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FROBENIUS MAPS ON INJECTIVE HULLS AND THEIR

APPLICATIONS TO TIGHT CLOSURE

MORDECHAI KATZMAN

Abstract. This paper studies Frobenius maps on injective hulls of residue fields of

complete local rings with a view toward providing constructive descriptions of objects

originating from the theory of tight closure. Specifically, the paper describes algorithms

for computing parameter test ideals, and tight closure of certain submodules of the

injective hull of residue fields of a class of well-behaved rings which includes all quasi-

Gorenstein complete local rings.

1. Introduction

This paper studies problems originating from the theory of tight closure which we now

review briefly. Let A be a commutative ring of prime characteristic p; for any positive

integers e we define the iterated Frobenius endomorphism fe : A→ A to be the map which

raises elements to their peth power. This map can be used to endow A with the structure

of a A-bimodule. As a left A-module it has the usual A-module structure whereas A acts

on itself on the right via the iterated Frobenius map; we denote this bimodule eA. Now for

all a ∈ eA and b ∈ A, b · a = ba while a · b = bp
e

a, where · denotes the action of A. We can

extend this construction to obtain the Frobenius functor F eA sending any A-module M to

F eA(M) = eA⊗AM where A acts on F eA(M) via its left-action on eA, so for a⊗m ∈ F eA(M)

and b ∈ A we have b · (a⊗m) = ba⊗m and (a⊗ bm) = a · b⊗m = bp
e

a⊗m.

We often find it convenient to think of eA and the associated Frobenius functors as follows.

Let Θ be an indeterminate and consider the free A-module A[Θ; fe] = ⊕∞
i=0AΘi which we

turn into a skew-polynomial ring by defining Θa = ap
e

Θ for all a ∈ A. We can now identify
ejA with AΘj ⊂ A[Θ; fe] and for all A-modules M we may write F ejA (M) = AΘj ⊗AM .

If M is an A-module and N ⊆M is an A-submodule we define the tight closure of N in

M , denoted N∗
M , to be the set of all m ∈ M such that for some c ∈ A not in any minimal

prime, c⊗m ∈ F eA(M) is in the image of the map F eA(N) → F eA(M) for all e≫ 0.

Among the most interesting and useful results obtained early in the development of the

theory of tight closure is the existence of test-elements (cf. Chapter 2 in [H]). Notice that

the element c ∈ A occurring in the definition of tight closure could depend on the modules

N and M and on the element m ∈M . Test elements are elements c ∈ A not in any minimal

prime such that for all finitely generated modules M and submodules N ⊆ M and all
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2 MORDECHAI KATZMAN

m ∈M ,

(1) m ∈ N∗
M ⇔ c⊗m ∈ F eA(M) is in the image of F eA(N) → F eA(M) for all e ≥ 0.

A weaker concept, that of a pe
′

-weak test element is defined similarly, only that we relax

the last condition above and demand that

(2) m ∈ N∗
M ⇔ c⊗m ∈ F eA(M) is in the image of F eA(N) → F eA(M) for all e ≥ e′.

One also defines the test-ideal and pe
′

-weak test ideal of A to be the ideals generated by all

test-elements, and all pe
′

-weak test elements, respectively.

In many applications one restricts one’s attention to local rings A and to the tight-closure

of ideals generated by systems of parameters. One then naturally considers the notion of

parameter test elements : these are elements c ∈ A not in any minimal prime which satisfy

(1) with M = A and N being an ideal generated by a system of parameters. Similarly one

obtains the notion of pe
′

-weak parameter test elements : these are the elements c ∈ A not

in any minimal prime which satisfy (2) with M = A and N being an ideal generated by a

system of parameters. One can then define the parameter test ideal and pe
′

-weak parameter

test ideal) of A to be the ideals generated by all parameter test elements, and all pe
′

-weak

parameter test elements, respectively. It is worth noting that when S is a Gorenstein ring,

the notions of parameter-test-ideals and test-ideals coincide (cf. Chapter 2 in [H]).

We refer the reader to the seminal paper [HH] and to [H] for detailed descriptions of tight

closure and its properties.

The main results of this paper produce explicit descriptions of these test-ideals. The first

such result is Theorem 3.4 which gives a formula for weak parameter-test-ideals of complete

local rings. This is a generalization of Theorem 8.2 in [K] which gave a similar description

of the parameter-test-ideals of complete local rings under the assumption that a certain

Frobenius map on the the injective hull of the residue field is injective.

Another important result is Theorem 5.5 which gives an explicit description of the tight

closure of certain submodules of the injective hull of the residue field of certain complete

local rings. In view of the notorious difficulty of computing the tight closure of ideals, the

fact that sometimes it is easy to compute the tight closure of submodules of a much larger

object seems very interesting. Also, this result has immediate relevance to the study of

test-ideals. It is known that test-ideals of local rings are the annihilators of the finitistic

tight closure of 0 in the injective hulls of their residue fields (cf. section 8 of [HH]) and

it is conjectured that this finitistic tight closure coincides with the regular tight closure

(cf. Conjecture 2.6 in [LS] and section 8 of that paper where the conjecture is shown to hold

in some cases.) The last section of this paper computes the tight closure of 0 in the injective

hulls residue fields of certain complete local rings.

Throughout this paper, we fix (R,m) to be a complete regular ring of prime characteristic

p, we fix I ⊆ R to be an ideal and we write S = R/I. We denote with ER and ES = annER
I

the injective hulls of the residue fields of R and S respectively.
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Definition 1.1. For any S-module M and all e ≥ 0 we let Fe(M) denote the set of all

additive functions φ : M → M with the property that φ(sm) = sp
e

φ(m) for all s ∈ S

and m ∈ M . Note that each Fe(M) is naturally an S-module: for all φ ∈ Fe(M) and

s ∈ S the map sφ defined as (sφ)(m) = sφ(m) for all m ∈ M is in Fe(M). We also define

F(M) = ⊕e≥0F
e(M).

We call an S-submodule N ⊆ M an Fe(M)-submodule if φ(N) ⊆ N for all φ ∈ Fe(M);

if N is an Fe(M)-submodule for all e ≥ 0 we call N an F(M)-submodule.

We shall refer to the maps in Fe(M) defined above as eth Frobenius maps (or just Frobe-

nius maps when e = 1.) The most important Frobenius map is, of course, the Frobenius

map on f : S → S given by f(s) = sp.

Notice that given an S-module M , any φ ∈ Fe(M) determines a left S[Θ; fe]-module

structure on M given my Θm = φ(m) for all m ∈ M . Conversely, a left S[Θ; fe]-module

structure on M defines a φ ∈ Fe(M) given by φ(m) = Θm for all m ∈M .

We shall call an element m of an S[Θ; fe]-module M nilpotent if Θjm = 0 for some

j ≥ 0 and we shall denote the set all such elements Nil(M); this is easily seen to be an

S[Θ; fe]-submodule of M .

In the first part of this paper we will be particularly interested in S-submodules of ES

which are stable under one particular Frobenius map arising from a canonical Frobenius

map which we describe next. One of most important examples of modules with Frobenius

maps is the top local cohomology module Hd
mS(S) which is a left S[T ; f ]-module in the

following natural way. Hd
mS(S) can be computed as the direct limit of

S

(x1, . . . , xd)S

x1·...·xd−−−−−→ S

(x2
1, . . . , x

2
d)S

x1·...·xd−−−−−→ . . .

where x1, . . . , xd is a system of parameters of S and we can define a Frobenius map φ ∈
Fe
(
Hd

mS(S)
)

on this direct limit by mapping the coset a+(xn1 , . . . , x
n
d )S in the n-th compo-

nent of the direct limit to the coset ap
e

+ (xnp
e

1 , . . . , xnp
e

d )S in the npe-th component of the

direct limit. When S has a canonical module ω ⊆ S, this S[T ; f ]-module structure induces

one in ES as follows. The inclusion ω ⊆ S yields a surjection ES = Hd
mS(ω) ։ Hd

mS(S)

which can be made into a surjection of S[T ; f ]-modules by lifting the S[T ; f ] module struc-

ture of Hd
mS(S) onto ES (cf. §7 in [K]). It is this S[T ; f ]-module structure on ES which, as

in [K], will enable us to give a explicit description of the weak parameter test ideals of S.

Recall that asR is a power series ring K[[x1, . . . , xn]] for some field K of characteristic p, ER

is isomorphic to the module of inverse polynomials K[x−1 , . . . , x
−
n ] (cf. Example 12.4.1 in [BS])

which has a natural leftR[T ; f ]-module structure extending Txα1
1 ·. . .·xαn

n = xpα1

1 ·. . .·xpαn
n for

all α1, . . . , αn < 0. One can show that all left S[Θ; fe] module structures on ES = annES
I

are given by Θ = uT e where u ∈ (I [pe] : I) (cf. Proposition 4.1 in [K] and Chapter 3 of [B].)

Given a left S[T ; f ]-modules structure on S[T ; f ], the study of S[T ; f ]-submodules of ES

now translates via Matlis duality to the study of certain ideals of R:
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Definition 1.2 (cf. Definition 4.2 in [K]). An ideal J ⊆ S is called an ES-ideal if annES
J

is an S[T ; f ]-submodule of ES . An ideal J ⊆ R is called an ES-ideal if it contains I and its

image in S is an ES-ideal.

Theorem 4.3 in [K] states that an ideal J ⊆ R containing I is an ES-ideal if and only if

uJ ⊆ J [p] where u ∈ (I [p] :R I) determines the S[T ; f ]-module structure of ES as above. It

is this characterization which allows one to transform question regarding submodules of ES

to one regarding ideals of R, and these transformation sometimes renders them tractable.

As in [K] let Ce be the category of Artinian S[T ; fe]-modules and let De be the category

of R-linear maps M → F eR(M) where M is a finitely generated S-module and where a

morphism between M
a−→ F eR(M) and N

b−→ F eR(N) is a commutative diagram of R-linear

maps

M

a

��

µ // N

b
��

F eR(M)
F e

R(µ)
// F eR(N)

.

This paper uses the mutually inverse functors ∆e : Ce → De and Ψe : De → Ce defined in

[K]. We shall also use fragments of the construction of ∆e, as in the proof of Theorem 2.4.

These two functors will enable us to translate problems involving the injective hull ES to

problems involving of ideals in R. The crucial tool in answering the latter will be the ideal

operation Ie(−): for an ideal J ⊆ R, Ie(J) is defined as the smallest ideal L ⊆ R for which

J ⊆ L[pe]. The existence of this operation and its construction are discussed in section 5

of [K]; we shall assume the reader is familiar with the basic properties of this operation

described there.

This paper is organized as follows: Section 2 studies basic properties of submodules of ES

and their annihilators which are used throughout this paper. Section 3 generalizes Theorem

8.2 in [K] and gives an explicit description of the weak parameter test ideals of S in the case

where S is Cohen-Macaulay with canonical module ω ⊆ S but where the Frobenius map

on ES induced from the natural Frobenius map on HdimS
mS (S) is not necessarily injective.

Section 4 introduces a certain operation on ES-ideal and applies it to the description of

quasimaximal filtrations of ES . This operation is again used in section 5 which gives fairly

explicit descriptions of the tight closure of certain submodules of ES .

2. Basic properties of graded annihilators and ES ideals

Throughout this section we consider a fixed S[T ; f ]-module structure of ES corresponding

to a fixed u ∈ (I [p] : I).

We start by listing some basic properties of ES-ideals.

Proposition 2.1. (a) The intersection of ES-ideals is an ES-ideal.

(b) If J ⊆ R is an ES-ideal and A ⊂ R is an ideal, then (J : A) is an ES-ideal.
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(c) Assume J ⊆ R is an ES-ideal with minimal primary decomposition Q1 ∩ · · · ∩ Qn
and write Pi =

√
Qi for all 1 ≤ i ≤ n. Then P1, . . . , Pn are ES-ideals and, if Pi is

not an embedded prime, then Qi is an ES-ideal.

Proof. Let {Jλ}λ∈Λ be a set of ES-ideals. We have

u

(
⋂

λ∈Λ

Jλ

)
⊆
⋂

λ∈Λ

uJλ ⊆
⋂

λ∈Λ

J
[p]
λ =

(
⋂

λ∈Λ

Jλ

)[p]

where the equality follows from the fact that R1/p is an ∩-flat R module (cf. Proposition

5.3 in [K]) and (a) follows.

Since

u(J : A)A[p] ⊆ u(J : A)A ⊆ uJ ⊆ J [p]

we see that

u(J : A) ⊆ (J [p] : A[p]) = (J : A)[p]

where the equality follows from the fact that R is regular, and now (b) follows.

To prove (c), first assume that Pi is not an embedded prime, and pick a ∈ ∩j 6=iQj \ Pi.
Now

(J : a) =

n⋂

j=1

(Qj : a) = (Qi : a) = Qi

is an ES-ideal. Any Pi has the form (J : a) for some a ∈ R, so (b) implies that Pi is an

ES-ideal. �

Definition 2.2. Let H be an S[T ; f ]-module and let M ⊆ H be an S-submodule. For any

e ≥ 0 we write ST eM for the S-submodule of M generated by {T em |m ∈M} and we also

write M (e) = (0 :R ST eM). We define the graded annihilator of M , denoted gr-annM , to

be the ideal ⊕e≥0M
(e)ST e ⊆ S[T ; f ].

We shall call an ideal L ⊆ S H-special, if there exists an S[T ; f ]-submodule N ⊆ H for

which gr-annN = LS[T ; f ]. When H = ES and Nil(ES) = 0 the notions of ES-special

ideals and ES ideals coincide (cf. §6 in [K]).

Note that whenever M ⊆ H is an S[T ; f ]-submodule,
{
M (e)

}
e≥0

is an ascending chain

of ideals. When Nil(M) = 0 that ascending chain is constant and that constant value is a

radical M -special ideal, whose minimal primes are themselves M -special ideals. (cf. Corol-

lary 3.7 in [S1]). In general the ascending chain
{
M (e)

}
e≥0

need not be constant (e.g., while

Nil(ES)(e) = S for all large e, Nil(ES)(0) 6= S whenever Nil(ES) 6= 0), and the ideals there

may be non-radical. We next study the properties of these chains of ideals.

Lemma 2.3. Let J1 ⊆ J2 ⊆ R be any ideals.

(
J2

J1

)∨

∼= annER
J1

annER
J2
.
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Proof. Apply (−)∨ to the short exact sequence

0 → J2/J1 → R/J1 → R/J2 → 0

to obtain the short exact sequence

0 → annER
J2 → annER

J1 →
(
J2

J1

)∨

→ 0.

�

For any e ≥ 1 write νe = 1 + · · · + pe−1.

Theorem 2.4. Let M be an S-submodule of ES and write M = annES
L for some ideal

L ⊆ R.

(a) For all e ≥ 0,

ST eM ∼= annES
L[pe]

annES
(uνeR+ L[pe])

.

(b) For all e ≥ 0, M (e) = (L[pe] : uνe).

(c) For all e ≥ 0, uM (e) ⊆M (e−1)[p].

(d) Assume further that M is an S[T ; f ]-submodule of ES . Then annES
M (e) is an

S[T ; f ] submodule of ES and if for some e ≥ 0 we have M (e) = M (e+1), then

M (j) = M (e) for all j ≥ e.

Proof. Fix any e ≥ 0 and consider the map of R-modules ψe : RT e ⊗R ES → ES given by

ψe(rT
e ⊗m) = rT em; notice that ψe(RT

e ⊗R M) = ST eM . Since R is regular, we have

an injection RT e ⊗R M →֒ RT e ⊗R ES ; let ψe be the restriction of ψe to RT e ⊗RM and

consider the following commutative diagram

RT e ⊗ ES
ψe // ES

RT e ⊗M
� ?

OO

ψe // // ST eM
� � // ES

.

An application of Matlis duality together with the fact that (RT e ⊗RM)∨ ∼= RT e ⊗RM∨

(cf. Lemma 4.1 in [L]) yields the commutative diagram

R/I [pe]

����

R/I
uνe

oo

R/L[pe] (ST eM)∨? _oo R/Ioooo

.

The image of the composition of the top and left maps is uνeR+L[pe]/L[pe] and this coincides

with the image of (ST eM)∨ in R/L[pe]. We deduce that (ST eM)∨ is isomorphic to uνeR+

L[pe]/L[pe]. Now

(ST eM) ∼= (ST eM)∨∨ =

(
uνeR+ L[pe]

L[pe]

)∨
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and an application of Lemma 2.3 gives (a).

We now compute

M (e) = (0 :R ST
eM)

= (0 :R (ST eM)
∨
)

=

(
0 :R

uνeR+ L[pe]

L[pe]

)

= (L[pe] :R u
νeR)

and obtain (b). Next we notice that, for all e ≥ 0, νe − 1 = pνe−1 and

uM (e) = u(L[pe] : uνe) ⊆ (L[pe] : upνe−1) = (L[pe−1] : uνe−1)[p] = M (e−1)[p]

and (c) follows.

If M is an S[T ; f ]-submodule of ES then
{
M (e)

}
e≥0

is an ascending chain of ideals and we

deduce from (c) that uM (e) ⊆M (e)[p], i.e., that M (e) is an ES ideal and hence annES
M (e)

is an S[T ; f ] submodule of ES .

Consider the maps βi : R/L→ F iR(R/L) = R/L[pi] given by the composition

R/L
u−→ R/L[p] up

−→ . . .
upi−1

−−−−→ R/L[pi],

i.e., by multiplication by uνi . For each i ≥ 1, the kernel of βi is the image of M (i) = (L[pi] :R

uνi) in R/L; (d) now follows from Proposition 2.3(b) in [L]. �

We can now prove the following generalization of Proposition 3.3 in [S1].

Theorem 2.5. Let A ⊆ B be S[T ; f ]-submodules of ES. Write A = annES
K and B =

annES
J for some ideals J ⊆ K ⊆ R. Also write gr-annB = ⊕e≥0beT

e and gr-annB/A =

⊕e≥0beT
e where be and be are ideals of R for all e ≥ 0. For all e ≥ 0,

be =
(
(J [pe] :R uνe

) :R K
)

= (be :R K).

Proof. As in the proof of Theorem 2.4, fix any e ≥ 0 and consider the map of R-modules

ψe : RT e⊗R B/A→ B/A given by ψe(rT
e ⊗m) = rT em; we notice that the image of ψe is

(ST eB +A)/A. An application of Matlis duality to the maps

RT e ⊗R B/A ։ (ST eB +A)/A →֒ B/A

yields the R-linear maps

K/J ։ ((ST eB +A)/A)∨ →֒ K [pe]/J [pe]

whose composition is given by multiplication by uνe . We deduce that ((ST eB +A)/A)∨ is

isomorphic to the image of the map R/J → R/J [pe] given by multiplication by uνe , i.e., to
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uνeK + J [pe]/J [pe]. Now

be = (0 :R (ST eB +A)/A)

= (0 :R ((ST eB +A)/A)∨)

= (J [pe] :R u
νeK)

=
(
(J [pe] :R u

νe) :R K
)

= (be :R K).

�

Recall that there exists an integer η ≥ 0 such that T η Nil(ES) = 0 (cf. Proposition

4.4. in [L]) which we shall refer to as the index of nilpotency of ES and that Nil(ES) =

annES
Iη(u

νηR) + I where for all ideals L ⊆ R and positive integers e, Ie(L) is defined as

the smallest ideal J for which L ⊆ J [pe] (cf. Theorem 4.6 and section 5 in [K].)

Corollary 2.6. Let B be an S[T ; f ]-submodule of ES and write B = annES
J for some

ideal J ⊆ R. Let η be the index of nilpotency of ES and K = Iη(u
νηR) + I. We have(

(J [pe] :R u
νe) :R K

)
= ((J :R u) :R K) for all e ≥ 0 and these are radical ideals.

We conclude this section by recording some additional properties of the associated primes

of the ideals occurring in graded annihilators of S[T ; f ]-submodules of ES . These properties

will not be used elsewhere in this paper.

Proposition 2.7. Let M be an S[T ; f ]-submodule of ES, write M = M +Nil(ES)/Nil(ES)

and write Nil(ES) = annES
K.

(a) For all e ≥ 0, AssM (e) ⊇ AssM (e+1).

(b) For all e ≥ 0, if P ∈ AssM (0) \ AssM (e) and P is not an embedded prime of M (0)

then P ⊇ K.

(c) Assume that htKS > 0. If htM (e)S > 0 for some e ≥ 0 then htM (e)S > 0 for all

e ≥ 0.

Proof. Write M = annES
J for some ES-ideal J . For all e ≥ 0 let Q

(e)
1 ∩ · · · ∩ Q(e)

ne be a

minimal primary decomposition of M (e) and write P
(e)
i =

√
Q

(e)
1 for all 1 ≤ i ≤ ne.

Theorem 2.4(b) shows that

M (e+1) =
(
J [pe+1] :R u

pνe+1
)

=

((
J [pe] :R u

νe

)[p]

:R u

)
=
(
M (e)[p] :R u

)
.

Now ⋂{(
Q

(e)
i

[p]
:R u

)
| 1 ≤ i ≤ ne, u /∈ Q

(e)
i

[p]
}

is a primary decomposition of M (e+1) and (a) follows.

Theorem 2.5 implies that M
(e)

= (M (e) :R K) for all e ≥ 0 and M
(e)

= M
(0)

is a radical

ideal (cf. Lemma 1.9 in [S1]). Now we obtain primary decompositions
⋂{(

Q
(e)
i :R K

)
| 1 ≤ i ≤ ne, K " Q

(e)
i

}
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where the primary components associated with minimal primes are irredundant, and since

these primary components occur for all e ≥ 0, (b) follows.

Assume now that that htKS > 0 and that htM (e)S > 0 for some e ≥ 0. If htM (0)S = 0

then there exists an associated prime P of M (0) such that htPS = 0. But P is not an

associated prime of M (e), so K ⊆ P and htKS ≤ htPS = 0, a contradiction. �

All the results in this section have natural analogues when working with a S[Θ; fe]-module

structure on ES– these were omitted for the sake of simplicity. The proofs of this analogous

results consist of straightforward modifications of the proofs given above. In what follows

we shall assume the more general results.

3. Weak parameter test ideals

In this section we describe an algorithm for computing the pe-weak parameter test ideal

of complete local Cohen-Macaulay rings. This extends the main result in [K] where this was

done under the assumption that a certain Frobenius map on ES is injective.

Throughout this section we assume S to be Cohen-Macaulay with canonical module

ω ⊆ S and we write H = HdimS
mS (S). Now dimS/ω < dimS and the short exact sequence

0 → ω → S → S/ω → 0

yields a surjection Υ : ES ։ H . We can now endow ES with a structure of an S[T ; f ]-

module which makes this surjection into a map of S[T ; f ]-modules (cf. section 7 in [K]). We

fix this S[T ; f ]-module structure throughout this section.

Let J ⊆ R be henceforth in this section the ideal for which kerΥ = annES
J . This

ideal can be computed effectively as follows. The map Υ is obtained from the long exact

sequence of local cohomology modules arising from the the short exact sequence 0 → ω →
S → S/ω → 0, i.e., from

0 → HdimS−1
mS (S/ω) → HdimS

mS (ω)
Υ−→ HdimS

mS (S) → 0.

We may rewrite this short exact sequence using local duality to obtain

0 → ExtdimR−dimS+1
R (S/ω,R)∨ → ExtdimR−dimS

R (ω,R)∨
Υ−→ ExtdimR−dimS

R (S,R)∨ → 0

which yields

0 → ExtdimR−dimS
R (S,R) → ExtdimR−dimS

R (ω,R) → (kerΥ)∨ → 0

Now ExtdimR−dimS
R (ω,R) ∼= S and we identify ω′ = ExtdimR−dimS

R (S,R), which is a canon-

ical module for S, with its image in S. We have (kerΥ)∨ ∼= S/ω′ and another application

of (−)∨ gives (S/JS)∨ ∼= kerΥ ∼= (S/ω′)∨ and so S/JS ∼= S/ω′, and, therefore, JS = ω′.

Definition 3.1. For all e ≥ 0 we define

Ie =
{
M (e) |M ⊆ H is an S[T ; f ]-submodule

}
.



10 MORDECHAI KATZMAN

Notice that this extends the definition of the set of H-special ideals given in [S1] for the

case where H is T -torsion-free.

Fix a system of parameters x1, . . . , xd of S and think of H as the direct limit

S

(x1, . . . , xd)S

x1·...·xd−−−−−→ S

(x2
1, . . . , x

2
d)S

x1·...·xd−−−−−→ . . . .

with its standard Frobenius described in the introduction and notice that as we assume

S to be Cohen-Macaulay, the maps in this direct limit are injective. Pick some element

a+(xi1, . . . , x
i
d)S. In what follows we will tacitly use the fact that cT e(a+(xi1, . . . , x

i
d)S) = 0

in the direct limit for some c ∈ S not in any minimal prime if and only if a ∈ ((xi1, . . . , x
i
d)S)∗

(cf. Remark 4.2 in [S1]).

Theorem 3.2. Assume that S has a parameter-test-element. For all e ≥ 0, the pe-weak

parameter test ideal of S is the image of

∩{K |K ∈ Ie, htKS > 0}

is S.

Proof. Let τ be the intersection in the statement of the theorem. Assume that d is a pe-weak

parameter test element. If M ⊆ H is an S[T ; f ]-submodule for which htM (e) > 0, we can

find a c ∈ M (e) whose image in S is not in a minimal prime such that cT e
′

M = 0 for all

e′ ≥ e, and hence dT e
′

M = 0 for all e′ ≥ e, and in particular d ∈ M (e). We deduce that

d ∈ τ . We next show that all elements in τ are pe-weak parameter test elements.

Fix a c ∈ R whose image c in S is a parameter-test-element. Let h ∈ H be such that such

that cT e
′

h = 0 for all e′ ≥ 0. Define L = ⊕e′≥0ScT
e′ and M = annH L; notice that h ∈M .

Now c ∈M (0) ⊆M (e) and so htM (e)S > 0. Also τ ⊆M (e) so τT eM ⊆M (e)T eM = 0, and

in particular τT eh = 0. �

Lemma 3.3. Assume that S has a parameter test element. Let M be a S[T ; f ]-submodule

of H. If htM (e)S > 0 for some e ≥ 0, then htM (e′)S > 0 for all e′ ≥ 0.

Proof. We assume that htM (e)S > 0 for some e ≥ 0 and show that htM (0)S > 0. Since

M (e′) ⊇M (0) for all e′ ≥ 0, we will then have htM (e′)S > 0 for all e′ ≥ 0.

Pick any element d ∈M (e) whose image in S is not in any minimal prime and notice that

d ∈M (j) for all j ≥ e, i.e., dST jM = 0 for all j ≥ e.

Let x = (x1, . . . , xdimS) be a full system of parameters of S and write xnS for the ideal

of S generated by xn1 , . . . , x
n
dimS . Now think of H as the direct limit of

S

xS
→ S

x2S
→ S

x3S
→ . . .

where the (injective) maps are given by multiplication by x1 · . . . · xdimS .

Any element m ∈M can be identified with an element represented by s+xiS in the direct

limit system above, and the fact that dST jm = 0 for all j ≥ e shows that ds[p
j ] ∈ (xiS)[p

j ]

for all j ≥ e and hence s ∈ (xiS)∗. Now for any parameter-test-element c, c(xiS)∗ ⊆ xiS,
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and we deduce that cs ∈ xiS. We now see that any parameter-test-element kills M and so

is in M (0)S, hence M (0)S has positive height.

�

We are now ready to give an explicit description of weak parameter-test-ideals and to

do so we need to recall the following notion (cf. section 5 in [K]). For any ideal L ⊆ R

and u ∈ R we define L⋆u to be the smallest ideal A containing L with the property that

uA ⊆ A[p].

Theorem 3.4. Let c ∈ R be such that its image in S is a test element. For all e ≥ 0, the

pe-weak parameter test ideal τ e of S is given by
((

(cJ + I)
⋆u)[pe]

:R u
νeJ
)
S.

Proof. Write L = (cJ + I)
⋆u

. Notice that L is an ES-ideal and that since c ∈ ((cJ+I)⋆u : J),

we have htLS > 0. Now

τ e = ∩{(M (e)S |M ⊆ H is an S[T ; f ] submodule, htM (e) > 0}
= ∩{

(
A[pe] :R u

νeJ
)
S |A ⊆ J is an ES-ideal, ht

(
A[pe] :R u

νeJ
)
S > 0}

and
(
L[pe] :R u

νeJ
)
S is one of the ideals in this intersection, hence τ e ⊆

(
L[pe] :R u

νeJ
)
S.

Now let A ⊆ J be any ES-ideal for which ht
(
A[pe] :R u

νeJ
)
S > 0. Lemma 3.3 implies

that ht (annES
A)(0) = htAS > 0 and since the image of c in S is in τ0 ⊆ (A : J)S, we have

cJ ⊆ A. Proposition 5.5 in [K] now implies that L ⊆ A and hence that
(
L[pe] :R u

νeJ
)
⊆(

A[pe] :R u
νeJ
)
. We conclude that

(
L[pe] :R u

νeJ
)
S ⊆ τe. �

Corollary 3.5. Let τ be the union of the ascending chain {τe | e ≥ 0}. If τ i = τ i+1 for

some i ≥ 0 then τ = τ i.

Proof. Write L = (cJ + I)
⋆u

and let M = annES
L. Theorem 3.4 together with Theorem

2.4(b) imply that gr-annM = ⊕e≥0τ eT
e and the result follows from Theorem 2.4(d). �

We can translate Theorem 3.4 above to an algorithm as follows.

(1) Given R and I, compute the u ∈ (I [p] :R I) corresponding to the Frobenius map

on ES which makes Υ into an homomorphism of S[T ; f ] modules and also find

J = kerΥ (cf. §7 in [K]).

(2) Find a single parameter test element c (e.g., by inspecting the Jacobian of I (cf. Chap-

ter 2 in [H])).

(3) Compute (cJ + I)
⋆u

(cf. §5 in [K]).

(4) Output the pe-weak parameter test ideal
((

(cJ + I)
⋆u)[pe]

:R u
νeJ
)
S.

4. Quasimaximal filtrations

Throughout this section we consider a fixed S[T ; f ]-module structure of ES corresponding

to a fixed u ∈ (I [p] : I).



12 MORDECHAI KATZMAN

As in section 4 of [L], for any S[T ; f ] module M we write Mred for M/Nil(M) and M∗

for the S[T ; f ]-submodule ∩e≥0ST
eM of M . We note that if M is Artinian as an S-module,

there exists an α≫ 0 such that

(Mred)
∗ =

(∩e≥0ST
eM) + Nil(M)

Nil(M)

=
STαM + Nil(M)

Nil(M)

∼= STαM

Nil(M) ∩ (STαM)

=
∩e≥0ST

eM

Nil(M) ∩ (∩e≥0ST eM)

= (M∗)red

and denote both of these M∗
red. We also recall the following:

Definition 4.1. A filtration 0 = M0 ⊂ · · · ⊂ Ms = M of an S[T ; f ] module M is called

quasimaximal if for all 1 ≤ i ≤ s the modules (Mi/Mi−1)
∗
red are non-zero simple S[T ; f ]

modules.

Artinian S[T ; f ] modules have quasimaximal filtrations; their lengths and simple factors

are invariants of the module (cf. section 4 in [L]).

In this section we study quasimaximal filtrations of ES and in doing so we introduce an

operation on ES-ideals which will be a key ingredient for obtaining the results of the next

section. We start with a description of such filtrations in general.

Definition 4.2. Let M be an S[T ; f ] module. We define A(M) to be the set of all S[T ; f ]-

submodules N ⊆M with the property that Nil(M/N) = 0.

Theorem 4.3. Let M be an S[T ; f ] module which is Artinian as an S-module. Let 0 ⊆
N1 ( · · · ( Ns = M be a chain with N1, . . . , Ns ∈ A(M) which is saturated in the sense

that for all 1 ≤ i ≤ s − 1, there is no element in A(M) strictly between Ni and Ni+1 and

there is no element in A(M) strictly contained in N1. Then 0 ( N1 ( · · · ( Ns = M is a

quasimaximal filtration of M whenever N1 6= 0 and N1 ( · · · ( Ns = M is a quasimaximal

filtration of M whenever N1 = 0.

Proof. Fix any 1 ≤ i ≤ s−1. We have Nil(Ni+1/Ni) ⊆ Nil(M/Ni) = 0 hence (Ni+1/Ni)
∗
red =

(Ni+1/Ni)
∗.

Pick any S[T ; f ]-submodule A ⊆ M such that Ni ⊆ A ⊆ Ni+1 and let B be the S[T ; f ]

submodule of M for which Nil(M/A) = B/A. We have

Nil(M/B) = Nil

(
M/A

B/A

)
= Nil

(
M/A

Nil(M/A)

)
= 0

so B ∈ A(M). Also, the natural surjection M/A ։ M/Ni+1 maps Nil(M/A) = B/A into

Nil(M/Ni+1) = 0 hence B ⊆ Ni+1. Now Ni ⊆ B ⊆ Ni+1 and the saturation of our chain

implies that either B = Ni (in which case A = Ni) or B = Ni+1.
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We now show that (Ni+1/Ni)
∗ = (N∗

i+1 +Ni)/Ni is simple. Pick any sub-S[T ; f ]-module

A/Ni of (Ni+1/Ni)
∗ where A ⊆ M is an S[T ; f ] submodule of M containing Ni for which

A/Ni ⊆ (Ni+1/Ni)
∗. Now (A/Ni)

∗ ⊆ (Ni+1/Ni)
∗; if (A/Ni)

∗ = (A∗ + Ni)/Ni = 0, then

A∗ ⊆ Ni and A/Ni ⊆ Nil(M/Ni) = 0. Assume that (A/Ni)
∗ 6= 0 and let B be as in

the previous paragraph, i.e., Nil(M/A) = B/A. Since ST eB ⊆ A for all e ≫ 0, we have

B∗ = A∗, hence (A/Ni)
∗ = (B/Ni)

∗ = (Ni+1/Ni)
∗. Now (Ni+1/Ni)

∗ = (A/Ni)
∗ ⊆ A/Ni ⊆

(Ni+1/Ni)
∗ so A/Ni = (Ni+1/Ni)

∗.

It remains to show that, if N1 6= 0,

(N1)
∗
red =

(
N1

N1 ∩ Nil(M)

)∗

is simple. To simplify notation, write N = N1. Pick any S[T ; f ]-submodule A of M for

which N ∩ Nil(M) ⊆ A ⊆ N , and, as before, write Nil(M/A) = B/A for an S[T ; f ]-

submodule B of M . Again we have B ∈ A(M) and B ⊆ N , so B = N . Pick any

(A/N ∩ Nil(M))∗ ⊆ (N/N ∩ Nil(M))∗ and assume (A/N ∩ Nil(M))∗ 6= 0; again we have

A∗ = B∗ and (N/N ∩ Nil(M))∗ = (A/N ∩ Nil(M))∗ ⊆ A/N ∩ Nil(M) ⊆ (N/N ∩ Nil(M))∗

so A/(N ∩ Nil(M)) = (N/N ∩ Nil(M))∗. �

We now produce quasimaximal filtrations of ES when it is T -torsion free. These are

described in terms of prime ES-ideals. Recall that in this case the set of ES ideals coincides

with the set of ES-special ideals (cf. §6 in [K]) and that this set is finite (cf. Theorem 3.10

in [S1]).

Corollary 4.4. Assume that ES is T -torsion free and let P1, . . . , Pn be all its prime ES-

ideals ordered so that Pi * Pj for all 1 ≤ i < j ≤ n. The chain

0 ⊂ annES
P1 ⊂ · · · ⊂ annES

i⋂

j=1

Pj ⊂ · · · ⊂ annES

n⋂

j=1

Pj ⊂ ES .

is a quasimaximal filtration of ES. Therefore, the set of annihilators of the factors of any

quasimaximal filtration of ES is {P1, . . . , Pn}.

Proof. Notice that the ordering above of I = {P1, . . . , Pn} can always be achieved: start

with Pi1 , . . . , Pin1
maximal with respect to inclusion in I, then list Pin1

, . . . , Pin2
maximal

with respect to inclusion in I \ {Pi1 , . . . , Pin1
}, etc.

Write Ai = annES

⋂i
j=1 Pj for all 0 ≤ i ≤ n; notice that our ordering guarantees that

these form a strictly ascending chain. For all 1 ≤ i ≤ n, Ai is a graded-annihilator submodule

of ES ; since ES is T -torsion free, so is ES/Ai and Ai ∈ A(ES).

Now any S[T ; f ]-submodule between Ai−1 and Ai would be a graded-annihilator sub-

module of the form B = annES
J where J = Pj1 ∩ · · · ∩ Pjm with i ≤ j1, . . . , jm ≤ n is a

proper ES-special and

P1 ∩ · · · ∩ Pi−1 ∩ Pi ⊆ J ⊆ P1 ∩ · · · ∩ Pi−1.

The first inclusion above shows that for all 1 ≤ k ≤ m, Pik contains one of P1, . . . , Pi and

our ordering then shows that ik ≤ i. The second inclusion above now shows that either
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J = P1 ∩ · · · ∩ Pi−1 ∩ Pi or P1 ∩ · · · ∩ Pi−1, i.e., B = Ai−1 or B = Ai. We deduce that the

factors Ai/Ai−1 are simple for all 1 ≤ i ≤ n and so our chain of of modules in A(ES) is

saturated. The result now follows from Theorem 4.3. �

The rest of this section will describe quasimaximal filtrations of ES in the presence of

T -torsion.

Proposition 4.5. For any ES-ideal J ⊆ R, and any e ≥ 0 we have

Ie(u
νeJ) ⊇ Ie+1(u

νe+1J).

Proof. First, uνe+1J = upνeuJ ⊆ upνeJ [p], so

Ie+1 (uνe+1J) ⊆ Ie+1

(
upνeJ [p]

)
.

Now Ie(u
νeJ)[p

e+1] ⊇ (uνeJ)
[p]

= upνeJ [p] and the minimality of Ie+1

(
upνeJ [p]

)
implies that

Ie+1

(
upνeJ [p]

)
⊆ Ie(u

νeJ). �

For any ES-ideal J the sequence {Ie(uνeJ)}e≥0 is decreasing and we can introduce the

following definition.

Definition 4.6. For any ES-ideal J ⊆ R let

J♯u =
⋂

e≥0

Ie(u
νeJ) + I.

Notice that R♯ =
⋂
e≥0 Ie(u

νeR) + I defines the submodule of nilpotent elements, i.e.,

Nil(ES) = annES
R♯ (cf. Theorem 4.6 in [K]).

Lemma 4.7. For any ES-ideal J ⊆ R, J♯u is an ES-ideal.

Proof. It is enough to show that for all e ≥ 0, uIe(u
νeJ) ⊆ Ie+1(u

νe+1J)[p]. Now

(
Ie+1(u

νe+1J)[p]
)[pe]

= Ie+1(u
νe+1J)[p

e+1] ⊇ uνe+1J

so Ie+1(u
νe+1J)[p] ⊇ Ie(u

νe+1J) = Ie(u
pe

uνeJ) so it is enough to show that for any a ∈ R

and any ideal B ⊆ R we have Ie(a
pe

B) = aIe(B).

Now ap
e

B ⊆ Ie(a
pe

B)[p
e] so

B ⊆
(
Ie(a

pe

B)[p
e] :R a

pe
)

=
(
Ie(a

pe

B) :R a
)[pe]

and so Ie(B) ⊆
(
Ie(a

pe

B) :R a
)
, and, therefore, aIe(B) ⊆ Ie(a

pe

B). On the other hand,

ap
e

B ⊆ (aIe(B))
[pe]

, so Ie(a
pe

B) ⊆ aIe(B). �

Theorem 4.8. Let M be an S[T ; f ]-submodule of ES and write M = annES
J for an

ES-ideal J . Then Nil(ES/M) = annES
J♯u/M .
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Proof. Let Ne be the S[T ; f ]-submodule of ES/M consisting of all elements killed by T e.

An application of the functor ∆e (cf. section 4 in [K]) to the short exact sequence 0 →
M → ES → ES/M → 0 yields the following short exact sequence in De

(3) 0 // J

I
//

uνe

��

R

I
//

uνe

��

R

J
//

uνe

��

0

0 // J
[pe]

I [pe]
// R

I [pe]
// R

J [pe]
// 0

.

Write Je = Ie(u
νeJ) + I and consider the following exact sequence in De

(4)
J

I
//

uνe

��

J

Je
//

uνe

��

0

J [pe]

I [pe]
// J

[pe]

J
[pe]
e

// 0

.

Write N ′
e = Ψe

(
J
Je

uνe

−−→ J [pe]

J
[pe]
e

)
and note that it is an S[T ; f ]-submodule of ES/M . The

definition of Je implies that the rightmost map in (4) is zero, hence T eN ′
e = 0 so N ′

e ⊆ Ne.

On the other hand, an application of ∆e to the exact sequence 0 → Ne → ES/M yields an

exact sequence in De

(5)
J

I
//

uνe

��

J

Le
//

uνe

��

0

J [pe]

I [pe]
// J

[pe]

Le
[pe]

// 0

.

for some ES-ideal Le such that I ⊆ Le ⊆ J and for which uνeJ ⊆ L
[pe]
e . Now the minimality

of Je = Ie(u
νeJ) + I implies that Ie(u

νeJ) ⊆ Le and hence

Ne =

(
J

Le

)∨

=
annE Le
M

⊆ annE Je
M

= N ′
e

and we deduce that Ne = N ′
e.

We now conclude the proof by observing that

Nil(ES/M) =
⋃

e≥0

Ne =
⋃

e≥0

N ′
e =

⋃

e≥0

annES
Je

M
=

annES

⋂
e≥0 Je

M
=

annES
J♯u

M
.

�

Corollary 4.9. For any ES-ideal J ⊆ R, ES/ annES
J♯u is T -torsion free and

(
J♯u
)♯u

=

J♯u.
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Definition 4.10. We define

I
♯ =

{
J♯u | J ⊆ R is an ES ideal

}

and call a chain J♯u0 ⊂ J♯u1 ⊂ · · · ⊂ J♯uℓ of ideals in I♯ ♯-saturated if it cannot be refined by

adding an ideal in I♯.

Theorem 4.11. Let I = 0♯u = J♯u0 ⊂ J♯u1 ⊂ · · · ⊂ J♯uℓ = R♯u be a ♯-saturated chain. Then

0 ⊂ J♯uℓ−1 ⊂ · · · ⊂ annES
J♯u1 ⊂ annES

J♯u0 = ES

is a quasi-maximal filtration of ES .

Proof. Notice that A(ES) = {annES
J | J ∈ I♯}. Any finite strictly ascending chain in

A(ES) can be refined to saturated chain and all these have the same length, namely the

quasilength of ES (cf. Theorem 4.6 in [L]). So finite saturated chains as in the statement of

the theorem do exist and now the theorem follows from Theorem 4.3. �

The ideals J♯u will play a central role in calculating tight closure in ES as described in

the following section.

5. Tight closure in ES

In this section we give an explicit description of the tight closure of certain submodules

of ES , including 0∗ES
, which holds whenever, the S-algebra F(ES) is generated by one

element. The class of complete local rings S with this property includes those which are

quasi-Gorenstein, but it is strictly larger than this as is illustrated by the example at the

end of this section.

We shall henceforth use the natural isomorphism Fe(M) ∼= HomS (ST e ⊗S M,M) which

maps a φ ∈ Fe(M) to the S-linear map φ̃ : ST e⊗M →M determined by φ̃(s⊗m) = sφ(m)

(cf. section 3 in [LS]). Conversely, the element φ̃ : ST e ⊗M → M corresponds under this

isomorphism to the map φ ∈ Fe(M) given by φ(m) = φ̃(1⊗m). We shall henceforth identify

these two S-modules using this notation.

We can think of the tight closure of ideals L ⊆ S as the set of all elements s ∈ S such

that for some c ∈ S not in any minimal prime we have cφ(s) ∈ Sφ(L) for all e ≫ 0 and all

φ ∈ Fe(S). This is because for each e ≥ 0, Fe(S) is generated by the eth iterated Frobenius

map on S. Our first aim is to show that this also yields the tight closure of submodules of

ES , and to do so we shall need weak test elements for testing tight closure in this setup.

Definition 5.1. Let M be an S-module and let N ⊆M be an S-submodule. We call c ∈ S

not in any minimal prime a pη-weak test element for the pair (N,M) if a ∈ N∗
M if an only if

c⊗ a ∈ ST e⊗M is in the image of ST e⊗N in ST e⊗M for all e ≥ η. Henceforth N
[pe]
M (or

just N [pe] when it will not lead to confusion) will denote the image of ST e⊗N in ST e⊗M .

These test elements mentioned in the definition above are known to exist when S is

F -pure (cf. section 3 in [S2]), and I believe they exist in much wider generality.
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Proposition 5.2. Let N be any S-submodule of ES, let c ∈ S and fix an a ∈ M . For all

e ≥ 0, c⊗a ∈ ST e⊗ES is in N [pe] if and only if for all φ ∈ Fe(ES) we have cφ(a) ∈ Sφ(N).

Consequently, if c is a pη-weak test element for the pair (N,ES) then a ∈ N∗
ES

if and

only if for all e ≥ η and all φ ∈ Fe(ES) we have cφ(a) ∈ Sφ(N).

Proof. Note that for all φ ∈ Fe(ES) we have φ̃(N [pe]) = Sφ(N).

Assume first that c⊗ a ∈ N [pe]. Now for all φ ∈ Fe(ES) we have

cφ(a) = φ̃(c⊗ a) ⊆ φ̃
(
N [pe]

)
= Sφ(N).

Assume now that cφ(a) ∈ Sφ(N) for all φ ∈ Fe(ES). Let M ⊆ ST e ⊗S ES be

the S-submodule generated by N [pe] and c ⊗ a. The inclusion above yields a surjection

HomS(ST e ⊗S ES , ES) ։ HomS(M,ES); we now recall that Fe(ES) = HomS(ST e ⊗S
ES , ES) and deduce that for all φ̃ ∈ HomS(ST e ⊗S ES , ES) we have φ̃(M) = φ̃(N [pe] +

S(c⊗ a)) = Sφ(N) = φ̃(N [pe]).

If c⊗a /∈ N [pe] we can find a non-zero ψ ∈ HomS(M/N [pe], ES). The short exact sequence

0 → HomS(
M

N [pe]
, ES) → HomS(M,ES) → HomS(N [pe], ES) → 0

enables us to identify ψ with a non-zero ψ ∈ HomS(M,ES) for which ψ(N [pe]) = 0. Since ES

is injective, we can extend ψ to an element ψ̃ ∈ HomS(ST e⊗S ES , ES). Now ψ̃(c⊗m) 6= 0,

otherwise ψ = 0, and hence ψ̃(M) 6= 0 and so is not equal to ψ̃(N [pe]) = 0, contradicting

the conclusion of the previous paragraph.

The final conclusion follows directly from the definition of weak test elements. �

The proposition above gives a method for translating the calculation of the tight closure

of an S-submodule N ⊆ ES to a calculation involving ideals of R as follows. Assume

c ∈ S be a pη-weak test element for the pair (N,ES). Fix an e ≥ η, φ ∈ Fe(ES) and the

corresponding S[Θ; fe]-module structure on ES corresponding to v ∈ (I [pe] : I). Define

Nφ = {m ∈ ES | cΘm ∈ SΘN} and write Nφ = annES
Lφ for some ideal Lφ ⊆ R. Notice

that Nφ is the largest submodule of ES with the property cSΘNφ ⊆ SΘN , i.e., c annES
(0 :R

SΘNφ) ⊆ annES
(0 :R SΘN) which, using the S[Θ; fe]-module analogue of Theorem 2.4(b),

translates to c annES
(L

[pe]
φ : v) ⊆ annES

(J [pe] : v), or, equivalently, (L
[pe]
φ : v) ⊇ c(J [pe] : v),

i.e., L
[pe]
φ ⊇ cv(J [pe] : v). We deduce that Lφ is the minimal ideal L ⊆ R containing I for

which L[pe] ⊇ cv(J [pe] : v), i.e., Lφ = Ie
(
cv(J [pe] : v)

)
+ I. We can now express N∗

ES
as the

annihilator in ES of the sum of all these ideals Lφ.

In some simple cases this gives directly a fairly explicit expression for the tight closure

on N . For example, if I is generated by a regular sequence g1, . . . , gm and N = 0, then for

all e ≥ 0 we have (I [pe] : I) = gp
e−1 + I [pe] where g = g1 · . . . · gm and, if c is a test element

for (0, ES), then

0∗ES
= annES

∑

e≥0

Ie(cg
pe−1) + I.
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The rest of this section applies Proposition 5.2 under additional hypothesis to produce

explicit expressions for N∗
ES

: we shall first restrict our attention to F(ES) submodules

N ⊆ ES (which includes the interesting case where N = 0) and later we shall impose the

additional condition that the S-algebra F(ES) is generated by one element.

Proposition 5.3. Fix any S[Θ; fη]-module structure on ES. Let c ∈ R and let Z = annES
J

be an S[Θ; fη]-submodule, where I ⊆ J ⊆ R is an ideal. Let Y = annES
L be the largest

S[Θ; fη]-submodule of ES contained in annES
cJ where cJ ⊆ L ⊆ R is an ideal. Choose a

positive integer j0 such that Θj0 Nil(ES/Y ) = 0. Write

M =
{
m ∈ ES | cΘjm ∈ Z for all j ≥ j0

}
.

Then M is the preimage in ES of Nil (ES/Y )

Proof. Clearly, if m + Y ∈ Nil (ES/Y ) then for all j ≥ j0 we have LΘjm = 0 and since

L ⊇ cJ we also have cΘjm ∈ annES
J = Z.

Notice thatM is an S[Θ; fη]-submodule of ES . Write A = (0 :R SΘj0M); Theorem 2.4(d)

shows that annES
A is an S[Θ; fη]-submodule of ES . Furthermore, cSΘj0M ⊆ annES

J ,

i.e., cJΘj0M = 0 and hence cJ ⊆ A implying L ⊆ A. Since SΘj0M ⊆ annES
A we have

m + annES
A ∈ Nil (ES/ annES

A) for all m ∈ M ; as L ⊆ A we also have m + annES
L ∈

Nil (ES/ annES
L). �

Our next goal is produce an explicit method of calculating tight closure in ES . The

following introduces the main tool.

Definition 5.4. Let e ≥ 0, fix any u ∈ (I [pe] : I) and let J ⊆ R be any ideal containing I.

We write J⋆
eu for the smallest ideal L containing J for which uL ⊆ L[pe] (see section 5

in [K] for a construction of this ideal).

Endow ES with the structure of an S[Θ; fe]-module corresponding to u, and let M be an

S-submodule of ES . We define M⋆e

to be the largest S[Θ; fe]-submodule of ES contained

in M .

Note that if M = annES
J , M⋆e

= annES
J⋆

eu.

Theorem 5.5. Suppose that the S-algebra F(ES) is generated by one element corresponding

to u ∈ (I [p] : I). Let N be a S[T ; f ]-submodule of ES and let Z = annES
J be the stable

value of the descending chain {ST jN}j≥0. Assume further that the image of c ∈ R in S is

a weak pη-test element for the pair (N,ES) and that η was chosen so large that Z = ST ηN .

We have

N∗
ES

= annES

(
(cJ + I)⋆

ηu
)♯u

.

Proof. Fix the S[T ; f ]-module structure on ES corresponding to u. In view of Proposition

5.2 and of the fact that for all e ≥ η, Fe(ES) = ST e,

N∗
ES

= ∩e≥η{m ∈ ES | cT em ∈ ST eN}

for all η ≥ η0.
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Notice that, if for some a ∈ ES and positive integer j the element c ⊗ a ∈ ST jη ⊗ ES

is in N [pjη ], then after tensoring on the left with ST k for 1 ≤ k ≤ η − 1 and using the

isomorphism ST k ⊗ ST jη ∼= ST k+jη, we obtain cp
k ⊗ a ∈ ST jη+k ⊗ES is in N [pjη+k] for all

1 ≤ k ≤ η − 1 and hence cp
η−1 ⊗ a ∈ ST jη+k ⊗ ES is in N [pjη+k] for all 1 ≤ k ≤ η − 1. For

any positive integer j0, we may replace c with cp
η−1

as a pj0η weak test element and deduce

that

a ∈ N∗
ES

= ∩j≥j0{m ∈ ES | cT jηm ∈ ST jηN}.
Write Θ = T η and let L = (cJ + I)⋆

ηu. Note that annES
L is the largest S[Θ; fη]-

submodule ofES contained in annES
cJ . Pick any positive integer j0 such that Θj0 Nil(ES/ annES

L) =

0.

An application of Proposition 5.3 shows that

N∗
ES

= ∩j≥j0{m ∈ ES | cΘjm ∈ Z}

is the pre-image of Nil(ES/ annES
L) in ES , and this is precisely annES

L♯u. �

One instance when the S-algebra F(ES) is generated by one element is when S is Goren-

stein, or more generally, when S is quasi-Gorenstein (i.e., ES ∼= HdimS
mS (S)) and satisfies

Serre’s S2 condition. This is the content of Example 3.6 in [LS]. However, the class of

quotients S of R for which the S-algebra F(ES) is generated by one element is strictly

larger than this. Consider the power series ring R = K[[a, b, c]], where K is a field of prime

characteristic p, its ideal I = (ab− bc, bc− b2, ac− bc)R = (a, b)R ∩ (c, b)R ∩ (a− c, b− c)R

and the one dimensional quotient S = R/I. We have a minimal resolution

0 → R2

0

B

B

B

B

@

b c

−a −c
−b −b

1

C

C

C

C

A

−−−−−−−−−−→ R3

„

ab− bc bc− b2 ac− bc
«

−−−−−−−−−−−−−−−−−−−−−−−−→ R→ S → 0

which shows that S is Cohen-Macaulay of type 2, hence non-Gorenstein and not quasi-

Gorenstein. For all primes p ≥ 5,

bp−1(b− c)p−1(a− b)p−1 ∈ (I [p] : I)

and a calculation with Macaulay2 shows that this element generates the S-module (I [p] :

I)/I [p] for all 5 ≤ p ≤ 97.

Corollary 5.6. Assume that S is equidimensional and quasi-Gorenstein and that it satisfies

Serre’s S2 condition. Let c ∈ R be such that its image in S is a test element for the pair

(0, ES). The test ideal of S is

annS 0∗ES
= ((Rc+ I)⋆u)

♯u
S.

Proof. The fact that S is quasi-Gorenstein and equidimensional implies that the finitistic

tight closure of 0 in ES coincides with 0∗ES
and hence the test ideal of S is annS 0∗ES

(cf. section 8 in [HH] and Proposition 3.3 in [Sm]). The fact that S satisfies Serre’s S2
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condition implies that the S-algebra F(ES) is generated by one element. Now the result

follows from Theorem 5.5 with J = R. �
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