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Abstract: Construction of an artificial vascular network ready for its additive

manufacturing is an important task in tissue engineering. This paper presents a set

of simple mathematical algorithms for computer-aided design of complex three

dimensional vascular networks. Firstly various existing mathematical methods from

the literature are reviewed and simplified for the convenience of applications in tissue

engineering. This leads to a complete and step by step method for the construction

of an artificial vascular network. Secondly a systematic parametric study is presented

to illustrate how the various parameters in the vascular junction model affect the key

factors that have to be controlled when designing the bifurcation junctions of a

vascular network. These results are presented as a set of simple design rules and a

design map which service as a convenient guide for tissue engineering researchers

when constructing artificial vascular networks.

Keywords: additive manufacturing, 3D printing, vascular network design, bifurcation

junction, junction smoothing, tissue engineering
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Nomenclature

A A set contains all vertices iZ of a polygon hole

B Bi-normal unit vector in a Frenet frame

b Mb

max
C Maximum curvature of a bifurcation junction

maxC non-dimensionalised max
C

pD Parent vessel diameter

1dD Daughter vessel diameter

2dD Daughter vessel diameter

1dD non-dimensionlised 1dD

2dD non-dimensionlised 2dD

pd Definition shown in figure 4

1dd Definition shown in figure 4

2dd Definition shown in figure 4

pd Non-dimensionlised pd

1dd Non-dimensionlised 1dd

2dd Non-dimensionlised 2dd

F The weight function in the hole triangulation method

321
,, hhh Side length of a triangle

L Triangle perimeter

c
l =  od t 90,1S



321
l,l,l Boundaries of a curved bifurcation triangle

M Motion trajectories of a swept surface

N Normal unit vector in a Frenet frame

O Cubic Bezier matrix

bP Cubic Bezier points vector consisting of four control points

3210
,,, PPPP Four vectors of control points in a cubic Bezier curve

tQ Sweeping time vector in a cubic Bezier curve

1R Radius of a cross sectional contour when 0t

2R Radius of a cross sectional contour when 1t

r Radius of a cross sectional contour as a function of t

S A moving object used to construct a swept surface

S Triangle area

b
S A closed contour at position b

1dS A swept surface along trajectory 2l

Sweep A swept surface

s Arc length

T Tangent unit vector

t Sweeping time

iu Distance of iP 'iP (Refer to figure (2a))

21 ,, ddp uuu Control parameters

pv , 1dv , 2dv Unit vectors (Refer to figure (5))

iw Distance of 1iP and '
1iP (Refer to figure (2a))
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 Contribution factor of L in weight function F

 Triangle quality coefficient

total Bifurcation angle of a vascular branch

21, Bifurcation angle fractions



1. Introduction

Many clinical therapies utilise autologous and allografts to repair skin defects

resulting from genetic disorders, acute trauma, chronic wounds or surgical

interventions. Tissue engineering (TE) of skin is an emerging technology that offers

many potential advantages in repairing skin defects over conventional autologous

grafts [1]. It overcomes the shortage of donor organs and reduces the added cost

and complications of tissue harvesting. Tissue engineered skins can also be used as

in vitro skin equivalent for pharmaceutical or cosmetics testing, eliminating the need

for animal testing [2]. A major issue in tissue engineering is that the artificial skin may

not develop adequate vascularisation for long-term survival [3]. Vascular vessels

transport oxygen, nutrients and soluble factors to surrounding cells and tissues,

without which cells or tissue would die [4]. Bio-artificial vascularised skin is thus of a

great interest in tissue engineering. An artificial vascular system can be pre-

embedded in a skin equivalent before it is implanted. The artificial vascular vessels

not only provide nutrients and soluble factors to cells and tissues but also act as

scaffolds for culturing vascular endothelial cells. Additive Manufacturing (AM)

techniques, or 3D printing (3DP), produce physical objects directly from computer-

aided design (CAD) data in a layer-by-layer manner, and enable the manufacture of

very small artificial vascular vessels required in skin tissue engineering [5].

“Artificial vascularised scaffolds for 3D-tissue regeneration (ArtiVasc 3D)” is a large

project funded by the European Union’s Seventh Framework Programme that aims

to generate fully vascularised bioartificial skins. The work described in this paper is

part of ArtiVasc 3D. The vascular structure, to be manufactured by a combination of

micro-scale 3D printing (inkjet printing) or nano-scale stereolithography (multi-photon

polymerisation), will be embedded in the adipose layer of a skin equivalent to supply



nutrients and exchange waste [6]. In normal vasculature, around 98% of blood

vessels bifurcate at each junction, while only 2% trifurcate [7, 8]. Sharp apices at

junctions of bifurcated vessels need to be avoided because they are considered as

risk factors for local mechanical weakness [9]. Rounding (increasing the radius) the

apex at each junction can be one of the solutions. However, larger recirculation

areas of blood are found in bifurcation vessels with rounded apices compared with

sharp junctions [9]. Thus a careful design of the bifurcation junctions is necessary.

Firstly this paper presents a simplification and integration of existing mathematical

algorithms in the literature that can be conveniently used for modelling bifurcation

junctions in tissue engineering. Unlike applications for vascular medical imaging,

accurate replication of gross anatomy or patient specific anatomy is not required in

tissue engineering. It is therefore possible to choose a set of simple algorithms. A

parametric method is selected here that is free from generating bulges, self-

intersections, unwanted inner surfaces or Boolean operations. Three-dimensional

models of artificial vascular vessels generated using the method are ready to be

translated into the triangular faceted STL (stereolithography) data file that drives the

AM processes [10]. Secondly and more importantly this paper presents a systematic

understanding in how the various parameters in the parametric model affect some of

the key factors that have to be controlled when designing the bifurcation junctions.

The study focuses on two key factors - the volume and maximum curvature of the

junctions. The volume of the junction is important because an increased volume of

the junction will cause larger local recirculation of blood [11, 12]. The maximum

curvature is important because a high curvature generates high stress concentration

and is considered as a mechanical risk. Furthermore the max curvature is the most

important factor that influences the wall shear stress (WSS) [9, 12]. The value range



of maximum curvature at the apex is, however, very important and needs to be

controlled carefully for certain applications. The paper presents a general design

guide for constructing artificial vascular networks not only for skins but also for any

other engineered tissues.

2. Method for modelling vascular structures

Modelling vascular structure has been an active field of research. Computer

visualization of vascular structure plays a critical role in the diagnosis of vascular

diseases, such as stenosis and aneurysm [12-14]. Computational fluids dynamics to

study blood flow behaviour has to be based on accurate modelling of local vascular

geometries [11, 12, 14-16]. Computer modelling of vascular bifurcation can be

achieved in three ways: 1) skeleton based implicit surfaces [17-19], 2) blending

objects obtained by canal surfaces [20, 21], and 3) sweeping disks or spheres along

curve [18, 22, 23]. Unwanted inner self-intersecting surfaces and gaps may appear

when sweeping full disks or spheres [18]. Implicit surface modelling can be used to

address this problem as demonstrated by several researchers [17, 20, 25, 26].

However, Bulge problems are common when applying implicit surfaces to blend

overlapping fields [17, 24-26]. Several strategies have been proposed to suppress

them [17, 20, 24, 27], which increase the complexity of the model. The other two

methods are usually used as a combined technique. Zakaria H et al [28] reported a

three parameter model for constructing junctions of vascular network. Their method

involves Boolean operations. A more general approach has been developed for

blending canal surfaces by Krasauskas [21] using Pythagorean normal surfaces and

by Bastl et al. [29] using a polyhedral medial structure. On the other hand, Cai et al,

[22, 23] proposed a relatively simple method based on surface sweeping techniques.



When blending canal surfaces, there is a major difference between applications in

medical imaging and those in the design of artificial vascular network. In medical

imaging, every details of the vascular geometry have to be captured accurately. In

tissue engineering, on the other hand, one only needs to control some key factors

when designing an artificial vascular network. It is therefore possible to select a

simple method for the convenience of tissue engineering researchers. In this work

the surface sweeping technique by Cai et al.[22, 23] is adopted. Cai et al. [22, 23]

devised an algorithm to ensure cross-boundary tangential continuity when filling the

holes left by the sweeping operation. This step complicates the modelling and is

unnecessary for the purpose of designing an artificial vascular network. Here a

simplified algorithm is presented with sufficient details for its full understanding.

2.1 Sweeping a single tube

Sweeping an object along a trajectory to obtain a solid surface or solid volume

requires a moving object S and a motion trajectory M [30]. Equation (1) denotes a

swept surface [30]:


Mb

b
SMSSweep



)on( (1)

where S represents the moving object, M is the motion trajectories and b
S

represents S positioned at position b. The moving object S used to form vascular

tubular vessels is a closed cross sectional contour. It can be either a fixed contour or

a changing one from one shape to another along the trajectories. In the design of

artificial vascular vessels, it is acceptable to assume S as a perfect circular contour.

Linear interpolation is used to describe the varying radius of S alongM , i.e. we

have



    tRtRtr 21 1  (2)

where  1,0t along M is the sweeping time,
1R is the radius of the cross sectional

contour when 0t while
2R is that when 1t .

Figure 1. Schematic diagram of a swept surface with a moving object S and a motion

trajectoryM; t is the sweeping time.

Figure 1 illustrates schematically a sweeping surface created by moving S alongM .

By using the Frenet-Serret frame or TNB frame,  tS and  tM can be expressed by

equation (3):

   tt PM 

          tttRtRtt BNPS  sincos)1(, 21  (3)

where  tP is a curve in Euclidean space, representing the position vector of a

particle as a function of time. In this paper, it is also used to represent the centre

point position vector of a closed contour.  tT ,  tN and  tB are tangent, normal and

bi-normal unit vectors of  tP , respectively [31].  is the angle that parameterizes a

circle in the BN, frame. By substituting equation (3) into equation (1), an expression



for a swept surface as a function of t and  can be obtained. By definition,T , N

and B are given by

ds

dP
T  ,

ds

d
ds

d

T

T

N  , NTB  , (4)

where s represents the arc length along curve P . A cubic Bezier curve is used to

represent the trajectories M which is controlled by four points: ,,,
210

PPP and
3

P .

Thus curve P can be written as a function of ,,,
210

PPP
3

P and t such that

a

T
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A constant time step t does not give a constant arc-length for the Bezier curves of

equation (5). Obtaining a uniform arc-length is important not only in a discretization

process of a Bezier curve but also in the later triangulation section. Here Simpson

integration and Newton methods are used to adjust t for each time step to

guarantee a uniform arc-length discretization.



(a)

(b)

Figure 2. Variable definitions of a) cubic Bezier curve; and b) a cloud point of a swept

surface.



Figure 2 illustrates the steps of constructing a single tubular vessel from a known set

of four points of 1i-P , iP , 1iP and 2iP . Here iP and 1iP are the start and end points

respectively of a Bezier trajectory while 1i-P and 2iP are used to derive unit vectors

of iv and 1iv following the expressions given by equation (7):
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The unit vectors iv and 1iv are used to guarantee 1
G continuity. To form a cubic

Bezier curve, two intermediate points 'iP and '
1iP need to be generated. Their

positions are determined by the unit vectors iv and 1iv and two controlled

parameters
iu and

iw . Here
iu and

iw are distances between iP and 'iP , and 1iP

and '
1iP , respectively. All the notations are shown in figure 2(a). aP , representing a

control set with four vertices from equation (6), is therefore formed. A single tube

swept surface represented by cloud points, obtained using equations (3) to (6), is

shown in figure 2(b).



Figure 3. A swept surface by sweeping a changing circular cross sectional contour

along a cubic Bezier developed in figure 2(b) using a linear interpolation method

provided in equation (2).

Figure 3 shows a swept surface using varied radius: radius of the moving circle

reduces from 0.35mm to 0.1mm following the linear interpolation of equation (2).

2.2 Construction of the branch junctions

Designing a bifurcation junction involves the following steps:

2.2.1 Finding a bifurcation triangle for the junction

A bifurcation junction contains a parent vessel, two daughter vessels and a

bifurcation point. Assuming the parent vessel diameter is known, contour diameters

of two daughter vessels can be obtained from Murray’s law [32]. Central spine lines,

diameters of the parent vessel and its two daughter vessels as well as the bifurcation

point are shown in figure 4.

Figure 4. A schematic diagram for a bifurcation junction and variable definitions.

In the figure,
PD ,

1dD and
2dD are diameters of the parent vessel and two daughter

vessels respectively. bP is the bifurcation point from which a parent vessel sprouts



into its two daughter vessels.
1 and

2 are the bifurcation angles for the two

daughter vessels. The three vertices ( pP , 1dP and 2dP ) of the junction triangles can

be defined by their distances to bP , i.e. we have bppd PP , bddd PP
11

 and

bddd PP
22

 . The planar triangle 21 ddp PPP is referred to as a straight bifurcation

triangle. Murray’s law [32] dictates that

3

2

3

1

3

ddP DDD  (8)

2.2.2 Establishing cubic Bezier curves for the bifurcation triangle

Three cubic Bezier curves are used to reconstruct the straight bifurcation triangle

into its 3D curved counterpart. These three curves will be used as the trajectories of

the three swept surfaces. Figure 5 shows the bifurcation triangle 21 ddp PPP and its

corresponding unit vectors
pv ,

1dv and
2dv .

Figure 5. A bifurcation triangle
21 ddp PPP , corresponding unit vectors:

pv ,
1dv and

2dv ,

three control points:
pQ ,

1dQ and
2dQ , and bifurcation angles:

1 and
2 .



Recall that constructing a cubic Bezier curve requires four points: 11
,',',  iiii PPPP ,

in which iP and 1iP are start and end points, 'iP and '
1iP are control points

respectively (figure 2(a)). 'iP and '
1iP are dependent on controlled parameters

iu

and
iw , and direction vectors iv and 1iv . In a straight bifurcation triangle, three cubic

Bezier curves can be generated: 1l , 2l and 3l , based on control points
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. Three control points 21,, ddp QQQ displayed in figure 5 are calculated

based on unit vectors
21,, ddp vvv and three control parameters 21 ,, ddp uuu , each of

which varies from 0 to 1. Therefore we have:

bpppp u PPPQ  , bdddd u PPPQ
1111

 , bdddd u PPPQ
2222

 . (9)

Despite the straight bifurcation triangle is strictly planar, the bifurcation curved

triangle may not be planar because unit vectors
21,, ddp vvv can be non-planar.



Figure 6. Curved bifurcation triangles (
321 ,, lll ) representing by cubic Bezier curves

with different sets of control parameters: from outer triangle to inner triangles,

values of control parameters, in turn, are 021  ddp uuu , 3.021  ddp uuu ,

7.021  ddp uuu , and 0.121  ddp uuu .

Figure 6 shows a set of bifurcation triangles with initial vertices at )0,0,1(pP ,

)0,2,2(1dP , )0,2,0(2dP and a bifurcation point at )0,1,1(bP . The four sets of cubic Bezier

curves are obtained using different control parameters. Setting 121  ddp uuu

yields a curved triangle with minimal area and maximum curvature of each edge.

The maximum curvature always occurs on
c
l because of the limited range of the

bifurcation angle in vascular bifurcation networks [9].

2.2.3. Constructing bifurcation junctions

Cai et al, [22] introduced a semi-tubular sweeping method for constructing junctions

where three canal surfaces meet together. In this method, only a half disk of each

cross sectional contour is swept along three trajectories to form the outer surface of

a junction, thus avoiding any overlapping, self-intersecting or unwanted inner

surfaces. Figure 7 shows a bifurcation junction obtained using this method. Cai et al.

[22] further proposed an algorithm to fill the two polygon holes left after the sweeping

step.



Figure 7. The swept semi-tubular bifurcation junction.

In particular their method ensures the cross-boundary tangential continuity between

the hole filling patches and outer surface of the tubes. This step is rather complicated

for tissue engineering researchers. The issue of cross-boundary tangential continuity

is not significant in the practical applications for artificial vascular network. This will

be demonstrated using examples in the later part of this paper. We therefore

propose to use a simple triangulation method [33, 34] for the hole filling step. This

method also has the advantage of being consistent with the triangulation data

structure used by the STL file that drives additive manufacturing.

Triangulation is a standard meshing technique that uses a set of small triangles to

fill up a surface area with predefined boundaries. Very long and narrow triangles are

problematic in subsequent operations [33]. Several algorithms are available that

optimizes some measure of quality of the mesh [33, 34]. We chose a non-

dimensional parameter  to measure the quality of the triangles which is defined as

2

3

2

2

2

1

34

hhh

S


 , (10)

in which S is the triangle area and 1h , 2h and 3h are the side lengths of a triangle.

For an equilateral triangle (the best) 1 and for other triangles  is in the range of



]1,0( . Long and narrow (bad) triangles have smaller values of  . To construct a

mesh with high values of  , a weight function F is defined on each triangle such

that

LSF  , (11)

in which L is the perimeter of a triangle and  is empirical weighting factor. A small

value of  less than 0.02 is sufficient to ensure good mesh quality. The triangulation

problem thus becomes to find a triangulation mesh that minimizes the total sum of

F over its triangles [33].

Figure 8. A polygon hole filling of a planar hole 01.0 , 5494.0 .



Figure 8 shows an example for filling a planar hole using 01.0 . The average

values of  is 0.5494 with most of the triangle having  > 0.5.

Figure 9. A polygon hole filling of a non-planar hole 01.0 , 5789.0 .

Figure 9 shows an example of filling a non-planar hole with 01.0 . The average

values of  is 0.5789.

2.2.4. Wall thickness generation

Generating the wall thickness can be easily achieved by generating two surface

models with different parent diameters:
PD and ness)wall_thick(PD . Daughter

vessels’ wall thicknesses can be obtained by applying two diameters as well. There

are two ways to calculate the outer diameters of daughter vessels which are

expressed by:



2

)nesswall_thick(
3

3 
 P

d

D
D , (12)

and

 3
3
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2
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 P

d

D
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Equation (12) gives a non-uniform wall thickness using which the whole networks

have different wall thicknesses at each branching level while equation (13) generates

uniform wall thickness for the whole networks. In practice, variational wall thickness

(equation (12)) always applies.

2.3 Translating the models to STL files

The STL (StereoLithography) file format is the de-facto standard for additive

manufacturing [10]. It is a surface representation of solid models and generated by

using a large number of triangles. STL is a linear approximation of a smooth surface,

therefore when translating from a given smooth curved surface to a STL file format,

approximation always occurs. The mathematical methods described in the previous

sections generate two types of data: smooth surfaces of the three semi-swept tubes

and the polygon holes represented by triangles. The latter can be translated into STL

file format simply by reordering the three vertices using the right-hand rule and

calculating the unit facet normal for each triangle. In order to translate the former to

STL file format, one can stitch discretization points on matching borders to form

ordered triangles which is fully described in ref [34]. Figure 10 provides an example

of a STL mesh translated from the surface model.



Figure 10. A STL mesh of a bifurcation junction designed using the parametric model.

3. Design of bifurcation junction

It is widely recognized that local geometries of a vascular bifurcation, such as

bifurcation angles, junction curvatures and branching, are major features of the

arterial system [14, 35]. Previous work [15, 16, 35] have identified that the vascular

WSS has a major effect on the formation of haemodynamic diseases, such as

atherosclerotic lesions and Saccular aneurysms although an exact relationship is still

uncertain. The maximum curvature of the junction is the most important factor that

influences WSS. High curvature also leads to stress concentration which weakens

the system mechanically [9, 15, 16, 35]. The volume of the junction is another

important factor in haemodynamics [11, 12]. A too large volume leads to local

recirculation of the blood [11, 12]. The basic principle for a good junction design is

therefore to ensure that the volume remains in a desired narrow range while limiting



the maximum curvature. The exact range and limit depend on specific applications.

All the parameters in the model have an effect on the volume V and the maximum

curvature maxC . It is convenient to normalise these parameters using the parent

vessel diameter pD such that
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It is further defined that

21  total , (17)

),max(

),min(

21

21


  , (18)

2

1

d

d

D

D
 (19)

and
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d
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d
 . (20)

Thus, there are nine non-dimensional parameters, including total ,  ,  ,  , pd , 1dd +

2dd , pu , 1du , and 2du , that determine maxC and V . In this section a systematic



parametric study is carried out to establish a set of simple rules to achieve a balance

between V and maxC . A parametric map, which can be used as a guide for designers,

is provided based on the parametric study.

3.1. Parametric analysis and design rules

Figure 11. A maxC -V map for random parameters. .

Figure 11 shows maxC and V calculated using a random set of parameters for three

bifurcation angles of 
30total ,


50total , and 

85total . The numerical results seem

to suggest that there is no general correlation between maxC and V . However

detailed analysis reveals some simple trends on how the model parameters affect

the values of maxC and V . Because
2

1

d

d

D

D
 , it is natural to use






1

2

1 
d

d

d

d
. (21)

Table 1 presented cases for fixed values of total = 85 and  =1. It can be observed

from table 1 that maxC is insensitive to varying the values of  , pu and pd . This

observation is also true for cases of other values of total and  which are not shown

in the Table. It is recommended that fixed values are assigned to pu and pd while

10  is used for different applications. This leads to the first simple rule of design:

 one can use values of 10  , pu =1, pd =2 and



1

 for all applications.

Table 1. Values of maxC and V calculated using different values of the model

parameters, total = 85 ,  =1 and  =1

Case

NO.


pd 21 dd dd  pu 1du 2du maxC V

1

1 3 6 1

0.25 6.570 9.1

2 0.3 5.430 8.9

3 0.4 1.238 8.3

4 0.5 0.537 7.8

5 0.6 0.532 7.3

6 0.7 0.778 6.9

7 0.8 1.163 6.5

8 1 3.338 5.7

9 0.8 0.5 0.525 8.5

10 0.85 0.535 0.778 6.9

11 1 0.59 1.163 6.5

12

16

1

3 6 1 0.6

0.532 7.0

13

14

3
0.532 7.15



14

11

6
0.532 7.32

15

1

1

6

1

0.6

0.532 5.5

16 1.5 0.532 6.15

17 2 0.532 6.33

18 2 0.7 0.532 6.69

19 2 0.5 0.532 6.94

20 2 0.3 0.532 7.19

21 2 10 1 0.6 0.295 11.4

22 2 8 1 0.6 0.379 8.70

23 2 4 1 0.6 0.893 4.29

24 2 3.5 1 0.6 1.075 3.84

25 2 3 1 0.6 1.35 3.40

26 2 2 1 0.6 2.765 2.6

Next we focus on cases 1-8 for which only 1du (set as equal to 2du ) is varied.

Their corresponding maxC and V are plotted in figure 12.

Figure 12. A maxC - V plots for cases 1 to 8.



It can be observed that as 1du is reduced, maxC firstly reduces as V increases from

cases 8 to 5 and then increases from cases 4 to 1. The increase of maxC

corresponding to an increasing V is against common sense.

Figure 13. Bifurcation junctions designed by the parametric model using different

parameters: case 1, case 5 and case 8.

Figure 13 shows the actual junctions of cases 1, 5 and 8. The locations of maximum

curvature are pointed out using the arrows. The figure shows that the maximum

curvature for case 1 occurs at the connecting parts between the junction and the rest

of the vessel. The same is true for cases 2, 3 and 4. This is because when very

small values of 1du and 2du are used, the two control points on the Bezier curve 2l

are very close to the two end points giving limited lengths for 2l to change its tangent

value from one end to another. These are obviously bad designs and should be ruled

out as indicated in figure 12. This leads to the second simple rule of design:

 one should always avoid using small values for both 1du and 2du , less

than 0.6 for 
85total , for example.



Figure 14 plots maxC versus V for cases 17, 21, 22, 23, 24, 25, and 26 in Table 1.

In these cases all the parameters are fixed except for 21 dd dd  .

Figure 14. maxC -V plots for cases 17, 21, 22, 23, 24, 25, and 26.

The values of 21 dd dd  increases from 2 for case 26 to 10 for case 21. It can be

observed that both maxC versus V are sensitive to the values of 21 dd dd  . Not

shown in the figure, V is nearly linearly proportional to 21 dd dd  with 9936.0
2 R .

Figure 14 also suggests that 21 dd dd  should be less than 6 (corresponding case 17)

beyond which a larger volume does not lead to significant reduction in maxC . On the

other hand, 21 dd dd  should also be larger than 4, to avoid the large maxC as shown

on the left side of the figure. This is because the Bezier curve 2l has insufficient

length to change its curvature from one end to another moderately if 21 dd dd  is less



than 4. This is also true for other values of total and  . It is therefore recommended

to use 621  dd dd . We therefore have the third simple design rule

 one should use 621  dd dd for all applications.

Using the above three simple rules, it is then convenient to manipulate the values of

1du and 2du in the junction design in order to achieve a targeted set of values of maxC

and V . Our numerical study shows that V is not over-sensitive to the change in 1du

and 2du while maxC is rather sensitive to the change in 1du and 2du . 1du and 2du are

therefore good design variables because they allow one to select desired maxC within

keeping V within a narrow range. This leads to the fourth simple design rule

 one should use 1du and 2du as the fundamental design variable in order

to achieve a targeted maximum curvature while keeping the junction

volume within a narrow range.

3.2. The parametric map and an application

If we exclude the cases for which the maximum curvature occurs at the connecting

part between the junction and rest of the vessel from Table 1, then the maxC versus V

plot follows a clear trend that an increasing volume leads to a decreasing curvature

as shown in figure 14. This is in strong contrast to Figure 11.



Figure. maxC -V plots for different bifurcation angles: 
45total , 

60total , 
70total

and 
85total .

Figure 15 shows the calculated maxC versus V using these exclusions for four

different values of total and a fixing value of 1 . Unlike in figure 14, 21 dd dd  is set

as 6 and all the simple design rules are implemented in figure 15. 1du and 2du are

used as the fundamental design variables while  is also varied as the secondary

design variable. For each bifurcation angle, total , one dashed line and one solid line

are plotted reflecting a band corresponding to different values of  . The band is

rather narrow showing the insensitivity to  . Figure 15 can be used as a design

guide to find the possible combinations of maxC and V . Figure 16 shows the same

plot but for a full range of values of total .



(a)

(b)



Figure 16. A generalised parametric map: (a) the upper limit, and (b) the lower limit.

Figure 16 (a) show the upper limit (corresponding to the solid line in Fig.15) while

Figure 16 (b) shows the lower limit (corresponding to the dash line in Fig. 15). The

colour bars indicate the total bifurcation angles total .

Figure 17. A fractal vascular model using the parametric bifurcation model.



Figure 18. The flow chart for a fractal vascular tree design.

An application of using the parametric junction model is shown in figure 17 according

to the flow chart shown in figure 18. Using the parametric map of figure 16, one can

easily find a desired pair of maxC and V to design a bifurcation junction. Its

corresponding model parameters can be obtained according to the simple design

rules. An error free STL file is generated from the parametric model for this

application which is checked and verified by Magics®. The result shows that

approximately 7000 extra triangles in an output STL file of rounded network are

created while the original vascular network yields around 30000 triangles, using a

very fine mesh.



4. Concluding remarks

AM techniques play an important part in the field of tissue engineering. It enables the

manufacture of complex three dimensional scaffolds or bifurcation vascular networks

with controllable geometries. In this paper, we introduce simplifications and

integrations of existing mathematical algorithms in the literature that can be

conveniently used for modelling bifurcation junctions in tissue engineering. The

simplicity of the model enables a focus on key experimental variables, the maximum

curvature and the volume of the bifurcation, required by researchers e.g. for the

ArtiVasc 3D project. In the parametric analysis, nine parameters were identified and

non-dimensionlised which would affect both the maximum curvature and the volume

of the junction. Four simple design rules were obtained from these studies, following

which, a maximum curvature – volume map was presented. Applying this map, a

suitable curvature at the apex and its corresponding volume can be achieved. The

work presented in this paper therefore outlined a simple algorithm for modelling the

bifurcation junctions and provided a simple set of rules and guide on how to choose

the parameters in the model.
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Figure captions

Figure 1. Schematic diagram of a swept surface with a moving object S and a motion

trajectoryM; t is the sweeping time.

Figure 2. Variable definitions of a) cubic Bezier curve; and b) a cloud point of a swept

surface.

Figure 3. A swept surface by sweeping a changing circular cross sectional contour

along a cubic Bezier developed in figure 2(b) using a linear interpolation method

provided in equation (2).

Figure 4. A schematic diagram for a bifurcation junction and variable definitions.

Figure 5. A bifurcation triangle
21 ddp PPP , corresponding unit vectors:

pv ,
1dv and

2dv ,

three control points:
pQ ,

1dQ and
2dQ , and bifurcation angles:

1 and
2 .

Figure 6. Curved bifurcation triangles (
321 ,, lll ) representing by cubic Bezier curves

with different sets of control parameters: from outer triangle to inner triangles,

values of control parameters, in turn, are 021  ddp uuu , 3.021  ddp uuu ,

7.021  ddp uuu , and 0.121  ddp uuu .

Figure 7. The swept semi-tubular bifurcation junction.

Figure 8. A polygon hole filling of a planar hole 01.0 , 5494.0 .

Figure 9. A polygon hole filling of a non-planar hole 01.0 , 5789.0 .

Figure 10. A STL mesh of a bifurcation junction designed using the parametric model.

Figure 11. A maxC -V map for random parameters. .



Figure 12. A maxC - V plots for cases 1 to 8.

Figure 13. Bifurcation junctions designed by the parametric model using different

parameters: case 1, case 5 and case 8.

Figure 14. maxC -V plots for cases 17, 21, 22, 23, 24, 25, and 26.

Figure 15. maxC -V plots for different bifurcation angles: 
45total , 

60total ,


70total and 

85total .

Figure 16. A generalised parametric map: (a) the upper limit, and (b) the lower limit.

Figure 17. A fractal vascular model using the parametric bifurcation model.

Figure 18. The flow chart for a fractal vascular tree design.


