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Abstract 

 

Atmospheric haze causes visibility to drop, therefore affecting data acquired using 

optical sensors on board remote sensing satellites. Haze modifies the spectral 

signatures of land cover classes and reduces classification accuracy so causing 

problems to users of remote sensing data. This paper addresses general concepts 

of haze removal from remote sensing data. Degradation of satellite data is caused 

by two key components, i.e. haze scattering and signal attenuation. In developing 

the concept, a statistical model that makes use both components is used. The 

former is represented by a weighted haze mean while the latter is represented by a 

haze randomness component that deals with the signal attenuation. The results 

show that haze scattering can be removed by subtracting an estimated weighted 

haze mean while signal attenuation can be removed by applying a spatial filter.  
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1 Introduction 
 

Haze modifies the spectral signatures of land classes [1], [8], [9], [16] and reduces 

classification accuracy [2], [18], [19] so causing problems to users of remote 
sensing data [6], [7]. Hence, we need to reduce the haze effects to improve the useful- 
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ness of the data [12]. In [10], we modelled hazy satellite data as 

          1 2

i i i O i iL V 1 V T L V H   + , where,  iL V , iT , iH ,    1

i V , 

   2

i V , OL  and V are the true signal component, the pure haze component, the 

signal attenuation factor, the haze weighting, the radiance scattered by the 

atmosphere and the visibility for band i . From this equation, it is clear that the 

degradation of hazy satellite data is caused by haze scattering and signal 

attenuation characterised by 
   2

i V  and    1

i V  respectively. Ideally, to reduce 

the haze effects and restore the surface information, we need to reduce the former 

so that 
   2

i iV H 0   and restore the latter so that     1

i i i1 V T T  . In 

practice, the effects of signal attenuation through 
   1

i V are not significant, so 

their removal is not important. On the other hand, the effects of 
   2

i iV H  is 

very significant; therefore, this paper is concerned mainly with 

reducing
   2

i iV H . Since the primary issue is to develop haze removal, we need 

to define physical processes for removing haze. Section 2 clarifies the concepts of 

haze removal and mathematically analyses these processes, and in Section 3, the 

haze removal methods are described.  

 

2 General Concepts of Haze Removal 
 

In [10], we developed a statistical model for hazy satellite data, which can be 

expressed as: 

 

          1 2

i i i O i iL V 1 V T L V H   +             (1) 

 

where , iT , , OL , 
   1

i V  and 
   2

i V  are the hazy dataset, the signal 

component, the pure haze component, the radiance scattered by the atmosphere, 

the signal attenuation factor and the haze weighting in satellite band , 

respectively. iH  can be expressed as:  

 

vi i iH H H=                 (2) 

 

Where iH   is the haze mean, which is assumed to be uniform within the image or 

sub-region of the image, and 
vi

H  is a zero-mean random variable corresponding 

to haze randomness. Hence: 

 

   
vi iVar H Var H                (3) 
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So Equation (1) can be written as: 

 

         
v

1 2

i i i O i i iL V 1 V T L V H H      
  

+            (4) 

 

In order to remove the haze effects [5], [6], [14], [15] we need to remove both the 

weighted haze mean    2

i iV H and the varying component    
v

2

i iV H and deal 

with the signal attenuation factor    1

i V .  

 

From [7], the effects of 
   1

i V to classification accuracy are not significant, so 

we will not consider their removal throughout the analysis. We normally do not 

have prior knowledge about 
   2

i iV H  therefore we need to estimate it from the 

hazy data itself. If the estimate is    2

i iV H , subtracting it from  iL V  yields: 

 

               

   

Z v

2 1 2

i i i i i i O i i i

2

i i

L V L V V H 1 V T L V H H

V H

         
  



+

 
       (5) 

 

Equation (5) becomes: 

 

                 
Z v

1 2 2 2

i i i i i i i i i OL V 1 V T V H V H V H L       
    

+         (6) 

 

where 
       2 2

i i i iV H V H  
  

 is the error associated with the difference 

between the ideal and estimated weighted haze mean. The haze randomness 

component 
   

v

2

i iV H can then be smoothed by applying a spatial filter:  

 

    Zi if V h L V                (7) 

 

where h is the filter function and  f̂ V  is the restored data. Note that this also 

smoothes the signal component; we will show later that filtering is only necessary 

for thick haze where the haze variability is much greater than the surface. For thin 

haze, the surface variability is much greater than the haze; filtering causes 

degradation to the surface and therefore is not required. 

 

In this paper, we consider three types of filter, viz. average, Gaussian and median.  

For the linear filters, such as the average and Gaussian filters, since 
   k

i V is 

assumed to be constant, we have: 
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    
             

       

               
     

Z

v

v

i linear i

1 2 2

i linear i linear i i i i

2

i linear i linear O

1 2 2

i linear i linear i i linear i i

2

i linear i O

f V h L V

1 β V h T h β V H β V H

β V h H h L

1 β V h T h β V H h β V H

β V h H L



            



    
 



+

+

        (8) 

 

Linear filters are usually normalised to 1 i.e the sum of the filter coefficients is 1; 

since the haze mean iH  is assumed to be constant, hence: 

 

                
     

v

1 2 2

i i linear i i i linear i i

2

i linear i O

f V 1 β V h T β V H h β V H

β V h H L

    
 



+
         (9) 

 

The median filter is non-linear, so this separation is not possible: 

 

    
           

   

Z

v

i Median i

1 2 2

i i i i i i

2

i i O

f V h L V

1 β V T β V H β V H
Median

β V H L



            
  

+        (10) 

 

For an ideal case where the haze mean is known exactly,        2 2

i i i iβ V H β V H , 

so the degraded data after subtracting the haze mean becomes: 

 

 
          

vZ ideal

1 2

i i i i i OL V 1 V T V H L   +          (11) 

 

Consequently, when using average and Gaussian filters, we have: 

 

 
 

 
  

           

Z ideal Z ideal

v

i linear i

1 2

i linear i i linear i O

f V h L V

1 V h T V h H L



    
 

+

        (12) 

 

but when using a median filter, the restored data becomes: 

 

 



 

Haze removal concept in remote sensing                                                             849 

 

 

 
 

 
  

        
Z ideal Z ideal

v

i Median i

1 2

i i i i O

f V h L V

Median 1 V T V H L



    
 

+

        (13) 

 

From Equation (12), it is clear that a linear filter filters not only the haze 

randomness 
vi

H , but also the surface information iT . For thin haze (i.e. small 

   1

i V and 
   2

i V ), filtering will cause degradation to iT . For thick haze, we 

have  big 
   1

i V and 
   2

i V ; the effect of filtering to  
vi

H is more significant 

than iT . Although  small, 
     1

i linear i1 V h T 
 

, the structure of   i  and C  

in iT  is still preserved and therefore will be useful for classification purpose [3], 

[4], [18]. 

 

For non-linear filters such as median filtering (Equation (13)), the filtering affects 

the linear summation of the signal and haze components as a whole, i.e. 
        v

1 2

i i i i OMedian 1 V T V H L   
 

+ . For thick haze, the input of median 

filtering is dominated by 
vi

H ; therefore, the effects of haze will be reduced to 

some extent. For thin haze, the input of the filtering dominated by iT ; therefore, 

degradation of surface occurs. 

 

Based on this analysis, haze removal consists of (a) estimating the haze mean 

from hazy data using (pseudo invariant features) PIFs, (b) subtracting the haze 

mean from the data in order to remove the haze path radiance and (c) applying 

spatial filtering in order to reduce the haze randomness within the data.  

 

3 Methods 
 

To test the haze removal procedures, we first make use of the simulated hazy 

datasets, for which the visibilities and values of 
   2

i iV H  are known. The 

assumptions are:  

 

(a) The haze is spatially uniform. 

(b) The haziness within the data is mainly associated with additive effects due to 

scattering from particles; therefore, most of the efforts done here are to deal 

with the haze scattering term 
   2

i iV H . 

(c) The multiplicative effects of haze (mainly due to absorption by smaller 

constituents) on land classification are not significant; therefore, we assume 

the effect of 
   1

i V  is negligible. 
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3.1 Estimation of Haze Mean Radiance 

 

In order to estimate    2

i iV H , we first need to establish relationships between 

the exact    2

i iV H  and the corresponding PIF radiances within the simulated 

hazy datasets for different levels of visibility. In equatorial countries such as 

Malaysia, only a small amount of variation occurs in bidirectional reflectance 

distribution function (BRDF) throughout a year, so their effects on the target 

radiance for different acquisition dates are assumed to be negligible. Variation in 

PIF spectral radiance from multi-date datasets is therefore assumed to be due to 

only atmospheric conditions, i.e. signal attenuation and haze scattering [5].  

 

The study area (Klang, Selangor) is located within a flat region, near the west 

coast of Malaysia. The PIF pixels are chosen from rooftops of terrace houses, 

which are not too high and covers about 44% of Malaysian houses [17]. The 

typical area of this type of houses is about 20 feet in wide and 70 feet in length, 

with built-up area of about 1200 square feet while the remaining area is garden. 

Most of these houses were built using clay bricks and have clay roof tiles [17]. 

The houses are usually built in rows that are separated by roads made of tarmac. 

Therefore, it is clear that most of the housing areas are covered with impervious 

surfaces and have very little vegetation; therefore are little affected by biological 

changes [11]. In sub urban region, such housing area normally surrounded by 

distinct features such as rubber and oil palm plantation. It is important to note that 

in order to minimised mixed pixel problem, the PIF should have at least a few 

pixels in size [13] so that measurement made from a satellite instantaneous field 

of view (IFOV) (i.e. 30 m by 30 m for Landsat) will not fall out of the chosen 

features. In practice mixed pixel problem in PIF is unavoidable, however, this was 

minimised because the objects within a single PIF pixel are mostly impervious 

surfaces (clay bricks and tiles and tarmac). A schematic diagram on what is in a 

PIF pixel is illustrated in Figure 1. 

 

  
(a) (b) 

 

Fig. 1: (a) A schematic diagram of a single PIF pixel and (b) Close-up of the pixel 

in (a) 
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For visibilities from 18 km to 2 km, ten PIFs that are distributed throughout the 

image were selected and their radiances were extracted. Figure 2 (a) shows 

Landsat bands 4, 5 and 3 assigned to red, green and blue channels from 11 

February 1999 for Klang, in Selangor, Malaysia. The white box indicates the 

location of the PIFs which are indicated by the red squares.  

Fig (b) shows the enlarged version of PIF number 7. The PIFs are selected from 

the rooftops of houses that have nearly constant radiances. It can be seen that the 

PIF consists of house rooftops and roads, with little vegetation. 

 

 

 
       (a)               (b) 

 

Fig. 2: (a) Landsat bands 5, 4 and 3 assigned to red, green and blue channels from 

11 February 1999 for Klang, in Selangor, Malaysia. (b) Enlarged version of PIF 

number 7 taken from Google Maps 

 

Scatterplots of 
   2

i iV H  versus the PIF radiance, for bands 1, 2, 3, 4, 5 and 7 are 

plotted in Figure 3. The PIF radiance values are indicated by ‘’. The PIF 

radiance increases steadily as 
   2

i iV H  gets larger (i.e. haze gets thicker) due to 

the increasing atmospheric effects (haze scattering and signal attenuation). Hence, 

by knowing the radiances of the PIF pixels, it is possible to predict the 

corresponding 
   2

i iV H . In order to do so, we carried out regression between 

   2

i iV H  and the PIF radiance. The solid curves in Figure 3 are the regression 

curves which represent the predicted 
   2

i iV H , i.e.    2

i iV H . It can be seen 

that the regression curves for all the bands have similar trends and therefore can 

be modelled by the same regression equation: 
     

i i

22

i 1 PIF PIFV H a L bL c    , 

where a, b, and c are the regression variables and 
iPIFL  is the PIF radiance for 

band i.  
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The regression variables, a, b, and c and the coefficient of determination, R2, are 

given in Table 1. Overall the R2 values are greater than 0.9, indicating a good fit 

between the regression curve and the data in all the bands. The estimated 

weighted haze mean radiance    2

i iV H  for visibilities 2 to 18 km, calculated 

using the regression equation, is given in Table 2. In this table, the ideal weighted 

haze mean radiance 
   2

i iV H  is also given for comparison. Bands with shorter 

wavelengths possess larger 
iPIFL  and

  
   2

i iV H
 
values due to the greater haze 

scattering than longer wavelengths. There is a sharper increase in 
iPIFL
 
in bands 

with shorter wavelengths (bands 1, 2 and 3) compared to those with longer 

wavelengths (bands 4, 5 and 7), indicated that the former are affected by haze 

while the later almost not being affected by haze. It is clear that bands with shorter 

wavelengths have larger 
iPIFL , therefore brighter PIFs, than clear or less hazy 

image. Bands with longer wavelengths have a somewhat constant 
iPIFL , indicating 

that haze has almost not effects on the PIFs.  
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Fig. 3: Regression analysis, of PIF radiance from the simulated hazy data 

against
   2

i iV H , for (a) band 1, (b) band 2, (c) band 3, (d) band 4, (e) band 5 

and (f) band 7. The corresponding regression equations are in Table 1. 

 

  

 

 

Table 1: Regression model to predict    2

i iV H  for bands 1, 2, 3, 4, 5, and 7; 

PIFL  is the PIF radiance 

 

Band Regression Model R2 

1      
1 1

22

1 1 PIF PIFV H 0.0023* L 0.7176*L 29.397       
0.9956 

2      
2 2

22

2 2 PIF PIFV H 0.0011* L 0.3771*L 13.103       
0.9539 

3      
3 3

2
2

3 3 PIF PIFV H 0.001* L 0.334*L 9.8765       
0.9395 

4      
4 4

22

4 4 PIF PIFV H 0.0041* L 0.3157*L 6.8741   
 

0.1827 

5      
5 5

2
2

5 5 PIF PIFV H 0.0046* L 0.0647*L 0.2629   
 

0.0788 

7      
7 7

2
2

7 7 PIF PIFV H 0.0028* L 0.0026*L 0.0021      
0.0826 
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Table.2: Comparison between 
   2

i iV H  (exact) and    2

i iV H  (estimated) 

 

Visibility 

(km) 

Weighted Haze Mean (W m-2 sr-1m-1) 

Band 1 

(0.49 m) 

Band 2  

(0.56 m) 

Band 3  

(0.66 m) 

Band 4  

(0.83 m) 

Band 5  

(1.67 m) 

Band 7  

(2.24 m) 

   2

1 1
V H     2

1 1
V H  

   2

2 2
V H     2

2 2
V H  

   2

3 3
V H     2

3 3
V H  

   2

4 4
V H     2

4 4
V H  

   2

5 5
V H     2

5 5
V H  

   2

7 7
V H     2

7 7
V H  

2 
23.4055 21.9717 16.8127 16.1936 12.7475 11.9776 6.4084 2.3435 0.3794 0.0896 0.0750 0.0213 

4 
11.9197 11.0431 8.0862 8.5720 5.7942 5.6754 2.6693 1.4052 0.1305 0.0713 0.0254 0.0173 

6 
7.1821 6.3763 4.6531 5.0435 3.1836 3.1571 1.3875 1.2908 0.0615 0.0667 0.0116 0.0161 

8 
4.6351 4.4832 2.9044 3.3441 1.9225 1.9730 0.8074 1.2678 0.0333 0.0647 0.0060 0.0156 

10 
3.0535 3.6924 1.8689 2.4140 1.2099 1.3165 0.4982 1.2685 0.0204 0.0636 0.0038 0.0153 

12 
2.0323 3.3734 1.2207 1.8537 0.7758 0.9081 0.3126 1.2755 0.0123 0.0629 0.0023 0.0151 

14 
1.3031 3.2689 0.7720 1.4922 0.4837 0.6338 0.1924 1.2838 0.0074 0.0623 0.0014 0.0149 

16 
0.7612 3.2674 0.4435 1.2460 0.2739 0.4393 0.1067 1.2919 0.0037 0.0620 0.0006 0.0149 

18 
0.3304 3.3163 0.1910 1.0708 0.1167 0.2946 0.0450 1.2993 0.0016 0.0617 0.0003 0.0147 
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4 Restoration of Surface Information Using Spatial Filtering 
 

After subtracting the estimated haze mean component, the haze noise within the 

image is expected to behave as a zero-mean random variable associated with haze 

randomness, 
   

v

2

i iV H  (see Equation (7)) (although errors in the haze mean 

estimate will cause a bias). If we assume the estimate of    2

i iV H  is good 

enough that 
 
 can be neglected, our concern now is to reduce    

v

2

i iV H  by using 

spatial filtering. Here, three types of filtering are considered, i.e. average, median 

and Gaussian. 

 

4.1 Average Filter 

The main advantages of average filtering are that it is simple, intuitive and easy to 

use, but still effective in reducing noise. Average filtering simply replaces each 

pixel value in an image with the average value of its neighbours, including itself. 

The average filter depends on the size of the window used, and the size can be 

increased to suit the severity of the haze.  

 

4.2 Gaussian Filter 

A continuous Gaussian filter has the form: 

 

 
 2 2

2

x y

2σ
g 2

1
h x, y e

2πσ

 

             (14) 

 

where x and y are distance from the origin in the horizontal and vertical direction 

respectively and  is the standard deviation of the Gaussian filter. In order to 

preserve the mean energy in the digital case, the form shown in Equation (14) is 

normalised by the sum of the filter coefficients, to give: 

 

 
 

 

g

NM
2 2

g
M Nr s

2 2

h r,s
h r,s

h r,s
  



 

            (15) 

 

During filtering, the centre pixel receives the heaviest weight, and pixels receive 

smaller weights as the distance from the window centre increases. We use built-in 

Gaussian filters in the ENVI image processing software, in which σ  is related to 

window size by 
M

σ
8

  for an M M  window. Plots of the 1-dimensional 

weighting distribution for 3 x 3, 5 x 5, 7 x 7, 11 x 11 and 21 x 21 window sizes 

are shown in Figure 4 and examples of filter windows for 3 x 3, 5 x 5 and 21 x 21 

are given in Figure 5. Note that the weighting of the centre location for a 3 x 3-

window is 0.9, which implies that the filtered image is likely to be very similar to  
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the original image. On the other hand, the 21 x 21-window gives much lower 

weighting across the filter (the highest is 0.02 and lowest is nearly 0) so is likely 

to resemble an average filter. 
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Fig. 4: Distribution of pixel weighting for 3 by 3, 5 by 5, 7 by 7, 11 by 11 and 21 

by 21 window sizes, of a Gaussian filter in 1-dimension 

 

 

 
  

(a) (b) (c) 

 

Fig. 5: Gaussian filter (a) 3 by 3, (b) 5 by 5 and (c) 21 by 21 but only part of 

centre cells 

 

4.3 Median Filter 

 

Median filtering is often used to remove noise from a degraded image and at the 

same time preserve edges. It replaces the central pixel with the median value in 

the window. A similar approach to that for average and Gaussian filtering is used 

to determine the best window size for a specific visibility. 

 

5 Conclusion 
 

In this paper, we have developed general haze removal concept based on a 

statistical model which consists of two critical components, the weighted haze 

mean and haze randomness. These components increase as visibility decreases  
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and therefore need to be dealt in order to remove haze.  Hence, the haze removal 

needs to undergo weighted haze mean estimation and subtraction, and spatial 

filtering.  
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