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Exercise performance depends on an integrated organ3system response, each subject to 

differential age3associated decline. 

 

#�����$��������	

Richard Casaburi, Ph.D, MD. 

Rehabilitation Clinical Trials Center 

Los Angeles Biomedical Research Institute at Harbor3UCLA Medical Center 

1124 W Carson St. Torrance, CA 90502, USA 

Tel: 310 22238200 

Fax: 310 22238249 

e3mail: casaburi@ucla.edu  



2 

 


����
��	

This review provides a pulmonary3focused description of the age3associated changes in 

the integrative physiology of exercise, including how declining lung function plays a role 

in promoting multimorbidity in the elderly through limitation of physical function. We 

outline the ageing of physiologic systems supporting endurance activity: 1) coupling of 

muscle metabolism to mechanical power output; 2) gas transport between muscle 

capillary and mitochondria; 3) matching of muscle blood flow to its requirement; 4) 

oxygen and carbon dioxide carrying capacity of the blood; 5) cardiac output; 6) 

pulmonary vascular function; 7)	pulmonary oxygen transport; 8) control of ventilation; 9) 

pulmonary mechanics and respiratory muscle function. Deterioration in function occurs 

in many of these systems in healthy ageing. Between the ages of 25 and 80 pulmonary 

function and aerobic capacity each decline by ~40%. While the predominant factor 

limiting exercise in the elderly likely resides within the function of the muscles of 

ambulation, muscle function is (at least partially) rescued by exercise training. The age3

associated decline in pulmonary function, however, is not recovered by training. Thus, 

loss in pulmonary function may lead to ventilatory limitation in exercise in active elderly, 

limiting the ability to accrue the health benefits of physical activity into senescence.  
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ATP adenosine triphosphate 

CO2  carbon dioxide 

DLCO diffusing capacity of the lung for carbon monoxide  

�V̇O2/�power output  the change in oxygen uptake for a given change in power output 

EELV end expiratory lung volume 

FEV1 forced expiratory volume in one second 

FVC forced vital capacity  

IC inspiratory capacity 

IRV inspiratory reserve volume 

LT  lactate threshold 

LV  left ventricle 

MVV maximal voluntary ventilation 

NO nitric oxide 

O2 oxygen 

P50 the oxygen partial pressure at which haemoglobin is half 

saturated 

PA pulmonary artery 

PA3aO2 alveolar to arterial oxygen partial pressure difference  

PaCO2 arterial carbon dioxide partial pressure 

PaO2 arterial oxygen partial pressure 

PCr phosphocreatine 

pHa arterial pH 
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PO2 oxygen partial pressure 

Q̇/V̇O2 ratio of perfusion to oxygen uptake 

TLC total lung capacity 

V̇A/Q̇ ventilation to perfusion ratio  

V̇CO2 carbon dioxide output 

VD/VT deadspace to tidal volume ratio  

V̇E minute ventilation 

V̇E/V̇CO2 ventilatory equivalent for carbon dioxide output 

VT tidal volume 

V̇O2 oxygen uptake  

V̇O2peak/max peak oxygen uptake in a symptom limited exercise 

test/maximum oxygen uptake or aerobic capacity  
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Human ageing is a condition satisfying four principles: it is intrinsic, universal, 

progressive, and usually detrimental to the host.[1] The proportion of the world's 

population over 60 years increased from 9.2% in 1990 to 11.7% in 2013 and is projected 

to be 21.1%, or 2 billion people, by 2050.[2] Ageing is associated with loss of physical 

function. The complex interplay between age3associated reduction in habitual physical 

activity and intrinsic ageing processes complicates interpretation of the aetiology of 

physical function decline. Nevertheless, that physical inactivity is a primary cause of 

most chronic diseases[3] means that ability to maintain physical function into older age is 

vital to extend the time lived in optimal health: the ‘healthspan’.[4] Increasing older 

adults’ healthspan could dramatically lessen the individual and societal impact of an 

ageing population. Indeed, prevalence of multimorbidity (two or more long3term 

disorders) is much greater in the elderly: present in 65% of individuals aged 65384, and 

82% of people above 85 years old.[5] This review will explore contributors to exercise 

limitation in senescence, with a special focus on the lung. 

 

Muscular exercise poses a systemic stress to homeostasis that demands an integrated 

multi3organ response. While physical activity was a key evolutionary stressor that 

contributed to shaping structure and function of human organ systems, prevalence of both 

chronic inactivity and increasing longevity poses a new challenge for the modern human 

to meet systemic demands of exercise into old age. Poor performance on cycle, treadmill 

or endurance walking tests in old age indicates proximity to future health decline.[6] This 

suggests a fundamental connection between aerobic capacity (V̇O2max) and longevity. 
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Animal studies of artificial selective breeding for running capacity show that high V̇O2max 

is associated with an ~25% survival increase, lower mean arterial pressure, circulating 

cholesterol and triglycerides, and increased glucose tolerance, among many other health3

associated effects.[7] Interestingly, while the lung is often touted as ‘overbuilt’ for 

exercise, selective breeding for aerobic capacity hints otherwise. Allometrically scaled 

lung volume is greater in rats bred for high V̇O2max while, at maximal exercise, alveolar 

ventilation and effective pulmonary diffusing capacity are greater, and arterial CO2 

partial pressure (PaCO2) and pulmonary vascular resistance are less than in rats bred for 

low V̇O2max.[8] These findings support case reports in humans that supra3normal 

pulmonary function is required to allow adequate breathing reserve for youthful V̇O2max 

maintenance into old age.[9] 

 

V̇O2max declines with age (Fig 1a).[10313] This is likely related, in part, to physical 

inactivity co3incident with advancing age: octogenarian endurance athletes can maintain 

V̇O2max close to the median of those 40 years younger (38 mL.min
31

.kg
31

)[14] and in some 

cases younger still (50 mL.min
31

.kg
31

).[9] Nevertheless, cross3sectional studies suggest 

that V̇O2max declines with a rate between 0.2 to 0.5 mL.min
31

.kg
31

.year
31

 (~0.5% per year) 

after the age of 30, while longitudinal studies suggest that V̇O2max decline may accelerate 

after ages 40350.[10, 15] The 810 healthy men and women studied in the Baltimore 

Longitudinal Study of Ageing between 1978 and 1998 (median follow3up 7.9 years) 

revealed that V̇O2max decline accelerated from ~0.330.6% per year in the 20330s decade, 

to >2% per year in septuagenarians and beyond, even when scaled to fat free mass.[10] 

Aetiology of accelerated loss in older age is multifactorial, and may be consequent to 
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greater rate of decline in stroke volume and muscle O2 extraction after 50 years of 

age[15318], compared with relatively linear, and smaller magnitude, decline in maximal 

heart rate.[10] Despite accelerated V̇O2max decline in older age, greater habitual physical 

activity at any age is accompanied by greater V̇O2max.[10, 14] Even in octogenarians, 

habitual endurance exercise is associated with greater muscle oxidative capacity and 

expression of transcription factors associated with mitochondrial biogenesis.[14] Thus, 

maintaining physical activity in older age is associated with greater central (cardiac 

output) and peripheral (muscle O2 extraction) capacity compared with sedentary 

senescence.  

 

The lactate threshold (LT) also declines with age.[19, 20] Cross3sectional studies suggest 

that LT decline (both in absolute terms, and relative to mass) is less rapid than V̇O2max, 

such that LT/ V̇O2max in untrained subjects increases from ~40350% in youth to ~55370% 

in septuagenarians; an effect that may be more pronounced in women than men.  

 

Pulmonary function, however, does not respond to exercise training.[21] Therefore, age3

related decline in pulmonary function (Fig 1b) may become an increasingly important 

limiting factor for physical activity and V̇O2max in the elderly. Inevitable loss in lung 

elastic recoil associated with ageing leads to pulmonary mechanics alterations and a 

tendency to ventilatory limitation in older individuals. In most elderly subjects, physical 

activity decline may be considered protective against development of exertional 

symptoms and exercise limitation. However, typical lifelong pulmonary function and 

V̇O2max declines are roughly proportional (Fig 1), meaning that ventilatory limitation may 
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become more noticeable in elderly who maintain high levels of physical activity. 

 

In order to appropriately interpret constraints that the ageing lung may pose for physical 

function, systemic adaptations associated with older age also demand consideration. 

Systemic integration of physiologic mechanisms underlying exercise response was 

described by Wasserman et al. in 1967 (Fig 2).[22] Physiologic systems directly involved 

in the response to maximal aerobic exercise include: 1)coupling of muscle metabolism to 

mechanical power output; 2)gas transport between muscle capillary and mitochondria; 

3)matching of muscle blood flow to its requirement; 4)O2 and CO2 carrying capacity of 

the blood; 5)cardiac output; 6)pulmonary vascular function; 7)pulmonary O2 and CO2 

transport; 8)control of ventilation; 9)pulmonary mechanics and respiratory muscle 

function. This review will describe ageing3associated changes in each of these links, and 

how declining lung function may play a role in promoting multimorbidity in the elderly 

through limitation of physical function. 

 

Before embarking on an exploration of the effects of ageing on each of these physiologic 

systems, it is worth stressing that cardiopulmonary exercise testing (CPET) can be a 

helpful clinical tool to evaluate the common complaint of dyspnea on exertion in the 

elderly. CPET can often separate dyspnea related to ageing from pathologic causes. For 

example, potential contributors to increased dyspnea in the elderly include incipient 

pathology, obesity, medications such as β3blockers and deconditioning. Reduced V̇O2max 

and LT is seen in all these conditions, but distinguishing features may well be present. 

Obese subjects have increased V̇O2 during unloaded exercise but preserved 
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�V̇O2/�power output. A blunted heart rate response to exercise can be seen in β3

blockade. A reduced �V̇O2/�power output slope on the other hand should trigger 

investigations for cardiovascular abnormality. On the other hand, deconditioning and 

ageing often yield cardiopulmonary exercise test findings that are difficult to distinguish. 

These observations of stress the importance of knowledge the appropriate inter3

relationships among the pulmonary3cardio3metabolic systems during exercise, and how 

these relationships may change with deconditioning and with age. 

 

&�	#��$����	��	������	���
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The transfer of metabolic to mechanical power output at rates necessary to meet sustained 

exercise task requirements can be usefully considered in three stages: 1) coupling of 

mitochondrial oxygen consumption to ATP production (mitochondrial coupling); 2) 

coupling of ATP hydrolysis to mechanical power production (mechanical coupling); 3) 

economy of application of mechanical power to fulfil task requirements (biomechanic 

coupling or ‘skill’). Ageing influences each of these steps. 

 

Muscle size, architecture and metabolism are altered with advancing adult age.[23] Limb 

muscles, particularly large locomotor muscles, are 25335% smaller in older age and have 

more fat and connective tissue than those of younger individuals.[24] This decline is 

accompanied by a 30340% decrease in muscle fibre number between the second and 

eighth decades.[25] Type II (fast3twitch) fibres are 10340% smaller in the elderly, while 

type I (slow3twitch) fibre size is less affected. Remodelling of motor units associated with 

type IIx fibre loss [26], selective type IIa fibre denervation and collateral re3innervation 
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of type I muscle fibres, results in type I fibre grouping in elderly muscle. This contributes 

to altered biomechanics of locomotor activity, reducing skill and increasing energy 

cost.[27330] An additional component of skill deficit and muscle weakness in the elderly 

is disruption of excitation3contraction coupling, likely due to neuromuscular junction 

function loss, dihydropyridine receptor loss, impaired calcium release, and oxidative 

modification of myosin.[31, 32] Overall, these changes reduce available muscle mass for 

maximal aerobic exercise, and can lower economy of its application for external 

locomotion (impaired biomechanical coupling).[33] 

 

Whether changes occur in mitochondrial and mechanical coupling of elderly muscles is 

more controversial. At the fibre level, total mitochondrial content tends to be reduced in 

both type I and II elderly fibres.[34, 35] Sensitization to permeability transition and 

release of mitochondrial3derived pro3apoptotic factors may be responsible.[36] 

Importantly, reduced mitochondrial oxidative capacity is not fully reversible by 

endurance training after late middle age,[37339] and overall mitochondrial content in 

quadriceps muscle of 70380 year olds, estimated using magnetic resonance spectroscopy, 

is correlated with V̇O2max reduction.[40] Mild mitochondrial uncoupling of oxidative 

muscle fibres, possibly in response to age3associated oxidative stress increase, is 

proposed as a protective mechanism contributing to the relative longevity of the most 

active fibres.[41] It is unclear, however, whether reduction in mitochondrial coupling, 

observed in resting muscle, is maintained during exercise. Additionally, an ~37% 

increase in ATP cost of power production (reduced mechanical coupling) is proposed in 

septuagenarians based on magnetic resonance spectroscopic measurements of plantar 
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flexion exercise,[42] perhaps consequent to slower contractile relaxation, greater ATP 

cost of ion transport, and/or greater instantaneous stiffness (reduction in elasticity) in 

single fibres and whole muscles of elderly participants.[43345] The effect of this 

mitochondrial and mechanical uncoupling, observed in small muscle groups, would 

increase O2 cost of power production during exercise. This, however, appears not to be 

the case in cycle ergometry in elderly humans up to 80 years old, where O2 cost is 

unchanged compared to young (~10 mL.min
31

.W
31

).[46] Conversely, some male 

septuagenarians were found to have reduced ATP cost of force production during 

electrically evoked plantar flexion exercise[47] and eight, non3smoking, female 

centenarians, actually showed lower O2 cost of power production during incremental 

exercise than young controls.[48] These findings are consistent with improved 

mechanical or mitochondrial efficiency during exercise in the very old: an adaptation that 

may offset the influence of decreasing lung function with age.[48] However, 

�V̇O2/�power output slope in incremental exercise is sensitive to both kinetics and 

efficiency of oxidative phosphorylation,[49] and it seems plausible that slowed V̇O2 

kinetics in the elderly[50] may increase the contribution of substrate level 

phosphorylation to ATP provision (phosphocreatine breakdown and glycogenolysis 

accumulating lactate) during incremental exercise in these centenarians. Precise 

determination of mitochondrial and mechanical efficiency in the very old awaits 

resolution.  

 

Overall, therefore, reduced mass and mitochondrial content in elderly locomotor muscles 

limit maximal power output, aerobic capacity and thus greatly reduce total ventilatory 
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demand at V̇O2max compared to younger individuals. Muscle fibrosis, reduced elasticity 

and reduced biomechanical coupling may, however, contribute to increasing locomotor 

activity ATP cost, and thus contribute to increasing ventilatory requirement at any given 

submaximal power output.[51] 

	

*�	+
�	��
��$���	,��(���	������	#
$���
��	
��	�����������
		

Diffusive O2 transport between muscle capillary and mitochondria is an important site of 

limitation to maximal O2 flux.[52354] Diffusive O2 conductance is dependent on several 

variables including muscle capillarity (specifically, area of apposition between capillary 

and fibre, and mean distance between capillary and mitochondrion over which O2 has to 

diffuse), capillary haematocrit (red blood cell volume contacting muscle capillaries), gas 

solubility (as influenced by muscle structural variations, such as increased lipid 

concentration that facilitates O2 diffusion), temperature, and muscle myoglobin and 

mitochondrial concentrations. Of these, the main site of resistance to diffusive O2 flux in 

muscle is likely to be the distance between haemoglobin and muscle sarcolemma.[55, 56] 

Myoglobin spectroscopy measurements in exercising human muscle[57, 58] show a large 

drop in PO2 between capillary blood and myocyte interior, highlighting both the large 

resistance to O2 flux at the capillary/fibre interface and the importance of maintaining 

high capillary PO2 to facilitate O2 diffusion. 

 

In this context, recent reanalysis of data from the seminal 1966 Dallas Bedrest Study is 

pertinent.[59] Muscular and cardiovascular responses to exercise were established in 5 

healthy 20 year3old men subjected to 3 weeks of supine bedrest followed by 8 weeks of 
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high3intensity endurance exercise training,[16] and reassessed after 40 years follow3

up.[15, 17, 18] Longitudinal V̇O2max decline (~25%), accelerating after age 50, was 

similar to the decline seen following 3 weeks of bedrest in youth, and was associated with 

reductions in both convective O2 delivery (~10% reduction in peak cardiac output, stroke 

volume, heart rate) and O2 extraction (~18% reduction in arterio3venous O2 concentration 

difference). This age3associated reduction in V̇O2max would also be sensitive to reductions 

in muscle O2 diffusing capacity,[59] should muscle capillarity regression exceed decline 

in muscle oxidative capacity in older age. However, changes in human muscle capillarity 

in the elderly are equivocal: ~10330% lower capillary/fibre ratio in older muscles is 

common, either in cross3sectional studies or across 12 years of ageing between mid 60s 

to mid 70s.[28, 60362] On the other hand, capillary geometry and heamatocrit, 

determined in young and old Fischer 344 × Brown Norway hybrid rats, appear unaffected 

by ageing, with increase in red blood cell flux compensating for potential reduction in 

convective O2 delivery imposed by reduced capillarity, at least at rest.[63] During 

exercise, a lower microvascular PO2 in the elderly (either by fluorescence quenching in 

rat or near3infrared spectroscopy in human muscles) suggest that blood3to3tissue O2 

movement may be impaired in elderly muscle, therefore placing greater reliance on 

substrate3level phosphorylation during exercise.[64367] However, fractional contribution 

of glycogenolysis and phosphocreatine (PCr) breakdown to total ATP production is 

similar during maximal aerobic exercise in muscle from old and young participants, 

though this was observed in plantar flexion exercise where relative perfusion of active 

muscle is much greater than during locomotor exercise.[42] Therefore, considering that 

age3associated capillary rarefaction is somewhat less than decrease in oxidative capacity 
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of elderly muscle, it seems unlikely that anatomic size of capillary/fibre interface and O2 

diffusional conductance plays a major role in limiting muscle aerobic performance in the 

elderly.[68] 

 

CO2 is approximately 20 times more diffusible than O2 in biological tissues, and high 

capillary CO2 concentration may facilitate capillary oxyhemoglobin unloading. Slowed 

kinetics of oxidative metabolism in the elderly require greater phosphocreatine 

breakdown for a given power output, and ensuing transient intramuscular alkalosis 

contributes to temporally slowing kinetics of CO2 output relative to its production.[42, 

47, 69, 70] This, together with intra3 and extra3muscular CO2 buffers, slow muscular 

V̇CO2 kinetics compared with those of V̇O2, and therefore may lessen ventilatory 

demands for CO2 clearance. Interestingly, expression of monocarboxylate lactate 

transporters 1 and 4, and the ratio of oxidative to glycolytic enzyme activity, are 

increased in older muscles, independent of physical activity.[71, 72] These adaptations 

may help ameliorate intramuscular acidosis and increase muscle fatigue resistance in 

high3intensity exercise in the elderly,[73] but accelerate blood lactate appearance and 

onset of increased ventilatory demands associated with systemic metabolic acidosis.[74] 

Consequently, potential benefit from increased proton sequestration rate by PCr 

breakdown slowing CO2 flux towards the lung may be moderated by enhanced lactate 

and proton transport rate, contributing to driving ventilatory compensation for metabolic 

acidosis as V̇O2max is approached. On balance, therefore, the influence of the aged 

muscle/capillary interface on exercise ventilatory demands is likely small. 
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Although age3associated muscle microvascular anatomy changes may be less influential 

than reduced mitochondrial function in limiting maximal aerobic capacity in the 

elderly,[68] there is strong evidence that muscle blood flow is attenuated during 

submaximal large muscle mass or locomotor exercise in older humans (~55380 

years).[75, 76] The locus of attenuated increase in active muscle blood flow in the 

elderly, which is accomplished through a combination of systemic sympathoexcitation 

and local metabolically3mediated vasodilatation, is controversial. However, a sex 

difference may exist in that older oestrogen3deficient women are particularly prone to 

blunting of leg vasodilator responsiveness and more rapid muscle deoxygenation 

compared to younger controls.[77384] Importantly, this disruption impairs the ability of 

elderly muscle to deliver O2 in appropriate proportion to its requirement (Q̇/V̇O2 ratio), 

which may contribute to transient microvascular deoxygenation during submaximal 

exercise and increased demand for substrate level phosphorylation.[83, 85387] Reduced 

amplitude and kinetics of cholinergic, shear stress and endothelial3mediated relaxation, 

particularly in feed arteries of oxidative muscles, has been implicated;[88, 89] although 

the effect of older age on reactivity of muscle microvessels varies with branch order and 

vasoactive stimulus.[90] Response to metabolic dilators is also attenuated in the elderly, 

e.g. ATP3induced vasodilatation is lower in sedentary elderly,[91] although whether 

alterations in nitric oxide (NO) contribute to limiting exercise hyperaemia in the elderly 

is debated.[75] The metabolically3activated group III/IV muscle afferent contribution to 

exercise hyperaemia appears to be absent in older individuals, which may further impair 

blood flow distribution and reduce regional Q̇/V̇O2 in the elderly.[92] α13adrenergic 
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vasoconstrictor tone appears to be similar between old and young, but may be less 

attenuated during exercise in the elderly simply due to lower absolute power outputs 

achieved.[78] 

 

While impaired exercise vasodilatation is observed in many elderly, lifelong physical 

activity protects against this effect:[93] only in sedentary elderly was limb muscle lactate 

release associated with an attenuated exercise hyperaemia. Interestingly, in men aged 623

73 years, where absolute locomotor muscle exercise hyperaemia was well preserved, a 

greater proportion of submaximal cardiac output was directed towards the legs at a given 

V̇O2 compared to 20325 year olds.[82, 94] This implies that competition for blood flow 

by other regional circulations could, at least as maximal cardiac output is approached, 

attenuate locomotor muscle blood flow rise in exercising older adults.[95] This may be 

particularly important in relation to competition for blood flow from respiratory muscles 

where greater deadspace ventilation and impaired pulmonary mechanics increases work 

of breathing for a given V̇O2 (see below), and may contribute to limiting respiratory 

and/or locomotor muscle Q̇/V̇O2 in the elderly, as it can in athletes and patients with heart 

failure.[96, 97]  
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Anaemia is prevalent in the ageing population with over 10% of individuals above age 65 

affected.[98] Most cases of anaemia in older subjects are mild, but even mild decline in 

haemoglobin will decrease O2 carrying capacity and reduce V̇O2max. Less is known about 

haemoglobin O2 affinity changes with ageing. A study of healthy male and female 18389 
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year olds revealed an increase in P50 (the PO2 at which haemoglobin is half saturated) in 

60389 year olds compared to 18339 year olds, in keeping with age3related haemoglobin 

O2 affinity decrease. There was no significant change in 2,3 diphosphoglycerate 

concentration seen in this population. [99] Other work has shown that haemoglobin O2 

affinity does not appear related to age in men.[100] There seems to be no data available 

regarding blood CO2 carrying capacity or buffering capacity changes with ageing.  

 

1�	#
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Maximal cardiac output decreases with age.[10, 11] Decline in maximal heart rate (~0.7 

beats/minute/year[101]) appears to be less severe than rate of V̇O2max decline, suggesting 

that decreased sinoatrial node sensitivity to β3adrenergic stimulation in older 

individuals[102] is not a primary cause of aerobic capacity loss. Measurements of 

intrinsic heart rate, using intravenous infusions of propranolol and atropine to achieve 

autonomic blockade, reveal linear intrinsic heart rate decrease over ages 16370.[103] 

Animal models show that the ageing sinoatrial node has decreased conduction velocity 

and contains fewer pacemaker myocytes.[104] Remaining sinoatrial myocytes 

demonstrate altered ion channel activity, leading to depressed excitability and 

consequently lower heart rate.[104] Similar changes may occur in ageing human 

sinoatrial myocytes, but further study is needed.  

 

Ageing hearts may utilize a different mechanism to increase stroke volume during 

exercise than younger hearts. In elderly subjects, end3diastolic volume increases with 

exercise with minimal change in end3systolic volume; while in younger individuals, the 
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increase in stroke volume with exercise is primarily due to a decrease in end3systolic 

volume.[105] Increasing end3diastolic volume may lead to larger stroke volume increase 

during exercise in older subjects, mitigating the influence of peak heart rate decline.[105] 

Age does not alter the cardiac output3V̇O2 relationship although, for a given cardiac 

output, older subjects have lower leg blood flow.[106]  

 

Peak cardiac output falls ~25% with age.[10] Despite significant structural heart changes 

with age,[1073109] global left ventricle (LV) systolic function appears unaffected by 

healthy ageing. [1103112] Peak stroke volume also appears largely unchanged throughout 

life.[109] If one accepts a 50% drop in V̇O2max from ages 20380[10], 25% may be 

attributable to cardiac output decline. As stroke volume response to exercise is 

unchanged, reduced heart rate, as well as maldistributed cardiac output (see above), are 

responsible for the cardiac contribution to age related decline in V̇O2max. The exercise 

cardiac response of the ageing individual has been likened to that of a young person on β3

blockers.[105] 
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Ageing related pulmonary circulation changes influence exercise response in the elderly 

subject. Pulmonary vascular stiffness increases with age.[113, 114] Decreased pulmonary 

vascular compliance, along with decreased LV compliance,[112] leads to increased 

pulmonary arterial (PA) pressure, pulmonary wedge pressure and pulmonary vascular 

resistance in older individuals.[115, 116] PA pressure increase appears to be secondary to 

vascular stiffening and decreased LV compliance.[116]  
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In a recent right heart catheterization study, subjects older than 55 years showed resting 

hemodynamics similar to those of younger individuals. However, significant differences 

developed during exercise. The older group displayed lower cardiac output and greater 

mean PA pressure. Increased mean PA pressure during exercise with advancing age was 

the consequence of increased pulmonary vascular resistance and elevated LV filling, due 

to age3related diastolic dysfunction.[117] 
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The assumption that arterial O2 partial pressure (PaO2) declines at a constant rate between 

ages 20 and 100 is founded on prediction equations based on a small number of 

individuals above age 60.[118] These equations may underestimate values for elderly 

subjects, with a wide prediction range of 63384mmHg for an 82 year old subject.[118] 

There is evidence to the contrary: Blom et al.[119] reported a plateau in PaO2 decline 

after age 70. Similarly, other recent studies show age3related decline in PaO2 between 

ages 40 and 74 with no significant association between PaO2 and age greater than 70 or 

74.[1203122] There is potential for survival bias in these results, however, as individuals 

with lower PaO2 may die earlier.[123, 124] There are also gender differences for PaO2 in 

the elderly population. A well3done study by Hardie et al.[121] demonstrated mean PaO2 

of 77mmHg (lower 95% confidence limit of 62mmHg) and 73.5mmHg (lower 95% 

confidence limit of 59.6mmHg), respectively, for men and women over age 70. 
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PaO2 changes with ageing may be mechanistically related to gas diffusion properties of 

the lung and also to ventilation3perfusion distribution. There appears to be little effect on 

exercise gas exchange capabilities in older individuals, as exercise3induced arterial 

hypoxemia is infrequent. However, exercise3induced hypoxemia occurs more frequently 

in highly fit elderly individuals.[21] The mechanism is not known, but plausibly may be 

related to physiologic changes noted above, and the high power outputs achieved in fit 

individuals (and therefore greater cardiac output and reduced capillary transit time), 

compared to elderly subjects of average fitness. As discussed below, increased alveolar 

deadspace and increased alveolar ventilation to pulmonary perfusion (V̇A/Q̇) mismatch in 

older subjects likely contribute to exercise3induced hypoxemia seen in elderly athletes.  
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Ageing leads to decreased capacity for pulmonary gas exchange, reflected in decline in 

diffusing capacity of the lung for carbon monoxide (DLCO).[125] DLCO decline may be 

in part related to gradual reduction in alveolar3capillary density to alveolar diameter ratio 

in the older lung, along with decreased pulmonary capillary blood volume and increased 

V̇A/Q̇ mismatch that are seen in the elderly.[126]  
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Smaller studies have demonstrated that ageing results in an increase in lung areas with 

high V̇A/Q̇ (physiologic deadspace) and low V̇A/Q̇ (shunt).[127, 128] Older subjects have 

shown increased alveolar to arterial PO2 difference (PA3aO2).[129, 130] PA3aO2 can be 

widened by development of right3to3left shunting, diffusion limitation, or ventilation3
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perfusion mismatch. Cardus et al.[131] attempted to determine whether increasing V̇A/Q̇ 

mismatch with age causes age3related PaO2 decline and found a small PaO2 decrease with 

age (6 mmHg between ages 20 and 71) that was explained by a small V̇A/Q̇ mismatch 

increase. Increased intra3pulmonary shunting (low V̇A/Q̇) did not appear to contribute to 

lower PaO2. Unfortunately, this was a relatively young population: only 4 of 64 subjects 

were above age 60. As closing volume does not equal functional residual capacity until 

the age of 65[171], it is possible there may be additional low V̇A/Q̇ (shunt) units in more 

elderly subjects. 

 

��	����	���������������������� 

Deadspace to tidal volume ratio (VD/VT) is elevated at rest in older individuals. VD/VT 

decreases with exercise but the nadir value is higher in older than in younger subjects. In 

young athletes, maximal exercise VD/VT averages 13%, while in older subjects, VD/VT 

averages 30%.[132] 

 

Ventilation is primarily distributed to the lower lung in younger subjects.[133] Xenon 

distribution measurement of elderly lungs reveals that in older lungs all airways are open 

above 65% of total lung capacity.[134] Electrical impedance tomography of aged lung 

demonstrates absence of posture3dependent changes in gas distribution normally seen in 

younger lungs.[135] As a consequence, at resting tidal volumes, ventilation to dependent 

lung is decreased in older individuals, leading to greater ventilation of the upper lung and 

increased upper lung perfusion that improves V̇A/Q̇ matching  
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The respiratory control system adjusts minute ventilation (V̇E) to respond to changes in 

metabolic rate and other perturbations in order to maintain, as much as possible, arterial 

homeostastis. Resting pulmonary ventilation is adjusted to regulate PaCO2 (and thus pHa) 

within a narrow range. PaO2 only becomes an appreciable ventilatory stimulus when PaO2 

drops well below the normal range. Though few systematic studies have been reported, at 

rest the elderly appear to regulate PaCO2 within the same range as the young; PaO2 is 

somewhat lower mostly because of increased V̇A/Q̇ inhomogeneity.[51, 136]. 

 

Challenges to the respiratory control system include exercise, inhalation of hypercapnic 

and hypoxic mixtures and resistive and elastic loads to breathing. Of these, exercise is the 

most commonly encountered challenge and has, therefore, received the most study. 

Interestingly, though, in comparison to the relatively preserved functional characteristics 

of exercise ventilatory control (see below), the elderly exhibit substantial degradation of 

response to these other challenges. Response to inhaled CO2 is blunted[1363140]; 

Brischetto et al.[137] found that V̇E3PaCO2 slope was almost one3third lower in the 

elderly. Similarly, hypoxic response is reduced in older individuals[1383140]; Peterson et 

al.[140] found hypoxic ventilatory response to be reduced about 50%. Responses to both 

resistive and elastic loaded breathing are also reduced[141, 142]. 

 

Alterations in exercise ventilatory response are more subtle. A consistent observation is 

that ventilatory response to exercise at a given V̇CO2 is elevated in elderly subjects as 

compared to the young[74, 137, 1433145]. Inbar et al.[144] reported cardiopulmonary 
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responses to incremental exercise of 1,424 men, 43 of whom were aged 60370 years. 

V̇E/V̇CO2 was distinctly greater across metabolic rates in the older group. Similarly 

Poulin et al.[145] studied the incremental treadmill exercise response in 128 men and 96 

women aged 55386 years. On average, V̇E/V̇CO2 slope was 12.3% greater per decade in 

men and 9.3% greater per decade in women.  

 

The source of enhanced ventilatory response can be evaluated by considering the alveolar 

mass balance equation: 

V̇E/V̇CO2 = k/[PaCO2 · (13VD/VT)] 

where k is a constant. This equation dictates that the greater V̇E/V̇CO2 can have only two 

sources: lower PaCO2 or greater VD/VT. Brischetto et al.[137] sampled arterial blood 

serially during incremental exercise in two older subjects and found an isocapnic 

response. Mummery et al.[146] drew arterial blood samples at rest and after 6 minutes of 

moderate and heavy exercise from 10 older (average age 63 years) and 10 young 

subjects. Moderate exercise was isocapnic, and PaCO2 fell with heavy exercise 

(presumably in response to metabolic acidosis), with no differences between older and 

younger participants. Calculations using measurements of PaCO2 suggest that deadspace 

is greater in elderly subjects than in young[51, 146]. Review of the literature for the 

source of elevated deadspace ventilation reveals only inconsistent alterations in the tidal 

volume3breathing frequency relationship[74]. Therefore, deadspace ventilation elevation 

during exercise seen in the elderly seems likely related to increased alveolar deadspace. 
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In contrast to moderate intensity steady3state exercise responses, dynamic exercise 

ventilatory responses are distinctly modified in the elderly. In studies of young subjects, 

dynamic response of V̇E is closely correlated with V̇CO2 dynamics[147, 148], with the 

result that PaCO2 fluctuation during the dynamic phase of exercise is small[148]. The 

observation that V̇E kinetics are substantially slowed in the elderly (with response time 

constants averaging 40356% greater)[149, 150] might suggest that PaCO2 regulation in 

the non3steady state is greatly degraded, but this is likely not the case. The key 

observation is that V̇O2 kinetics are slowed in the elderly[1493151]. This is primarily 

related to low muscle oxidative capacity in ageing, but may also be influenced by wider 

muscle Q̇/V̇O2 distribution (see above). V̇O2 kinetics are the prime determinant of V̇CO2 

kinetics, with the latter being slowed with respect to the former by muscle3alkalinizing 

effects of phosphocreatine breakdown and fluctuation in the body’s large CO2 

stores[152]. Thus, V̇CO2 kinetics are also markedly slowed in the elderly[149, 150]. 

Importantly, the ratio of V̇E and V̇CO2 time constants are somewhat greater in elderly 

compared to younger subjects[149, 150], implying a slightly “looser” control of PaCO2. 

An important observation from 8 older subjects (aged 65378 years) undergoing a rigorous 

exercise3training program was that training speeded V̇O2, V̇CO2 and V̇E kinetics (each 

time constant was reduced by ~50%), with correlation between the change in V̇E and 

V̇CO2 time constants being strong (r=0.65).[149] This supports the concept that slower 

V̇E kinetics in the elderly are mostly related to slowed metabolic rate kinetics, but a small 

degradation of PaCO2 control cannot be excluded. 
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With age, lung structural changes occur that affect exercise ventilatory response. These 

changes have the potential to contribute to decreased exercise performance and decline in 

V̇O2max seen with increasing age.[10, 144, 1533155] The lung’s ageing process is difficult 

to generalize, given differences in individual environmental and genetic factors that 

influence how an individual ages. Gender differences in lung ageing may also be 

significant. The increase in resting lung and residual volumes and reduced vital and 

inspiratory capacities that occur with age have been well described in the literature and 

are beyond this review’s scope.[136, 1563159] 

 

Pulmonary function begins to decline at approximately age 25. In healthy non3smoking 

individuals, spirometric measures forced expiratory volume in one second (FEV1) and 

forced vital capacity (FVC) decrease by ~30 mL.year
31

 in men and 23 mL.year
31

 in 

women, with accelerated loss after age 65.[160, 161] Mean bronchial diameter also 

decreases with age, yielding increased airway resistance, particularly in peripheral 

airways.[162] Pulmonary static elastic recoil pressure decreases by approximately 0.130.2 

cm.year
31

 after age 20 due to chest wall stiffness increase and lung tissue elasticity 

loss.[163, 164] Elasticity loss is thought to represent remodelling of both spatial 

arrangement and cross3linking of the lung’s elastin3collagen network.[165] Elastic recoil 

loss leads to alteration in the expiratory portion of the maximal flow3volume loop and 

results in the characteristic “scalloped” loop seen in elderly non3smokers. Elastic recoil 

loss appears proportional to peak expiratory flow decrease with age.[166]  
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Over time, chest wall compliance decreases due to calcification of costal cartilage, with 

increased prevalence of both spinal kyphosis and osteoporosis3associated vertebral 

fractures potentially contributing.[1673169] Obesity is prevalent in the ageing population, 

affecting more than one3third of adults older than 65.[170] Obese individuals have lower 

respiratory system compliance.[1713173] Expiratory reserve volume clearly decreases 

with increasing body mass index; functional residual capacity is reduced to a lesser 

extent. Total lung capacity does not appear to be affected significantly, except in extreme 

obesity. Decreased compliance is expected to contribute to increased dyspnoea during 

exercise in obese individuals.[174, 175] 

 

Respiratory muscle strength decreases with age.[176, 177] Maximal effort 

transdiaphragmatic pressure gradients in older individuals are lower than in younger 

subjects, reflecting decreased diaphragmatic strength.[178, 179] In one study, diaphragm 

strength in the elderly was 13% less than in a younger group by maximal sniff and 23% 

less using cervical magnetic stimulation. Other measurements have shown 25% lower 

diaphragmatic strength in the elderly.[179] Strength loss does not appear related to 

diaphragmatic fibre type change or muscle atrophy.[1803182]. Diaphragm and intercostal 

muscle stiffness increase with age[183], decreasing chest wall compliance. Diaphragm 

collagen metabolism changes (collagen concentration and cross3linking increases) appear 

responsible for increased stiffness.[184] Spinal kyphosis and increased chest anterior3

posterior diameter that occur with age likely contribute to decreased diaphragmatic 

function.[156]  
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Airspace size increases with age.[185] The term “senile emphysema” that has been used 

to describe this age3related pulmonary morphologic change is inaccurate; although ageing 

results in alveolar duct enlargement and distal duct ectasia, the ageing lung does not 

develop alveolar wall destruction and inflammation that is a hallmark of smoking3related 

emphysema.[186]  

 

In healthy adults, peak ventilation during exercise typically approaches 70% of measured 

maximal voluntary ventilation (MVV), demonstrating appreciable breathing reserve. 

Aging is associated with a greater V̇E and dyspnoea for a given power output (Fig 3) due 

to mechanisms discussed earlier, including reduced lactate threshold, and increased 

VD/VT and V̇A/Q̇ mismatching (likely reflected in the increased V̇E/V̇CO2). Breathing 

reserve tends to decrease in athletes and with normal ageing.[187] In a recent study of 

759 maximal treadmill exercise tests performed in healthy Norwegian adults aged 20385, 

peak ventilation decrease started at ages 40349.[188] While peak V̇E decreased, predicted 

MVV (based on both FEV1·35 and FEV1·40)[154, 189] also decreased due to age3related 

FEV1 reduction. This led to breathing reserve preservation. There is also an age related 

decline in vital capacity that leads to relative limitation in tidal volume (Fig 3), meaning, 

for a given ventilation, breathing frequency tends to be greater, especially at higher 

intensities.[159, 190]  

 

During exercise in youth, tidal volume increase is achieved through decreases in both 

inspiratory and expiratory reserve volumes.[191, 192] There is initially a drop in end3

expiratory lung volume (EELV) in both young and old subjects to optimize inspiratory 
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muscle function.[193] During severe intensity exercise in fit, young athletes, expiratory 

flow limitation can develop,[191] although increased EELV does not appear until very 

high rates of ventilation.[21, 193] Airway diameter decrease and static recoil pressure 

reduction that occur in ageing suggest that flow limitation may also become a factor 

limiting exercise in older individuals. Accurate measurement of expiratory flow 

limitation during exercise is challenging. The most common method involves 

demonstrating impingement of exercise flow3volume loops on the maximum3effort 

resting expiratory flow3volume relationship. This method, however, does not account for 

thoracic gas compression and may overestimate flow limitation during exercise.[190, 

194] Taking several expirations at variable efforts from TLC (total lung capacity) to 

residual volume may help correct for dynamic gas compression.[194] Using a post3

exercise maximal expiratory flow volume curve also helps by accounting for exercise3

induced bronchodilation.[190] Wilkie et al. reported that older women exhibit exercise 

expiratory flow limitation more frequently than younger women.[193] Older subjects also 

report greater breathlessness and a steeper slope of the dyspnoea3power output 

relationship, suggesting that age3related lung changes have symptomatic consequences 

(Fig 3). Interestingly, this study found an EELV increase at power outputs between 803

100% V̇O2max only in younger women. The authors hypothesize that impending flow 

limitation in older women may have an effect on EELV regulation.[193] This contrasts 

with findings of another study of trained individuals (14 men, 4 women aged 62382) 

where older subjects increased EELV during moderate intensity exercise, but EELV did 

not increase in younger subjects until V̇E exceeded 1103120 L.min
31

.[21] Increased EELV 

compromises operating length3tension relationships of diaphragm and respiratory 
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muscles, leading to less force generation capacity. Increased EELV during exercise 

results in the subject breathing on the flattened portion of the lung pressure3volume 

relationship, reducing inspiratory muscle length, increasing work of breathing and 

potentially decreasing inspiratory muscle endurance.[190] In line with these effects, 

inspiratory reserve volume (IRV) is consistently lower in the elderly at rest, and remains 

lower, along with IC, for any given level of V̇E compared with young subjects (Fig 3), 

likely contributing importantly to the greater sensation of breathlessness in the elderly. 

[159, 195, 196] 

 

While flow limitation and EELV behave in a similar fashion during low intensity 

exercise in older and younger lungs, expiratory flow limitation seems to develop at lower 

intensity exercise in older subjects.[21, 51, 193] There may be a gender difference, with 

women developing expiratory flow limitation more frequently than men during high 

intensity exercise,[197] presumably related to decreased lung size and lower maximal 

expiratory flow rates in women. Guenette et al.[198] describe an 86 year old female 

lifelong competitive swimmer (former Olympian) with moderate airflow obstruction 

(FEV1/FVC 53%; FEV1 54% predicted) who continued regular exercise into old age. 

Despite severe ventilatory limitation (dynamic hyperinflation of 780 mL and end 

inspiratory lung volume of 96% TLC) the participant only reported moderate dyspnoea 

and achieved V̇O2max of 175% predicted (19.6 mL.kg
31

.min
31

). The authors speculate 

reduced ventilatory requirements, breathing pattern alterations and improved respiratory 

muscle strength may each contribute to reduced dyspnoea in this athletic octogenarian. 

While only a case report, these findings emphasize that relative preservation throughout 
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life of aerobic capacity may be possible with regular high3intensity exercise, even when 

expiratory flow and ventilatory limitation is present.  

	

#����������		

Maintaining a high level of physical activity is an important part of healthy ageing and 

minimisation of multimorbidity. Deterioration in various components of the multi3organ 

system response to exercise conspires to make this difficult. Decreases in pulmonary 

system function likely contribute to exercise intolerance in healthy elderly, particularly 

those who maintain physical activity into senescence. However, loss of muscle oxidative 

capacity and cardiac output in sedentary elderly outstrips decline in pulmonary function, 

such that the relatively small contribution of pulmonary function to exercise limitation is 

preserved over a wide range of ages. Training programs for muscles of ambulation 

remains the most effective way to retain aerobic capacity in older individuals. However, 

the degree to which maintenance of training past 70 years of age – which is associated 

with considerable health3benefits – causes encroachment upon pulmonary limits requires 

further study.   
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������	&. a) Decline in maximal oxygen consumption (V̇O2max) with age.  V̇O2max is 

expressed as a percentage of predicted value[153] of a 25 year old individual of average 

weight and height (male 177 centimetres (cm) height and 82 kilograms (kg) weight; 

female 164cm height and 65kg weight). b) Decline in forced expiratory volume in one 

second (FEV1) with age. FEV1 is expressed as a percentage of predicted value[199] for a 

25 year old individual of the same weight and height as in Figure 1a.  

	

������	*. The interaction of physiologic mechanisms during exercise.  The figure is 

modified from the classic 1967 conceptualization of Wasserman et al.[22] The ability to 

perform exercise is dependent on the performance of a number of linked systems, each of 

which is subject to deterioration with ageing. 

 

������	-.  Perceptual, ventilatory and respiratory mechanical responses to incremental 

treadmill exercise in healthy older (OM, aged 60–80 years) compared with younger men 

YM, aged 40–59 years). Data points are mean±SEM for measurements at rest, during 

each stage of exercise and at peak exercise. V̇O2, oxygen uptake; V̇E/ V̇CO2 , ventilatory 

equivalent for carbon dioxide output; VT , tidal volume; IRV, inspiratory reserve volume; 

TLC, total lung capacity; IC, inspiratory capacity. Reproduced with permission from 

Jensen et al.[159] 
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