.Leu176Arg and p.Gln76His substitutions in GPIX, and a third predicting a p.Glu1946Lys substitution in non-muscle myosin heavy chain 9 were predicted to have benign or borderline effects on protein function using two bioinformatic tools (PolyPhen and SIFT). However, all three of these alterations were also predicted to decrease the stability of the corresponding proteins using the MUPRO/I-Mutant 2.0 predictive tool (Table 5).

Genotype-Phenotype Correlation

We examined the association between candidate gene defects and bleeding severity (as indicated by the WHO bleeding score) among those index cases who were heterozygous for recurrent candidate gene defects. The c.115 A>G (p.Arg39Gly) SNV in GP9 was detected in 4 cases; 1 with severe thrombocytopenia, menorrhagia and with a bleeding score of 3, and three with moderate thrombocytopenia, two of whom had no bleeding diathesis (bleeding score 0) and a third who had frequent gum bleeds (bleeding score 3). The c.293 C>G (p.Ala98Gly) SNV in ABCG5 was identified

in 2 index cases with moderate thrombocytopenia, one having a bleeding of score of 0 and the other having a score of 4. A The c.148C>T (p.Arg50Cys) SNV in *ABCG5* was associated with mild to moderate thrombocytopenia among 6 index cases, four of whom were asymptomatic, while the other two index cases reported histories of either ecchymosis and epistaxis (bleeding score 2), or of ecchymosis alone (bleeding score 1). Similarly, the c.211G>A (p.Asp71Asn) *ABCG5* SNV was present in one asymptomatic index case and another with a history of epistaxis. The c.5797C>T (p.Arg1933*) nonsense alteration in *MYH9* was detected in two cases, one of whom was asymptomatic, while the second had a bleeding score of 2. Similarly, the c.5842 G>A (p.Asp1948Asn) SNV in *MYH9* was associated with variable symptoms among the 7 index cases who inherited this alteration (Table 2).

No correlation could be established between mutations and phenotype in Bengal Macrothrombocytopenia cases (BM) (Table 2).

Discussion

Previous studies which have observed a high prevalence of a mild to severe form of non-*MYH*9 related macrothrombocytopenia among healthy blood donors in the north Eastern states of India, suggest that founder effects may contribute to the prevalence of macrothrombocytopenia in this geographic region. In this study, we have described the clinical expression of inherited macrothrombocytopenia in 112 index cases originating primarily from West Bengal and the North-Eastern states of India and Nepal. The majority (61%) of the index cases were asymptomatic and were identified incidentally as a result of routine blood tests, while the remainder of the index cases reported symptoms consistent with the presence of a platelet bleeding disorder.

Analysis of a panel of genes which have been associated with inherited macrothrombocytopenia in other populations revealed candidate gene defects in 48 of the 112 (43%) index cases confirming the underlying heterogeneity of the macrothrombocytopenia in this population, with candidate gene defects being identified in *GP1BA* (n=4), *GP1BB* (n=3), *GP9* (n=18), *ABCG5* (n=12) and *MYH9* (n=11).

Examination of peripheral blood smears was possible for all but one index case. Interestingly, none of the MYH9 gene defects identified in this study was associated with the presence of neutrophil inclusion bodies, and further work using immunofluorescent staining of non-muscle myosin would be required to determine whether the novel MYH9 defects identified in these patients are associated with abnormal distribution of myosin in peripheral blood neutrophils. Unfortunately, it was not possible to examine a peripheral blood smear from the index case who was heterozygous for the MYH9 nonsense variation, p.Arg1933* which we would expect to be associated with the presence of neutrophil inclusion bodies [14]. Of note, the MYH9 defects predicting the p.Asp1948Asn, p.Glu1946Lys alterations affected residues in the non-helical tail region of the myosin heavy chain defects in which have previously been reported to be associated with a milder bleeding diathesis [15-16].

Examination of peripheral blood smears revealed the presence of stomatocytes in the red blood cells from 10 index cases, which, in addition to

the presence of giant platelets, is a recognised haematological feature of sitosterolaemia [3, 17]. Subsequent analysis of *ABCG5* and *ABCG8*, the genes which have previously been shown to harbour defects in patients with sitosterolaemia and macrothrombocytopenia [18], revealed candidate defects in *ABCG5* in all ten cases; p.Asn551Lys (BM7.01); p.Ala98Gly (BM38.01); p.Asp71Asn (BM109.01 and BM110.01) and p.Arg50Cys (BM14.01, BM68.01, BM83.01, BM89.01, BM90.01 & BM96.01).Interestingly, the *ABCG5* defect predicting the p.Arg50Cys substitution was present in 6 index cases suggestive of a possible founder effect for this alteration in the population studied.

Several SNVs were identified in the genes encoding the platelet GPIb-IX-V receptor complex. Thus, heterozygous SNVs affecting *GP1BA* were identified in four cases, three non-synonymous SNVs predicting a p.Leu10Val substitution in the signal peptide of GPIBA, a p.Pro454Ser substitution in the Proline/Threonine rich region, and a p.Leu213Arg substitution in the Leucine rich repeat region, and a nonsense variant, introducing a premature stop codon (p.Leu488*). Three non-synonymous SNVs were identified in *GP1BB*, all predicting substitutions of amino acids in the conserved leucine rich repeats of the cytoplasmic tail of GPIBB (c.285C>G, p.Cys95Trp; c.338A>T, p.Tyr113Phe; c.320G>C, p.Arg107Pro).

Bernard Soulier Syndrome (BSS) and Sitosterolaemia (Mediterranean stomatocytosis/macrothrombocytopenia) are classically described as recessive disorders and heterozygous carriers of these disorders are usually asymptomatic or have mild bleeding symptoms [19-22]. Supporting this, the cases studied here who were heterozygous for candidate defects in *GPIBA*, *GPIBB* and *ABCG5* were either asymptomatic or had mild to moderate bleeding symptoms. Three *GP1BA* defects which predict p.Ala172Val, p.Tyr70Asp, and p.Leu73Phe substitutions in *GPIBA*, have been reported to give rise to BSS with a dominant mode of inheritance along with the classical form of BSS when the defects are homozygously inherited [23-26]. One of these, p.Ala172Val, which is also known as the Bolzano mutation is frequently found in the Italian population [19]. In *GP1BB*, heterozygous defects predicting the amino acid substitutions, p.Arg42Cys and p.Ala133Pro give rise to isolated giant platelet disorder [27-28] while the p.Tyr113Cys substitution reported in several Japanese families suppresses expression of the GP1b/IX/V complex, giving rise to a BSS-like bleeding disorder when homozygously inherited and to isolated giant platelet disorder giant platelet disorder when heterozygously inherited [29].

The frequency of 2 SNVs in *GP*9; rs6069 (p.Thr44=), a synonymous change with minor allele frequency of 0.0583 and rs3796130 (p.Ala156Thr) with a minor allele frequency of 0.0675, were observed to be more prevalent in cases than in control subjects and were significantly associated with the disorder (Table 4). p.Ala156Thr was reported to be associated with low platelet count and also alters the protein function [30] and has a damaging effect on the protein stability as predicated by different tools (Table 5).

The identification of candidate defects in genes which have previously been associated with macrothrombocytopenia in 48 of the 112 cases studied here, lead us to conclude that inherited macrothrombocytopenia is a heterogeneous disorder in India. Further study will be required to identify the gene defects underlying macrothrombocytopenia in the remaining 64 (57%) cases without mutations in the genes investigated here.

Greater awareness of this condition will reduce the risk of misdiagnosis and the potential for inappropriate treatment of affected individuals which is important given that congenital macrothrombocytopenia is a common and under diagnosed condition in India [5, 31].

Acknowledgements

This study was supported by grant in aid by department of biotechnology, Ministry of Science and Technology, Government of India.

I take this opportunity to specially thank Rameshwardasji Birla Smarak Kosh, Medical Research Centre; Bombay Hospital for providing me a grant for this study.

The authors stated that they had no interests which might be perceived as posing a conflict or Bias.

References

- 1 Rocca B, Ranelletti FO, Maggiano N, Ciabattoni G, De Cristofaro R, Landolfi R. Inherited macrothrombocytopenia with distinctive platelet ultrasructure and functional features. *Thromb Haemast* 2000; 83:35-41.
- 2 Seri M, Pecci A, Di Bari F, Cusano R, Savino M, Panza E *et al.* May-Haggling anomaly, Sebastian syndrome, fechtner syndrome and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. *Medicine (Baltimore)* 2003; 82: 203-15.
- 3 Rees DC, Iolascon M, Carella S, O'Marcaigh A, Kendra JR, Jowitt SN et al. Stomatocytic haemolysis and macrothrombocytopenia Mediterranean stomatocytosis/macrothrombocytopenia) is the haematological presentation of phytosteroleamia. British Journal Haematology 2005; 130(2):297-309.
- 4 Nichols KE, Crispino JD, Poncz M, White JG, Orkin SH, Maris JM, Weiss MJ. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA-1. *Nat Genet* 2000; 24:266-70.
- 5 Naina HV, Nair SC, Danial D, George B, Chandy M. Asymptomatic constitutional macrothrombocytopenia among West Bengal donors. *Am J Med* 2002; 112:742-43.
- 6 Behrens, WE. Mediterranean Macrothrombocytopenia. *Blood* 1975; 46:199-208.
- 7 Naina HV, Nair SC, Harris S, Woodfield G, Rees MI. Harris syndrome- a geographic perspective. J thromb Haemost 2005; 3: 2581-82.

- 8 Mehta YS, Ghosh K, Badakere SS, Pathare AV, Mohanty D. Role of antiidiotypic antibodies on the clinical course of idiopathic thrombocytopenic purpura. *J Lab Clin Med* 2003; 142(2):113-20.
- 9 Mitchell Lewis, Barbara J. Bain and Imelda Bates. Dacie and Lewis Practical Haematology (Tenth Edition), 2006.
- 10 Hicks S, Wheeler DA, Plon SE, Kimmel M. Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed. *Hum Mutat* 2011;32(6):661-8
- 11 Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. *Nucleic Acids Res* 2005; 33(Web Server issue): W306–W310.
- 12 Cheng J, Randall A, Baldi P. Prediction of Protein Stability Changes for Single-Site Mutations Using Support Vector Machines. *PROTEINS: Structure, Function, and Bioinformatics* 2006; 62:1125–1132.
- 13 Huded V, De Souza R, Nagarajaiah RK, Zafer SM, Nair R, Acharya H. Thrombolysis in acute ischemic stroke: Experience from a tertiary care centre in India. *J Neurosci Rural Pract* 2014; 5(1): 25–30.
- 14 Balduini CL, Pecci A, Savoia A. Recent advances in the understanding and management of MYH9-related inherited thrombocytopenias. Br J Haematol 2011; 154(2):161-74.
- 15 Pecci A, Panza E, De Rocco D, Pujol-Moix N, Girotto G, Podda L *et al.* MYH9 related disease: four novel mutations of the tail domain of myosin-9 correlating with a mild clinical phenotype. *EurJ Haematol* 2010; 84(4):291

- 16 Sung CC, Lin SH, Chao TK, Chen YC. R1933X mutation in the MYH9 gene in May-Hegglin anomaly mimicking idiopathic thrombocytopenic purpura. J Formos Med Assoc 2014; 113(1):56-9.
- 17 Ajagbe BO, Othman RA, Myrie SB. Plant Sterols, Stanols, and Sitosterolemia. J AOAC Int 2015 May 4 [Epub ahead of print].
- 18 Kaya Z, Niu DM, Yorulmaz A, Tekin A, Gürsel T. A novel mutation of ABCG5 gene in a Turkish boy with phytosterolemia presenting with macrotrombocytopenia and stomatocytosis. *Pediatr Blood Cancer* 2014; 61(8):1457-9.
- 19 Noris P, Perrotta S, Bottega R, Pecci A, Melazzini F, Civaschi E et al. Clinical and laboratory features of 103 patients from 42 Italian families with inherited thrombocytopenia derived from the monoallelic Ala156Val mutation of GPIba (Bolzano mutation). *Haematologica* 2012; 97: 82-88.
- 20 Noda M, Fujimura K, Takafuta T, Shimomura T, Fujimoto T, Yamamoto N et al. Heterogeneous expression of glycoprotein Ib, IX and V in platelets from two patients with Bernard-Soulier syndrome caused by different genetic abnormalities. *Thromb Haemost* 1995; 74(6):1411-1415.
- 21 Kanaji T, Okamura T, Kurolwa M, Noda M, Fujimura K, Kuramoto A *et al.* Molecular and genetic analysis of two patients with Bernard-Soulier syndrome--identification of new mutations in glycoprotein Ib alpha gene. *Thromb Haemost* 1997; 77(6):1055-1061.
- 22 Koskela S, Partanen J, Salmi TT, Kekomaki R. Molecular characterization of two mutations in platelet glycoprotein (GP) Ib alpha in two Finnish Bernard-Soulier syndrome families. *Eur J Haematol* 1999; 62:160-168.

- 23 Miller JL, Lyle VA, Cunningham D. Mutation of leucine-57 to phenylalanine in a platelet glycoprotein Ib alpha leucine tandem repeat occurring in patients with an autosomal dominant variant of Bernard-Soulier disease. *Blood* 1992; 79:439-446.
- 24 Vettore S, Scandellari R, Moro S, Lombardi AM, Scapin M, Randi ML, Fabris F. Novel point mutation in a leucine-rich repeat of the GPIbalpha chain of the platelet von Willebrand factor receptor, GPIb/IX/V, resulting in an inherited dominant form of Bernard-Soulier syndrome affecting two unrelated families: the N41H variant. *Haematologica* 2008; 93: 1743-47.
- 25 Savoia A, Balduini CL, Savino M, Noris P, Del Vecchio M, Perrotta S et al. Autosomal dominant macrothrombocytopenia in Italy is most frequently a type of heterozygous Bernard-Soulier syndrome. *Blood* 2001; 97:1330-1335.
- 26 Ware J, Russell SR, Marchese P, Murata M, Mazzucato M, De Marco L, Ruggeri ZM. Point mutation in a leucine-rich repeat of platelet glycoprotein Ib alpha resulting in the Bernard-Soulier syndrome. J Clin Invest 1993; 92:1213-1220.
- 27 Kunishima S, Lopez JA, Kobayashi S, Imai N, Kamiya T, Saito H, Naoe T. Missense mutations of the glycoprotein (GP) Ib beta gene impairing the GPIb alpha/beta disulfide linkage in a family with giant platelet disorder. *Blood* 1997; 897:2404-12.
- 28 Kunishima S, Naoe T, Kamiya T, Saito H. Novel heterozygous missense mutation in the platelet glycoprotein Ib beta gene associated with isolated giant platelet disorder. *American Journal of Haematology* 2001; 68: 249-255.

- 29 Kurokawa Y, Ishida F, Kamijo T, Kunishima S, Kenny D, Kitano K, Koike K. A missense mutation (Tyr88 to Cys) in the platelet membrane glycoprotein Ibbeta gene affects GPIb/IX complex expression--Bernard-Soulier syndrome in the homozygous form and giant platelets in the heterozygous form. Thromb Haemost 2001; 86:1249-1256.
- 30 Garner C, Best S, Menzel S, Rooks H, Spector TD, Thein SL. Two candidate genes for low platelet count identified in an Asian Indian kindred by genome-wide linkage analysis: glycoprotein IX and thrombopoietin. *Eur J Hum Genet* 2006; 14:101–108.
- 31 Kakkar N, John MJ, Mathew A. Macrothrombocytopenia in north India: role of automated platelet data in the detection of an under diagnosed entity. *Indian J Hematol Blood Transfus* 2015; 31(1):61-7.

Table 1: Oligonucleotide Primer Sequences

Gene Name	Location	Primer Name	Orientation	Sequence 5'-3'	Annealing Temperature	Product Size (bp)
GP1BA	Exon2	1b1_F	Forward	AGGTCTTTCTGCCTGCCTGT	60ºC	774
		1b1_R	Reverse	TAGCCAGACTGAGCTTCTCC	60ºC	
	Exon2	1b2_F	Forward	AAGGCAATGAGCTGAAGACC	59°C	597
		1b2_R	Reverse	CTIGIGIIGGAIGCAAGGAG	59°C	
	Exon2	1b3_F	Forward	TCCACIGCIICICIAGACAG	65°C	515
		1b3_R	Reverse	GGCTGATCAAGTTCAGGGAT	65°C	
	Exon2	1b4_F	Forward	CACAAGCCTGATCACTCCAA	59°C	585
		1b4_R	Reverse	TTCTCTCAAGGTCCCCAAAC	59°C	
GP1BB	5'UTR	GP1bb1_F	Forward	AGGATCCTGGGTCTGTTCCC	71°C	775
		GP1bb1_R	Reverse	CGACCGGACTCCAGACTCAC	71°C	
	Exon 2	GP1bb2_F	Forward	ITACIGCGGCGCIICCCIIG	65°C	492
		GP1bb2_R	Reverse	AAGGCCAGCAGCGCAAGCT	65°C	
	3'UTR	GP1bb3_F	Forward	AGCTIGCGCTGCTGGGCCTT	65°C	545
		GP1bb3_R	Reverse	TGTCCCCTTGAACCGCCTCC	65°C	
GP9	981-1560	GPIX_F	Forward	IGTICCTGCTCTGGGCCACA	60°C	586
		GPIX_R	Reverse	TIGGIGGAGICIGGGGACCI	60°C	
МҮН9	Exon 2	MYH9_2F	Forward	GAGGTGTGAGCATGAGTGATCTTG	68ºC	512
		MYH9_2R	Reverse	CGTGAGGGTGATGGGAAGACC	68ºC	
	Exon 3	MYH9_3F	Forward	CTCACGATGACAAAGACATCTCTC	68ºC	598
		MYH9_3R	Reverse	CTTAGCACCTGCAAAGGTGTCAAT	68ºC	
	Exon 4	MYH9_4F	Forward	GGGCAGCICIIIGGGAGCAAGGIGGG	68ºC	205
		MYH9_4R	Reverse	IGGGGGACICIGCAAGCCCCAGIIGIG	68ºC	
	Exon 5	MYH9_5F	Forward	GTTGGGTCCTTCACGGGCACC	68ºC	319
		MYH9_5R	Reverse	CAAAGCATCCTCTTGTAAAGCTGAAGCC	68ºC	
	Exon 6	MYH9_6F	Forward	CGGCICIGCCAICGICCCCCII	68ºC	255
		MYH9_6R	Reverse	AAAGGCAGCATGAGCCAAAGCTCCG	68ºC	
	Exon 7	MYH9_7F	Forward	CCGICICIGGGIIIICICCCICCAA	68ºC	324
		MYH9_7R	Reverse	CTCCACAGAGAAGGTGTCAGGATGG	68ºC	

Exon 8	MYH9_8F	Forward	AGAATCGCTTGAATCCAGGAGGTG	68°C	354
	MYH9_8R	Reverse	TICATTICCCAAATGATGTCTACGG	68ºC	
Exon 9	MYH9_9F	Forward	TCTGTCCCAGTCTCTCCAACCTTT	68°C	389
	MYH9_9R	Reverse	AGGAATCATTTTCCCATACACTGAAGG	68ºC	
Exon 10	MYH9_10F	Forward	CTIGICIGGCTIGAGGATCCCTAGAT	68ºC	277
	MYH9_10R	Reverse	AATTICCGCAAGACCTICCCTCCTGA	68°C	
Exon 11	MYH9_11F	Forward	GGGICIAAIIAGAACIIICICICIIGGG	68°C	314
	MYH9_11R	Reverse	GGAATCATGTGAAAGTGCCTGACAC	68°C	
Exon 12	MYH9_12F	Forward	AAAGIGAAATTACIGGGGCATAGGG	68°C	316
	MYH9_12R	Reverse	GAAGCAGGGTTCTTAACCAAGGATAA	68°C	
Exon 13	MYH9_13F	Forward	TICCIGIATCCCIGCCCCACCCICCTI	68°C	359
	MYH9_13R	Reverse	CAACCAACACAGAGCTGAGGTGAGGAG	68°C	
Exon 14	MYH9_14F	Forward	GATTCAGGGGATTCTGATGTCCGGG	68°C	346
	MYH9_14R	Reverse	TCCTGGTCCTAGAGAGCCTCGAC	68°C	
Exon 15	MYH9_15F	Forward	TCGCTCCCCTTATCCTCACCACTTCCT	68°C	393
	MYH9_15R	Reverse	TCAGGGGGCACATGTGTACCCCTTGT	68°C	
Exon16	MYH9_16F	Forward	ICCGACGIGIGCCIGICICICICI	68ºC	364
	MYH9_16R	Reverse	TTTGCTGGGGAGACAGACAAGGGC	68°C	
Exon 17	MYH9_17F	Forward	CCCTGTCAGGTTCATAGGGGTTC	68°C	347
	MYH9_17R	Reverse	GGCCAGACTCAGTICTACATGGATG	68°C	
Exon 18	MYH9_18F	Forward	GGIGGGAIIIGCCIGIGICIICIIICC	68°C	332
	MYH9_18R	Reverse	GGCATCCACCGACCACTGATATAGCAA	68°C	
Exon 19	MYH9_19F	Forward	TCAGCCAGTGAGAAGAAGGGTGAA	68°C	435
	MYH9_19R	Reverse	CCTCAAAGGTAGAAATCCAGGAACAG	68°C	
Exon 20	MYH9_20F	Forward	TIGAGGACAAGACCAGGACTGTTA	68°C	261
	MYH9_20R	Reverse	ACAAACAATTAGCCAGGTATGTATGG	68ºC	
Exon 21	MYH9_21F	Forward	CCACCACAGCGIGICIICIIGCC	68°C	349
	MYH9_21R	Reverse	AAACTTCCAGCATGCCGTGCCTAC	68°C	
 Exon 22	MYH9_22F	Forward	TGGAAGGTACCTGGAAGCTTCAGAGC	68°C	479
	MYH9_22R	Reverse	GAGGAGCAGCCTCCTTGGACCCTAA	68°C	
 Exon 23	MYH9_23F	Forward	CCTICGGACCTIGCTGCCTICAC	68ºC	288
	MYH9_23R	Reverse	CCCTGCAAGGGTGACCACACTC	68°C	

Exon 24	MYH9_24F	Forward	CCGGGCGAGICAIGCIIIGA	68ºC	294
	MYH9_24R	Reverse	CTCGGTGTTCCGGTCAGACA	68ºC	
Exon 25	MYH9_25F	Forward	IGCGAGIGICIGIGIGIIIGIGAIG	68ºC	416
	MYH9_25R	Reverse	GTGGAAAGAATGCTCACAGCTCACTA	68ºC	
Exon 26	MYH9_26F	Forward	TCAGGCCTGTCCTGCAAACTCTGCT	68ºC	423
	MYH9_26R	Reverse	TICCATGCCTGCTGGTGCCTAAGAG	68ºC	
Exon 27	MYH9_27F	Forward	AGAAAAGCIGCCIGGAGIGCCIGIG	68ºC	347
	MYH9_27R	Reverse	GCTCTGCAGGACTGGTTTGGATTCTG	68ºC	
Exon 28	MYH9_28F	Forward	GGTCCAGTGATGATAGACCAGCCA	68ºC	390
	MYH9_28R	Reverse	GCCAGTTTGAGAAGAGAGAGAGACAG	68ºC	
Exon 29	MYH9_29F	Forward	CTGTCTCTCTCTCTCAAACTGGC	68ºC	329
	MYH9_29R	Reverse	GGCTCTGAAGCTAATGTTGCGTGG	68ºC	
Exon 30	MYH9_30F	Forward	TCCCTCTCCTCAAGGGTGTGGGGGTT	68ºC	394
	MYH9_30R	Reverse	CCTIGAGAGCACTGATGTGGGAGAGCA	68ºC	
Exon 31	MYH9_31F	Forward	GGTTICATAACTGGGCAGATCCCT	68ºC	530
	MYH9_31R	Reverse	AGCCIGAGGGICCICIAAGCACIG	68ºC	
Exon 32	MYH9_32F	Forward	ACIGIGIGIATIGICCIGGGC	68ºC	504
	MYH9_32R	Reverse	AAGTCAGGAGCAAAGGGACT	68ºC	
Exon 33	MYH9_33F	Forward	GGAGGACCTTATGAGCTCCAAG	68ºC	479
	MYH9_33R	Reverse	CAGGIGGAAGGAGAGAACAGAA	68ºC	
Exon 34	MYH9_34F	Forward	CCATGGATCCTGCAGAACT	68ºC	385
	MYH9_34R	Reverse	GGACCTTCCCAGGAGGTG	68ºC	
Exon 35	MYH9_35F	Forward	ATACAGCATTGAGTGGAGCACCAGC	68ºC	324
	MYH9_35R	Reverse	CCTGTCCTCAGCTGAAAGCCCCA	68ºC	
Exon 36&37	MYH9_36 &37F	Forward	GTGAGCTAGAGGGTTTCTGGAGGAA	68ºC	575
	MYH9_36 &37R	Reverse	GGTGCCTGGACATTTTCCCCTAAG	68ºC	
Exon 38	MYH9_38F	Forward	TICIGGGAGACCCAAGACICIGGAC	68ºC	442
	MYH9_38R	Reverse	TCAGGAGACAGAGAGCTGGTTGTGG	68ºC	
Exon 39	MYH9_39F	Forward	IGGGIGGICCIGGIIAGGGCIIGII	68°C	362
	MYH9_39R	Reverse	CTIGAGCTGCTTCAGGCGGGTAGAT	68ºC	
Exon 40	MYH9_40F	Forward	GAGCGGAGGAACGCCGAGCAGTACA	68ºC	432
	MYH9_40R	Reverse	CGIGCCIIGCIIGIGGGCICIGGIIGA	68ºC	

	Exon 41	MYH9_41F	Forward	TIGAGATGTGTGGGCTGTGCTG	68ºC	301
		MYH9_41R	Reverse	TCACAGCAGTCCCAAGAAGGTG	68ºC	
ABCG5	Exon 1	ABCG5_1F	Forward	CCAACIGAAGCCACICIGG	58°C	293
		ABCG5_1R	Reverse	AAGAGTGAAGAAAGGCAGCA	58°C	
	Exon 2	ABCG5_2F	Forward	CACAGGTAGGATCAATGCTG	58°C	305
		ABCG5_2R	Reverse	CAAACCIGIGGCIIICIIGI	58°C	
	Exon 3 & 4	ABCG5_3&4F	Forward	CACAGAGGGTCTCGGGAAG	60°C	499
		ABCG5_3&4R	Reverse	GAGIGACGAGCAAAGGGAAG	60°C	
	Exon 5	ABCG5_5F	Forward	GIGIGCIGCCICITICAIGI	60°C	283
		ABCG5_5R	Reverse	TGCACACACAGAAGATGC	60°C	
	Exon 6	ABCG5_6F	Forward	GTITACTICCCACCGCACACT	60°C	322
		ABCG5_6R	Reverse	GATTCCCAGCTCAACACACCA	60ºC	
	Exon 7	ABCG5_7F	Forward	CCAGAGACATTCAAAGTGCA	58°C	267
		ABCG5_7R	Reverse	TCCAGGCAGAAGTCTGAGAT	58°C	
	Exon 8	ABCG5_8F	Forward	GGCCAGTACTCCTGTACCAA	58°C	361
		ABCG5_8R	Reverse	GTTATTGGGGGATGGCTAAA	58°C	
	Exon 9	ABCG5_9F	Forward	TAGCCATCCCCCAATAACAAT	60°C	300
		ABCG5_9R	Reverse	GAGAAAGAGGIGCACCICCAG	60°C	
	Exon 10	ABCG5_10F	Forward	AGACCTCACATTCAGCTTGG	60°C	283
		ABCG5_10R	Reverse	TCCCACTAGCTCCATGACTC	60°C	
	Exon 11	ABCG5_11F	Forward	TCACAGAGGCAAGTGCAGTA	60°C	348
		ABCG5_11R	Reverse	ICIGGIATICCTITACTICAGICAT	60°C	
	Exon 12	ABCG5_12F	Forward	TIGCCIIICIIIICAIIIGG	58°C	246
		ABCG5_12R	Reverse	CCAAGAAATTGCTTCCTCAG	58°C	
	Exon 13	ABCG5_13F	Forward	ACCTGAGATAAACCACACCTG	60°C	298
		ABCG5_13R	Reverse	TCAGAGCAGTCATGCACAGT	60°C	
ABCG8	Exon 1	ABCG8_1F	Forward	GCAAGGAATGCTGGGAGAG	60°C	286
		ABCG8_1R	Reverse	AGGCTCCTGAGGGAAGAGAG	60°C	
	Exon 2	ABCG8_2F	Forward	GCCCACCCIIITAIIICCAC	60°C	270
		ABCG8_2R	Reverse	GCCCACCCIIIIAIIICCAC	60°C	
	Exon 3	ABCG8_3F	Forward	IGAAGCCCICIGAACCAIIC	60°C	256
		ABCG8_3R	Reverse	TCCCAGGAGAGAAACCATTG	60°C	

	Exon 4	ABCG8_4F	Forward	GGAGAGTGTATGGGGAGCAG	60°C	449
		ABCG8_4R	Reverse	GGAAGGCAAGCTGAGTTGTT	60°C	
	Exon 5 & 6	ABCG8_5&6F	Forward	CCITTATCCTTGGGGTCACA	60°C	667
		ABCG8_5&6R	Reverse	AAGCTIGGGCAGGGTTTAAG	60°C	
	Exon 7 & 8	ABCG8_7&8F	Forward	GGIGATCAGCATIGIGAGCIG	62ºC	596
		ABCG8_7&8R	Reverse	CTGGGATTACAGGCATAAGCC	62ºC	
	Exon 9	ABCG8_9F	Forward	CCCCATTTGCATAGGAGAA	62ºC	369
		ABCG8_9R	Reverse	AGGAACACAGCTTGGAGGTG	62ºC	
	Exon 10	ABCG8_10F	Forward	AGTCTCCAAAACAGAAGCACTG	64ºC	223
		ABCG8_10R	Reverse	IGIAGCAACGIIIICICCACA	64ºC	
	Exon 11	ABCG8_11F	Forward	AGTGAAGGTGCTGGCTTCAT	60°C	379
		ABCG8_11R	Reverse	AGCAGGCTTCATCCAGTCAC	60°C	
	Exon 12 & 13	ABCG8_12&13F	Forward	CGAATATGGGGAAACCATGA	60°C	467
		ABCG8_12&13F	Reverse	TIGAAGGGTCTGCTCAGGTC	60°C	
TUBB1	Exon 1	TUBB1_EX1F	Forward	AACCGAAGCTCTGGATTCTG	60°C	269
		TUBB1_EX1R	Reverse	AAGCCCAAAGGCATTGTCTG	60°C	
	Exon 2	TUBB1_EX2F	Forward	TTTCTCTGTGGTTAACACAGC	55°C	283
		TUBB1_EX1R	Reverse	CTGAGCATAGACATCACTGC	55°C	
	Exon 3	TUBB1_EX3F	Forward	TGGACCAGTATCACAAAGTTC	55°C	726
		TUBB1_EX3R	Reverse	CTCATGGTCAAGGACACTAG	55°C	

Patient ID	Sex	AOD	Clinical	Family	Platelet	MPV			
		(Yrs)	Manifestations/	History	Count	(fl)		Mutation	
			WHO Bleeding	of	(X10 ⁹ /L)	NR: 7.8-10.2	Gene	cDNA ^a	Protein
			Score	Bleeding	NR:150-450		Gene	CDIA	Totem
			- 4-						
BM1.01	Μ	19	0/0	No	91	12	GP9	c.185 G>C	p.Ser62Thr
BM2.01	Μ	25	0/0	No	66	12.5	GP9	c.146 T>G	p. Leu49Arg
BM3.01	М	30	0/0	No	145	13	NMD		
BM4.01	М	20	0/0	No	81	13	NMD		
BM5.01	F	28	4/2	Yes	107	12	NMD		
BM6.01	М	30	1/1	No	51	13.9	GP9	c.290 G>C	p. Arg97Pro
BM7.01	F	32	3/3	No	54	13	ABCG5	c.1653 C>G	p. Asn551Lys
BM8.01	F	67	0/0	No	65	12.9	GP9	c.115 A>G	p. Arg39Gly
BM9.01	М	70	0/0	No	73	12	NMD		
BM10.01	F	37	1,4/2	yes	77	12.5	GP1BB	c.285 C>G	p.Cys95Trp
BM11.01	F	60	0/0	No	90	12	NMD		
BM12.01	М	42	0/0	No	74	>18.5*	NMD		
BM13.01	М	40	0/0	No	109	13.1	NMD		
BM14.01	F	17	2, 4/2	No	140	13.3	ABCG5	c.148 C>T	p.Arg50Cys ^k
BM15.01	М	30	5/4	Yes	27	14.1	NMD		
BM16.01	М	55	0/0	No	52	12.9	NMD		
BM17.01	F	15	3/3	No	34	>18.5*	GP9	c.115 A>G	p. Arg39Gly
BM18.01	М	47	5/3	Yes	47	>18.5*	GP9	c.83C>G	p.Ala28Gly
BM19.01	F	27	0/0	No	55	>18.5*	GP9	c.466G>C	p. Ala156Pro

 Table 2: Phenotypic and genotypic features of Congenital Macrothrombocytopenia cases from India

BM20.01	Μ	25	4/2	No	140	12	NMD		
BM21.01	М	30	4/2	No	122	13.2	NMD		
BM22.01	F	45	0/0	No	106	12	NMD		
BM23.01	F	40	0/0	No	73	14	NMD		
BM24.01	F	23	0/0	No	103	13.9	NMD		
BM25.01	F	25	3/3	No	51	13	NMD		
BM26.01	М	35	0/0	No	52	15.5	GP1BA	c. 28 G>C	p.Leu10 Val
BM27.01	F	18	3/4	yes	30	14.5	NMD		
BM28.01	F	52	0/0	No	36	16.5	NMD		
BM29.01	М	40	0/0	No	45	16	NMD		
BM30.01	F	9	4/2	No	83	16	ABCG5	c.293 C>G	p.Ala98Gly ^k
BM31.01	Μ	40	0/0	No	92	14	NMD		
BM32.01	Μ	35	4,5/3	Yes	107	13	NMD		
BM33.01	Μ	21	6/3	No	133	13	NMD		
BM34.01	М	22	0/0	No	95	13.9	NMD		
BM35.01	М	29	6/3 Tx	No	42	>18.5*	NMD		
BM36.01	F	24	3/2	No	97	13.6	NMD		
BM37.01	М	18	0/0	No	71	14	NMD		
BM38.01	F	45	0/0	No	51	15.6	ABCG5	c.293 C>G	p.Ala98Gly ^k
BM39.01	F	42	2/1	No	77	14	GP1BB	c.320 G>C	p.Arg107Pro
BM40.01	F	19	6/3	Yes	65	13.9	GP9	c.527 T>G	p.Leu176Arg
BM41.01	М	52	2/1	No	54	14.7	GP9	c.203 C>G	p.Pro68Arg
BM42.01	М	25	0/0	No	113	13.4	NMD		
BM43.01	М	30	0/0	No	128	12.9	NMD		
BM44.01	М	29	0/0	No	113	13.9	NMD		

BM45.01	F	25	2/1	No	125	13.3	NMD		
BM46.01	Μ	38	0/0	No	40	14.9	МҮН9	c.5797 C>T	p. Arg1933* ^k
BM47.01	F	9	2,5/3	No	45	14	NMD		
BM48.01	Μ	30	0/0	No	67	13	NMD		
BM49.01	М	52	0/0	Yes	72	12	GP9	c.115A>G	p. Arg39Gly
BM50.01	Μ	38	6/3	No	71	14.2	ABCG5	c.1653 C>G	p.Asn551Lys
BM51.01	F	45	0/0	No	137	13.2	NMD		
BM52.01	F	48	0/0	No	103	13.9	NMD		
BM53.01	F	25	4/2	No	118	14.5	NMD		
BM54.01	Μ	57	6/3	No	65	>18.5*	GP9	c.115A>G	p. Arg39Gly
BM55.01	Μ	50	4/2	Yes	115	14.3	NMD		
BM56.01	F	26	1,3/3	Yes	38	14.2	NMD		
BM57.01	F	34	4/2	No	147	13	GP9	c.290 G>C	p.Arg97Pro
BM58.01	Μ	59	0/0	No	131	14.2	NMD		
BM59.01	Μ	55	0/0	No	72	12.5	GP9	c.290 G>C	p.Arg97Pro
BM60.01	Μ	25	0/0	No	101	13	NMD		
BM61.01	Μ	23	0/0	No	110	14.2	GP9	c.185G>C	p.Ser62Thr
BM62.01	Μ	21	0/0	No	140	12	NMD		
BM63.01	Μ	24	0/0	No	105	15.3	GP9	c.185G>C	p.Ser62Thr
BM64.01	Μ	27	0/0	No	121	12	NMD		
BM65.01	F	28	0/0	No	78	13.8	NMD		
BM66.01	F	25	0/0	No	82	13.5	NMD		
BM67.01	F	25	5/3	Yes	67	13.9	GP1BA	c.1360 C>T	p.Pro454Ser
BM68.01	Μ	40	4/2	No	83	>18.5*	ABCG5	c.148C>T	p.Arg50Cys ^k
BM69.01	Μ	44	4/2	No	91	>18.5*	GP1BB	c.338A>T	p.Tyr113Phe

BM70.01	F	18	0/0	No	107	13.8	NMD		
BM71.01	Μ	21	0/0	No	88	12.8	GP9	c.290 G>C	p. Arg97Pro
BM72.01	F	34	1,3/3	Yes	80	13.9	NMD		
BM73.01	М	32	0/0	No	36	>18.5*	NMD		
BM74.01	Μ	30	0/0	No	63	12.4	GP9	c.185G>C	p.Ser62Thr
BM75.01	Μ	19	5/3	No	53	>18.5*	NMD		
BM76.01	F	8	0/0	No	49	>18.5*	NMD		
BM77.01	Μ	30	0/0	No	131	14	GP9	c.228G>C	p.Gln76His
BM78.01	F	15	3,5,6/4 Tx	No	47	>18.5*	GP1BA	c.638T>G	p. Leu213Arg
BM79.01	Μ	33	0/0	No	51	>18.5*	NMD		
BM80.01	F	30	3,4/4	No	101	14.8	NMD		
BM81.01	Μ	17	2,4/2	No	140	13	NMD		
BM82.01	F	16	0/0	No	70	16.1	GP1BA	c.1463T>G	p.Leu488*
BM83.01	Μ	42	0/0	No	80	12.8	ABCG5	c.148C>T	p.Arg50Cys ^k
BM84.01	Μ	40	0/0	No	125	13.6	NMD		
BM85.01	F	70	0/0	No	109	13	NMD		
BM86.01	Μ	45	0/0	No	132	12	NMD		
BM87.01	F	30	3/3	No	90	13	NMD		
BM88.01	F	32	4/2	No	105	12.1	NMD		
BM89.01	F	11	2/1	No	120	12.6	ABCG5	c.148C>T	p.Arg50Cys ^k
BM90.01	F	15	0/0	No	139	13.8	ABCG5	c.148C>T	p.Arg50Cys ^k
BM91.01	F	23	0/0	No	89	14	NMD		
BM92.01	F	16	0/0	No	90	13.1	NMD		
BM93.01	F	23	0/0	No	123	12	NMD		
BM94.01	F	19	0/0	No	78	>18.5*	NMD		

BM95.01	М	12	0/0	No	98	>18.5*	NMD		
BM96.01	F	20	0/0	No	110	14	ABCG5	c.148C>T	p.Arg50Cys ^k
BM97.01	F	14	0/0	No	136	12.9	NMD		
BM98.01	М	47	0/0	No	148	12.3	NMD		
BM99.01	М	58	0/0	No	134	12	NMD		
BM100.01	Μ	45	0/0	No	90	13	NMD		
BM101.01	F	48	0/0	No	83	13.5	МҮН9	c.5836G>A	p.Glu1946Lys
BM102.01	F	36	2/1	No	67	13.1	MYH9	c.5797C>T	p.Arg1933* ^k
BM103.01	F	50	0/0	No	89	12.8	MYH9	c.5842G>A	p.Asp1948Asn
BM104.01	F	49	0/0	No	112	12.9	МҮН9	c.5842G>A	p.Asp1948Asn
BM105.01	F	17	3/2 Tx	No	150	12.5	МҮН9	c.5842G>A	p.Asp1948Asn
BM106.01	М	15	0/0	No	198	>18.5*	MYH9	c.5836G>A	p.Glu1946Lys
BM107.01	F	09	0/0	No	101	12.9	MYH9	c.5842G>A	p.Asp1948Asn
BM108.01	М	25	0/0	No	80	13.5	MYH9	c.5842G>A	p.Asp1948Asn
BM109.01	F	25	0/0	No	115	13.1	ABCG5	c.211G>A	p.Asp71Asn
BM110.01	F	35	4/2	No	76	14.1	ABCG5	c.211G>A	p.Asp71Asn
BM111.01	F	25	4/2	No	75	14	МҮН9	c.5842G>A	p.Asp1948Asn
BM112.01	М	20	4/2	No	75	13.5	MYH9	c.5842G>A	p.Asp1948Asn

AOD: age of diagnosis; *: instrument did not measure MPV above 18.5fl; **k** : known mutation ; **a**: nucleotide A of the ATG translation initiation start site of the *GP1BA* (NM_000173.5), *GP1BB* (NM_000407.4), *GP9* (NM_000174.3), *ABCG5* (NM_022436.2) and *MYH9* (NM_002473.4) is indicated as nucleotide +1, (mutations are mapped to the immature protein structure of the gene); **Tx**: transfused; **NR**: normal range; **NMD**: no mutation detected. **Clinical manifestations**: 0. Asymptomatic 1. Easy Bruisability 2. Echymoses 3. Menorrhagia 4. Epistaxis 5. Prolonged bleeding after trauma 6. Frequent gum bleed. **WHO (World Health Organisation)**: grade 0: no bleeding; grade 1: petechiae; grade 2: mild blood loss; grade 3: gross blood loss; grade 4: debilitating blood loss.

Parameters	Median (IQR)
Age (yrs) (n=112)	30 (8-70)
Age Females (yrs)(n=55)	25(8-70)
Age Males (yrs) (n=57)	30 (8-70)
Platelet Count (X10 ⁹ /L) (n=112)	89 (27-198)
MPV (fl) (n=96)	13.25 (12-16.5)
WHO Bleeding Score	0 (0-4)
Screening Coagulation Assays (secs) (n=112)	
Prothrombin Time (PT) (NR: 12-14)	12.5 (11-13.9)
Activated Partial Thromboplastin Time (APTT) (NR:28-33)	28.6 (25-32)
Thrombin Time (TT)(NR: 15-19)	15.1 (12.9-18)
Receptor Study (%) (n=112)	
GP1b (CD42b) (NR: 50-150)	75.3 (42.9-98.6)
GPIIb/IIIa (CD41a) (NR: 50-150)	80.5(34.6-98.8)
GPIX (CD42a) (NR: 50-150)	79.35 (27.3-98.0)
Genes	Platelet Count (X10 ⁹ /L)
<i>GP1BA</i> (n=4)	59.50 (47-70)
<i>GP1BB</i> (n=3)	77.0 (77-91)
<i>GP9</i> (n=18)	65.50 (34-147)
ABCG5 (n=12)	83.0 (51-140)
MYH9 (n=11)	83.0 (40-198)

Table 3: Demographic and laboratory findings of included cases

IQR denotes the 25th and 75th interquartile range and n denotes no. of patients; NR: Normal Range

 Table 4: Statistical Analysis of known Single Nucleotide Variants in cases with congenital

 macrothrombocytopenia and normal controls from India

	Polymorphic Marker	Alleles	Odds ratio for risk allele	Р
			(95% confidence Interval)	Value
Gene	Mutation/Polymorphism	Risk/Non		
		risk		
GP1BA	rs6065	T/C	1.300 (0.3126 to 5.406)	1.00
	rs2243093	C/T	0.4318 (0.1350 to 1.381)	1.00
GP9	rs3796130	A/G	0.1270 (0.03156 to 0.5109)	0.0034*
	rs6069	A/G	0.1598 (0.06936 to 0.3681)	< 0.0001*
ABCG5	rs6720173	C/G	1.263 (0.6450 to 2.473)	0.6095
	rs56200894	C/G	1.000 (0.06164 to 16.224)	1.0000
TUBB1	p.Gln43Pro	P/Q	1.111 (0.7432 to 1.659)	0.682

*Statistically Significant

	Heterozygous Variations in Congenital Macrothrombocytopenia Cases				
Gene	Protein	POLYPHEN2	SIFT	ALIGN GVGD	MUPRO/I-Mutant 2.0
		(Score: 0-1)			(Stability of Protein Structure)
GP1BA	p. Leu10Val	Dam (0.99)	Int	Del	Decreases stability
	p.Pro454Ser	Dam(0.99)	Int	Del	Decreases stability
	p.Leu213Arg	Dam (1)	Int	Del	Decreases stability
GP1BB	p.Cys95Trp	Dam (0.99)	Int	Del	Decreases Stability
	p.Arg107Pro	Dam (0.99)	Int	Del	Decreases stability
	p.Tyr113Phe	Dam (0.99)	Int	Del	Decreases stability
GP9	p.Ser62Thr	Dam (0.99)	Int	Del	Decreases stability
	p.Leu49Arg	Dam (0.99)	Int	Del	Decreases stability
	p.Arg97Pro	Dam(0.99)	Int	Del	Decreases stability
	p.Arg39Gly	Dam (0.67)	Int	Del	Decreases stability
	p.Ala28Gly	Dam (0.89)	Int	Del	Decreases the stability
	p.Ala156pro	Dam(0.95)	Int	Del	Deceases the stability
	p.Leu176Arg	Benign(0.00)	Bord	Uncla	Decreases the stability
	p.Pro68Arg	Dam(0.99)	Int	Del	Decreases the stability
	p.Gln76His	Benign(0.208)	Bord	Uncla	Decreases the stability
	p.Ala156Thr	Dam (0.688)	Bord	Uncla	Decreases the stability
ABCG5	p.Asn551Lys	Dam(0.92)	Int	Del	Decreases the stability
	p.Arg50Cys	Dam(0.99)	Int	Del	Decreases the stability
	p.Ala98Gly	Dam (0.99)	Int	Del	Decreases the stability
	p.Asp71Asn	Dam (0.99)	Int	Del	Decreases the stability
МҮН9	p.Glu1946Lys	Benign(0.208)	Bord	Uncla	Decreases the stability
	p.Asp1948Asn	Dam (0.98)	Int	Del	Decreases the stability

Table 5: Prediction of the nature of novel missense mutations in CongenitalMacrothrombocytopenia cases from India

Dam: Damaging; Int: Intolerant; Unclassified; Del: Deleterious; Bord: Borderline

Figure 1: Distribution of Congenital Macrothrombocytopenia cases across India, most concentrated towards Eastern India (West Bengal, Assam, Bihar, Jharkhand, and Orissa)

Figure 2: A family tree showing dominant mode of inheritance in a Bengal Macrothrombocytopenia (BM15.01) family

Figure 3: Blood films of case A. showing giant platelets and Case B. showing giant platelets and stomatocytes in their RBCs

Figure 4: WHO Bleeding Score in relation to the degree of (A). Mean Platelet Volume (MPV) and (B). Thrombocytopenia in congenital macrothrombocytopenia cases from India