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Somatic mutationsin the phosphatidylinositol/ AKT/mTOR path-
way cause segmental overgrowth disorders. Diagnostic descrip-
tors associated with PIK3CA mutations include fibroadipose
overgrowth (FAO), Hemihyperplasia multiple Lipomatosis
(HHML), Congenital Lipomatous Overgrowth, Vascular malfor-
mations, Epidermal nevi, Scoliosis/skeletal and spinal (CLOVES)
syndrome, macrodactyly, and the megalencephaly syndrome,
Megalencephaly-Capillary malformation (MCAP) syndrome.
We set out to refine the understanding of the clinical spectrum
and natural history of these phenotypes, and now describe 35
patients with segmental overgrowth and somatic PIK3CA muta-
tions. The phenotypic data show that these previously described
disease entities have considerable overlap, and represent a spec-
trum. While this spectrum overlaps with Proteus syndrome (spo-
radic, mosaic, and progressive) it can be distinguished by the
absence of cerebriform connective tissue nevi and a distinct
natural history. Vascular malformations were found in 15/35
(43%) and epidermal nevi in 4/35 (11%) patients, lower than in
Proteus syndrome. Unlike Proteus syndrome, 31/35 (89%)
patients with PIK3CA mutations had congenital overgrowth,
and in 35/35 patients this was asymmetric and disproportionate.
Overgrowth was mild with little postnatal progression in most,
while in others it was severe and progressive requiring multiple
surgeries. Novel findings include: adipose dysregulation present
in all patients, unilateral overgrowth that is predominantly left-
sided, overgrowth that affects the lower extremities more than the
upper extremities and progresses in a distal to proximal pattern,
and in the most severely affected patients is associated with
marked paucity of adipose tissue in unaffected areas. While the
current data are consistent with some genotype—phenotype cor-
relation, this cannot yet be confirmed.

© The Authors. American Journal of Medical Genetics Part A published by Wiley

Periodicals, Inc.
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INTRODUCTION

Next generation sequencing has resulted in major advances in
understanding the molecular etiology of somatic overgrowth
syndromes [Lindhurst et al., 2011; Lindhurst et al., 2012; Kurek
etal., 2012; Lee et al., 2012; Raffan and Semple, 2011; Riviere et al.,
2012; Shirley et al., 2013]. Since the finding in 2011 that Proteus
syndrome is caused by somatic activating mutations in the
growth-promoting serine/threonine kinase AKT1, multiple sub-
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sequent reports have described activating mutations in other
signaling proteins in the same RTK/PI3K/AKT/mTOR growth
pathway in several different segmental overgrowth syndromes.
The mutated genes include PIK3CA, PIK3R2, AKT3 and mTOR
[Lindhurst et al., 2012; Kurek et al., 2012; Lee et al., 2012; Poduri
et al., 2012; Riviéere et al., 2012; Rios et al., 2013]. Some mutations
have been found in more than one phenotypically distinct disor-
der, and this overlap raises the important question of the relative
contributions of underlying genotype, of timing of the mutation
and of the precise cell of origin of the founder mutation during
development to the ultimate clinical phenotype. A particularly
encouraging aspect of recent genetic findings is that the pharma-
ceutical industry is engaged in a major effort to develop drugs
targeting this pathway for use in cancer. This means that these
genetic discoveries have brought the prospect of targeted drug
trials in segmental overgrowth dramatically closer. Critical to the
planning of effective trials will be an understanding of the natural
history of the different RTK/PI3K/AKT/MTOR-related over-
growth disorders.

One of the recently described segmental overgrowth phenotypes
caused by mutations in the PIK3CA gene is fibroadipose over-
growth (FAO) [Lindhurst et al., 2012]. The major manifestation of
this disorder is segmental and progressive overgrowth of subcuta-
neous, muscular, and visceral fibroadipose tissue, sometimes asso-
ciated with skeletal overgrowth. We now provide further details of
eight of the patients with this disorder previously described in an
abbreviated form [Lindhurst et al., 2012] (a ninth patient from that
report was not included because she was the subject of a recent
clinical report [Tziotzios et al., 2011]) and present 27 additional
patients with a broader range of phenotypic manifestations who



KEPPLER-NOREUIL ET AL.

have not been reported. We describe their genotypes, phenotypes,
and natural history to better characterize and refine their diagnoses
with the aims of delineating genotype-phenotype correlations,
assisting clinicians in their diagnostic efforts, and ultimately aiding
the identification of target populations for the trial of candidate
disease-modifying therapies.

This study was reviewed and approved by the Institutional Review
Board of the National Human Genome Research Institute (94-HG-
0132) and the NRES Committee East of England—Cambridge
South (12-EE-0405). The patients described herein were ascer-
tained from a larger group of patients with overgrowth (fibroadi-
pose and skeletal tissues) and other findings including vascular and
lymphatic malformations and skin and other abnormalities. These
patients were referred to the NIH (National Institutes of Health) or
to the University of Cambridge for inclusion in research studies for
evaluation of overgrowth. Medical records, including photographs,
were reviewed initially. All participants had physical examinations
by the coauthors and other studies, including X-rays or other
imaging of affected areas. Thirteen of 35 patients were also evalu-
ated in person at the NIH.

Candidate lesions for biopsy were selected based on clinical assessment
that the tissue was overgrown, had a vascular malformation, or an
epidermal nevus. Most samples were derived from standard punch
biopsies although a few were derived from deeper tissues collected
during surgery performed for clinical indications, typically aimed at
mitigating the functional or cosmetic consequences of overgrowth.
The cells were grown from tissue explants in DMEM. Molecular
analysis consisted of candidate mutation analysis for somatic muta-
tions in PIK3CA using a custom PCR restriction assay as described in
Lindhurst et al. [2012] for the p.His1047 mutations. For p.Glu542Lys,
DNA was amplified using the following primers: (6FAM)-
TCTGTAAATCATCTGTGAATCCAGAGGG and 5'-CTTTCTCCT-
GCTCAGTGATTC followed by digestion with Xbal. For p.Glu545Lys,
DNA was amplified using the following primers: 5'-CTACACGA-
GATCCTCTCTCTGAAATCATT and (6FAM)- TGCTGAGAT-
CAGCCAAATTCAG followed by digestion with Msel. For p.
Cys420Arg, DNA was amplified using the following primers:
(6FAM)-CCCATTATTATAGAGATGATTGTTG and 5'-ACAAGT-
TTATATTTCCCCATGCCAATGGCC followed by digestion with
Mspl. Most samples were tested in duplicate and mutation levels
were averaged. If multiple cultures were established from the same
piece of tissue or if multiple direct DNA extractions were done from the
same specimen, the range of mutation level is reported. Mutation
analyses were performed on blood samples in 21/35 patients and on
saliva in 3/35 (Patients 4, 18, 21).

(Available as supplementary online material at http://wileyonline-
library.com/journal/ajmg)
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The molecular diagnoses in these 35 patients were determined by the
presence of a somatic PIK3CA mutation, found in the affected tissues
at varying levels, and not in the blood or saliva, as described in each
clinical summary and in Table I. We reviewed the clinical and
radiological findings in each patient focusing on features described
in Lindhurst et al. [2012] and features associated with Proteus
syndrome, which is summarized in Table II. The ordering of patients
in the table was informally ranked from mild to severe. All patients
had overgrowth consistent with what we have previously described
as fibroadipose tissue. The assessment of severity was subjective;
unilateral was considered milder than bilateral in most cases, a
greater number of findings was considered more severe than fewer
findings, and more surgeries performed in the past was considered
more severe. We did not construct a formal global severity score as
this was challenging considering the range of the effects in the
patients. Most of the severely affected patients were previously
designated as having CLOVES syndrome [Sapp et al., 2007] and
had most or all of the characteristic features of CLOVES syndrome.

The most common mutation was the p.His1047Arg (H1047R)
occurring in 19/35 (54%) patients. The distribution of the other
mutations was: p.His1047Leu (H1047L) in 8/35 (23%) patients, p.
Glu545Lys (E545K) in 4/35 (11%) patients, p.Glu542Lys (E542K)
in 3/35 (8%) patients, and p.Cys420Arg (C420R) in 1/35 (3%)
patients.

There was a qualitative correlation of these genotypes with the
overall phenotypes. Twenty-five of 35 (71%) patients had a phe-
notype most consistent with the either FAO, Hemihyperplasia-
Multiple Lipomatosis (HHML) or macrodactyly phenotypes, and
all but two of these patients had either p.His1047Arg or p.
His1047Leu. The other mutations that were found in this group
were PIK3CA p.Glu542Lys, and p.Glu545Lys. In those 9/35 (26%)
individuals with the CLOVES syndrome phenotype the distribu-
tion of mutations was as follows: three with p.His1047Arg, three
with p.Glu545Lys, two with p.Glu542Lys, and one with p.
Cys420Arg (Fig. 1).

Thirty-one of 35 patients had congenital manifestations, except
for one identified between the ages of 2 and 3 months, two between
12 and 18 months, and one at puberty. Four patients had findings
that were detectable prenatally. The age range at our evaluation was
1-49 years with the mean age 14.5 years, and the median 7 years.
Five patients were greater than 40 years old. The male to female ratio
was 1:1.3 (15 males to 20 females, binomial P~ 0.5).

All 35 individuals had asymmetric, disproportionate over-
growth, which was sporadic, and had a progressive course. This
overgrowth was predominantly in the limbs or fingers/toes (Fig. 2
A—G). More individuals had involvement of the lower extremities
(24/35) than upper extremities (6/35, P=0.041), and three of 35
had overgrowth of both upper and lower extremities. The remain-
ing two of 35 patients had overgrowth involving the midline (back,
trunk) and no extremities. The extent of involvement of the
extremities in descending order of frequency, was: combinations
of toes, feet, leg (N =14) > toes and feet (N =6) > toes only (N
= 3) > fingers and hands (N =2) or hand and arm (N = 2) or toes/
feet/leg and fingers (N =2) > legs only (N = 1). Two of the patients
with the combination of toes, feet and legs affected also had
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Patient Anatomical source® Tissue mutation level (%)° Cultured cells mutation level (%)°
1 Fatty tissue—left toe 13 =
H1047R
2 Bone—left second toe — 28
H1047R Skin—left second toe — 17-28
3 Skin—right third finger 50 —
H1047R Bone—right third finger 8 =
4 Neural—right third finger 5 —
H1047L Blood 0 =
Saliva 0 —
5 Skin—left 2nd toe 5 -
H1047L Blood 0 —
6 (N68) Skin—left second finger ulnar surface — <1-5
H1047R Blood 0 —
7’ Subcutis—left second toe = 17
H1047R Bone—left second toe = 10-23
8 (N110] Skin—medial tip of second left toe ? 31
H1047R Blood 0 —
9 Skin piece 1—left foot = 29
E542K Skin piece 2—left foot — 24-28
10 (N104) Skin—left hand — 2
H1047R Blood 0 —
11 Skin—right great toe 3 6
H1047R Skin—right ankle 2 2
Skin—left thigh 0 0
Skin—upper left arm 0 0

12 Skin—left foot = 24
H1047L Fatty tissue—left foot — 24
Blood 0 =
13 Skin—left toe = 25
H1047L Blood 0 =
14 (N109) Skin—dorsal left foot 12-26 24-37
H1047R Blood 0 —
15 Skin—right foot 9 —
E545K Blood 0 =
16 H1047R Fibrofatty tissue—right side of abdomen 1 —
17 (N99) Growth plate—left second toe proximal phalanx 31 —
H1047R Growth plate—left second toe middle phalanx 22 —
Growth plate—left second toe distal phalanx 25 =
Growth plate—left third toe proximal phalanx 27 —
Growth plate—left third toe middle phalanx 9 —
Growth plate—left third toe distal phalanx 14 =
Skin—webbing between second and third toes = 33
Bone—left talus = 3-6
Bone—phalanx, right second toe = 4-10
Nerve—left foot = 9
Vessel 1—left foot = 25

Vessel 2—left foot — 14
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Patient Anatomical source® Tissue mutation level (%)° Cultured cells mutation level (%)°
Blood 0 —
18 Fibrofatty tissue—right foot 39 =
H104°7L Saliva 0 —
19 Nerve—left anterior tibial nerve I —
H1047R Nerve—left posterior tibial nerve ?’ 26
Adipose tissue piece 1—posterior left leg 9 29-33
Adipose tissue piece 2—posterior left leg 10 27-33
Connective tissue—posterior left leg — 4
Muscle—posterior left leg 3 0-1
Tendon—posterior left leg 0 0
Skin—posterior left leg 4 8-22
20 Skin—left forearm — 2
H1047R Skin—right forearm = 0
Lipoma—Ileft forearm 25 —
Blood 0 —
21 (M001) Adipose tissue—left leg 39 —
H1047L Muscle—left leg 33 =
Fibrous tissue—left leg 32 =
Skin—left leg 24 50
Bone—left leg 8 =
Skin—left arm 0
Blood 0 —
Saliva 0 _
22 (N?) Articular cartilage—left foot — 33
H1047R Adipose tissue—left foot = 88
Bone—left foot = 33
Skin—left foot — 33
Muscle—left foot = 16
Deep tissue—left foot — ’
Blood 0 —
23 (N108) Skin—left leg 3 —
H1047L Adipose tissue—left leg 4 =
Blood 0 =
24 Lymphatic malformation—back <1-1 =
E545K Skin over lymphatic malformation—back 0 =
Blood 0 —
25 Skin—right foot, second metatarsal I 12-15
E545K Growth plate—right foot, second metatarsal 11 15-17
26 Skin, left buttock — 4
H1047R Skin, right upper inner arm — 0
27 (N45) Skin—ankle = <1-2
H1047R Blood 0 —
28 Fat and fascia—left proximal tibia 0 0
E545K Fat and fascia—left distal femur 1 3
Soft tissue—foot 6 -
Growth plate—toe — 11
Normal skin—left tibia 0 0
29 Lymphatic malformation—left trunk — 5
E542K Skin—left leg = <1
30 Skin—abdomen I 0
H1047R Tonsil—left 0 0
Tonsil—right 0 0
Blood 0 =

(Continued)
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Patient Anatomical source® Tissue mutation level (%)° Cultured cells mutation level (%)°
31 LVEN—right side of neck; keratinocytes — 26
ES542K LVEN—right side of neck; fibroblasts = 0

Skin—right side of neck; keratinocytes — 0
Skin—right side of neck; fibroblasts — 0
Blood 0 =
32 Skin—back ; keratinocytes = 47
C420R Skin—back; fibroblasts — 39-52
Skin—left dorsal foot 12 48
Blood =
33 Skin—left post. thoracic spine 25 —
H1047R Blood 0 -
34 Angiokeratoma—trunk 5 9
H1047R Lipoma—trunk 22 22
Skin over lipoma—trunk 6 30
Normal skin and fat—trunk 3 13
Blood 0 —
35 Spinal tissue—1st Neurofibroma ’ —
H1047L Spinal tissue—2nd Neurofiboma 3} =
Dermis—posterior thoracic region 0 —

“Description of the source tissue for mutation analyses.

hPercentage of mutant allele as determined by the appropriate custom PCRrestriction assay in DNA extracted dircetly from tissue. Range indicates mutation levels if multiple extractions were done from the

same specimen.

“Percentage of mutant allele as determined by the appropriate custom PCR restriction assay in DNA extracted from cultured cells. Range indicates mutation levels if multiple cultures were established from

the same specimen.

unilateral involvement of the orbit and cheek, and one had asym-
metric overgrowth of the chest and torso. Two patients had
involvement of the chest and torso, but not the limbs. The distal
portion of the limbs was often the first to show observable over-
growth and subsequent progression more proximally. For example,
multiple patients who initially presented with only macrodactyly of
the toes had progression to the foot followed by involvement of the
leg. The proximal portions of the limbs were almost never affected
alone without involvement of distal structures. There was only one
patient identified with only an affected leg and none with only an
affected arm.

Twenty-one of 35 (60%) had unilateral overgrowth, with 15/21
(71%) being affected on the left side (binomial P=0.078). Twelve
of 35 had bilateral involvement in which seven of the 12 had the left
side more affected than the right (binomial P=0.774). Overall, the
left was affected more than the right in 22/33 patients (P=0.081).
The tissues involved in the overgrowth were fibrous, lipomatous,
vascular, and skeletal. Information regarding infiltration of lipo-
matous tissue into the muscle was available on 21 patients and
occurred in 12/21 (57%) of these patients. Adipocellular invest-
ment into internal structures was identified in nine patients and
involved the viscera (liver, spleen, pancreas), intestines, mediasti-
num, and spine (Fig. 3A-C).

Regional reduction of adipose tissue occurred in of 10 of 33
patients (30%) and involved the upper extremities and/or torso
(chest/upper abdomen) in all these individuals, one of whom also
had reduced adipose tissue of the leg unaffected by overgrowth
(Fig. 3A1, A2 and B2, B4). Patient 22 had increase in subcutaneous
fat in the areas where he previously had reduced adipose tissue after
resection of areas of adipose overgrowth; he also maintained

normal weight to height ratio despite having the multiple large
masses.

None of the patients we report met the diagnostic criteria for
Proteus syndrome [Biesecker, 2006], although all the patients met
the general criteria, and some exhibited components of the three
specific diagnostic criteria categories. Specifically, none had cere-
briform connective tissue nevi (CCTN). A linear epidermal nevus
was present in 4/35 patients (Fig. 4A and B), while an ovarian cyst
was documented in two patients, and one individual had an
unilateral ovarian cystadenoma. Dysregulated adipose tissue (ei-
ther lipomatous lesions or regional lipohypoplasia) was seen in all
patients, and there were 15/35 patients (43%) with vascular mal-
formations, including capillary venous or lymphatic malforma-
tions. Some of these 15 individuals had combined venous/
lymphatic malformations. However, there were no individuals
with lung bullae, nor the Proteus syndrome facial phenotype.

Other limb findings included postaxial or preaxial polydactyly
and cutaneous syndactyly, which involved only the toes. In partic-
ular, four had polydactyly: two with postaxial polydactyly (one
unilateral left foot and one bilateral feet), one central and one with
preaxial polydactyly (of the hallux). There were seven with cutane-
ous syndactyly: two with unilateral 2-3 toes, two with unilateral 2—4
toes, one bilateral with 2-5 toes (Right) and 2—4 toes (Left), and two
unspecified (Fig. 5A-C).

Kidney abnormalities were reported in 11/26 (42%) of patients
evaluated. These abnormalities included nephrogenic rests, pel-
viectasis, dilated ureters, hydronephrosis, duplicated renal arteries,
renal cysts, and enlarged kidney(s). One patient thought to have
Wilms tumor by imaging instead had benign renal lesions (neph-
rogenic rests on pathological examination).
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FIG. 1. Genotype/Phenotype Correlations in 35 patients with the
predicted amino acid changes from PIK3CA mutations. When the
predicted mutations are categorized by the two main functional
domains of the protein (coiled vs. catalytic domains), there is a
correlation of the domain location and phenotype (P = 0.0014).

Other skin abnormalities included a dermal melanocytic nevus,
café-au-lait macules, hypopigmented macules, cutis marmorata,
pigmented nevi, and patchy hyperpigmentation in 12/33 (36%)
patients. Other malformations (minor and major) found in these
patients (13/34 or 38%) included one patient with two cerebral
infarcts (one was neonatal in onset), one with hemimegalencephaly,
one with congenital heart defects (multiple VSDs, ASD), inguinal
hernias, bowel malrotation, hip subluxation/dislocation, spina
bifida occulta, tethered cord, extra segments in the vertebrae,
uterine fibroids, and splenic cysts, and the remainder with minor
anomalies including one with ganglion cyst and one with right pre-
auricular pit. One patient had type 1 diabetes mellitus. Spinal and
major nerve neurofibromas were also reported in two patients.
Patient 35 had biopsy-proven spinal neurofibromas removed at
several levels; NFI, NF2, and PTEN genes had been tested and were
normal. These patients did not have other manifestations of
Neurofibromatosis, types 1 or 2. In Patient 21, her lumbosacral
plexus had multiple nodular lesions on MRI that have been
asymptomatic.

Growth patterns (weight and height) were generally normal with
weight and heights between the 25th and 95th centiles, with the
exception of three patients with heights < 5th centile. Head circum-
ferences showed macrocephaly or relative macrocephaly in eight of
27 (30%) patients.

Developmental milestones and cognitive abilities were appar-
ently normal in almost all individuals, except for two who had
developmental delays on their evaluations at 8 months in two
patients, and one who had delay at 2 years. The latter patient

had hemimegalencephaly. The patient with two cerebral infarcts
found in the neonatal period had normal cognitive testing at 4 years
of age. One patient was reported to have ADHD, but primary test
data were not available.

Patient 21 had a history of thrombosis in a spinal vertebral artery,
but no associated abnormality of vasculature. There have been no
identified malignancies in these patients.

Twenty-nine individuals had surgeries to manage overgrowth.
Fifteen had amputations of the affected leg or digits. In multiple
patients, there was continued growth in the affected limb after
surgical amputation.

DISCUSSION

The recent finding of PIK3CA mutations in a spectrum of over-
lapping forms of overgrowth affords the opportunity to gain insight
into the pathophysiologic basis of these conditions, and suggests
that a reappraisal of current clinical classification is timely. This
study provides a clinical and molecular evaluation of 35 patients
with PIK3CA somatic mutations.

Novel Findings

Novel overgrowth findings in these patients included: adipose
dysregulation present in all patients, unilateral overgrowth that
was predominantly left-sided, overgrowth that affected the lower
extremities more than the upper extremities and progressed in a
distal to proximal pattern, and in the most severely affected patients
was associated with marked paucity of adipose tissue in unaffected
areas. While not statistically significant, when overgrowth was
asymmetric, it was often left-sided. Larger patient numbers are
needed to assess whether this is significant. The underlying mecha-
nism for the observed distal to proximal pattern of progression of
overgrowth with only one patient showing earlier proximal in-
volvement is unknown at present. There also was statistically
significant association of genotypes with phenotypic groupings
within the spectrum of PIK3CA somatic mutations. All but two
of the patients with the phenotype most consistent with either FAO,
HHML, or macrodactyly designations had a mutation in the
catalytic domain (codon1047), while the majority of patients
with the CLOVES syndrome designation had mutations in the
coiled domain with a P value of 0.0014 (Fig. 1).

Clinical Classification

The previously reported phenotypic descriptors in patients with
PIK3CA somatic mutations included FAO [Lindhurst et al., 2012],
HHML [Biesecker et al., 1998] and CLOVES syndrome [Sapp et al.,
2007; Alomari, 2009; Kurek et al., 2012], isolated macrodactyly
[Rios et al,, 2013], and the megalencephaly syndrome, MCAP
[Riviere et al., 2012]. The present study focused on patients with
non-CNS phenotypes. Patients previously diagnosed with FAO,
HHML, CLOVES syndrome, and isolated macrodactyly [Lindhurst
et al., 2012; Kurek et al., 2012; Lee et al., 2012; Rios et al., 2013] had
considerable overlap and we were unable to discern a rational
boundary that would separate FAO, HHML, or macrodactyly. In all
three, there was congenital, static, or mildly progressive asymmetric



1726 AMERICAN JOURNAL OF MEDICAL GENETICS PART A

FIG. 2. Spectrum of overgrowth in patients with somatic PIK3CA mutations (A) Patient 2 at 13 days of age with macrodactyly of the left
second toe; (B) Patient 7 at 18 months of age (1) Dorsal view of the left foot with overgrowth following surgical resection of T2, (2) Ventral
views of both feet show overgrowth of the middle to distal ventral region of the left foot; (C) Patient 9 at 11 months of age (1-3)
Enlargement of the left T1—3 with ballooning appearance of the distal portion, and increased circumference and length of the entire left foot,
(4) X-ray of the left foot shows enlarged phalanges of T1-3; (D) Patient 15 (1) At 1 day of age, an enlarged right foot, (2) At 18 months of
age, medial deviation and progressive widening of both feet, (3) Areas of hypopigmentation on the legs and (4) back, (5) T1-weighted MRI
scan shows a cystic lesion adjacent to the lumbar spine; (E) Patient 19 at 5 years 6 months of age (1) Frontal view shows overgrowth of the
left leg following trans-tibial amputation at four years of age, (2) Posterior view of the legs, (3) X-ray of the legs shows an enlarged left
femur, tibia and fibula; (F) Patient 20 at 49 years of age (1) Enlarged left shoulder, arm and hand: left F4, 5 appeared normal, left F2,3 are
missing following surgical amputation, and there is a 2 cm lipoma between the PIP and DIP joints of F4, (2] Left F1 is enlarged and surgically
repositioned, (3) X-rays show her hand following surgical resection of F2, 3 and an enlarged left humerus; (G) Patient 28 at 10 years of age
(1 and 2) Enlargement of the feet and legs, more severe on the left, (3) Enlargement and angular deformity of the right F3, 4, (4) X-rays of
the hands show bone and soft tissue overgrowth of the phalanges of the right F3, 4, (5) X-rays of the feet: left foot shows four toes following
surgical resection of T2, 3 and overgrowth of the metatarsals, the right foot shows four toes with absent T2, overgrowth of metatarsals and
phalanges of T1 and T3, bony fusion with an “H” configuration of metatarsals of T1 and T3, and small second cuneiform.
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FIG. 3. Spectrum of overgrowth in patients with somatic PIK3CA
mutations. A: Patient 26 at 14 years 6 months of age (1)
Frontal view shows the upper body lipohypoplasia and bilateral
leg overgrowth, more severe on the left, (2) Dorsal view of the
feet show bilateral postaxial polydactyly with more severe
overgrowth of the left foot, (3) X-rays of the feet: the right foot
shows marked overgrowth of the metatarsals of T1—4, unusual
epiphyses of all rays, and a supernumerary metatarsal, the left
foot shows six toes with an enlarged metatarsal of T1 and
proximal fusion of the metatarsal bones, (4) MRI of the lateral
spine shows a large mass over her upper thoracic region;
multiple neural foraminal masses at several levels in the
thoracic spine, some of these are associated with dural ectatic
changes and prominent CSF in the nerve root sheath, (5) MRI
scan of the legs shows extensive soft tissue overgrowth,
primarily in the fatty tissues with fat tissue intermixed with
muscle in the left leg, (6 and ?) X-rays of the pelvis and legs
show marked asymmetry and enlargement of the left hemipelvis
and leg, completely dislocated left hip with unusual overgrowth
pattern of the lesser trochanter and proximal femur, an enlarged
left distal femur, particularly the medial femoral condyle, a
displaced left patella, an abnormal configuration of the left

1727

overgrowth associated with areas of increased subcutaneous adi-
pose tissue. This study included four patients who had only macro-
dactyly, although this macrodactyly was also associated with
overgrowth of adipose tissue.

The CLOVES syndrome manifests prenatal asymmetric over-
growth that is primarily proportionate in nature [Sapp et al., 2007;
Alomari, 2009]. Affected persons commonly had splayed feet and
toes. The vascular malformations were most commonly combined
lymphatico-venous anomalies with cutaneous blebbing and weep-
ing. The lipomatous nature of the overgrowth was characterized by
overgrowth of fat within normal fatty fascial planes and linear
verrucous epidermal nevi. CLOVES syndrome has also been asso-
ciated with CNS abnormalities [Sapp et al., 2007; Alomari, 2009];
there was only one patient with hemimegalencephaly confirmed in
this series. The patients described here were previously designated
as having CLOVES syndrome if they had congenital lipomatous
overgrowth, vascular malformations, and skeletal/spinal involve-
ment with or without the presence of the epidermal nevi. Three of
nine patients with the phenotype of CLOVES syndrome had
epidermal nevi. One of the four patients in this study with clinical
findings of Epidermal Nevus Syndrome had epidermal nevi. On

anterior tibia, and an enlargement and bowing of the left fibula,
subluxation with shallow acetabulum of the right hip, and
overgrown and elongated right fibula and greater trochanter, (8)
X-rays of the spine show scoliosis of the mid-thoracic spine
centered at T6, and elongated and overgrown lower thoracic and
lumbar vertebral bodies; (B) Patient 30 at 4 years of age (1)
Posterior view of her whole body shows multiple lipomatous
lesions involving her abdomen, chest and back, and upper body
lipohypoplasia, (2) Views of her legs and feet show asymmetry
of the leg positioning and size, widened feet with splayed toes
with the left side larger than the right, and the left leg with
prominent superficial veins, (3) Lateral view shows her barrel-
chest and prominent abdomen with multiple lipomatous masses
involving her abdomen and back, (4) Frontal view shows her
chest and arms with lipohypoplasia, and protuberant abdomen
with multiple lipomatous masses, (5) MRI scan of the lateral
lower thoracic, lumbar and sacral vertebrae shows multi-level
foraminal soft tissue masses, some of which are associated
with dural ectatic changes, and subcutaneous soft tissue
masses most compatible with the lipomas involving the back,
and the extra segmentation in coccyx, (6) X-ray of the pelvis
and upper legs shows right hip dislocation, abnormal acetabulum
and femoral head; (C) Patient 31 at 43 years of age (1)
Posterior view of her head, back and abdomen shows multiple
masses and scars on her back from surgical excision of the
venolymphatic malformations, and an epidermal nevus on her
right cheek and pinna, (2) X-ray of the spine shows thoraco-
lumbar scoliosis following surgical rod placement, (3-5) MRI
scans of the chest, abdomen, and pelvis show scoliosis, marked
fatty intermixture of the paraspinal muscles, splenomegaly with
multiple cysts, irregular enhancement of the muscles of the
posterior chest wall on the left, obesity with marked intra-
abdominal fat, periaortic and paracaval foci compatible with
additional collateral vessels or small vascular masses, and
grossly normal caliber of the superior and inferior vena cava, the
thoracic and abdominal aorta, and the common iliac vessels.
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FIG. 4. Epidermal nevi and vascular malformations in patients with somatic PIK3CA mutations. A: Patient 31 at 43 years of age shows an
epidermal nevus involving the right cheek, pinna and neck, (B) Patient 32 at 46 years of age shows an epidermal nevus and vascular
malformation involving the abdomen, (C) Patient 28 at 10 years of age shows a vascular malformation involving the left trunk

reviewing all of the patients here, we conclude that it may be difficult
to distinguish those patients described as having CLOVES syn-
drome from more severe FAO/HHML if they have an epidermal
nevus or vascular malformations.

We conclude that the phenotypic descriptors of FAO, HHML,
and macrodactyly associated with PIK3CA mutations are not
sufficiently distinct to warrant separate clinical descriptors.
Further, the descriptor of CLOVES syndrome may reside at an

extreme of the spectrum formerly including FAO, HHML, and
macrodactyly.

Many of these patients had previous diagnoses including Klip-
pel-Trenaunay syndrome (KTS) and Proteus syndrome, however,
they did not meet published diagnostic criteria for either condition.
Once again, however, there was overlap of findings in these patients
with those disorders. Klippel-Trenaunay syndrome manifests both
overgrowth and vascular malformations. However, in KTS the
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FIG. 5. Polydactyly and cutaneous syndactyly. Patient 26 at 14
years 6 months of age (A) Dorsal view of the left foot and (B)
Ventral view of the left foot show both show widening and
postaxial polydactyly with shortened T5, 6 and partial cutaneous
syndactyly of T2, 3, and wrinkling of the skin of the sole of the
foot, (C) Dorsal view of the feet and ankles shows bilateral
postaxial polydactyly, overgrowth of the left foot and leg, and
the right foot with decreased subcutaneous tissue, prominent
veins, and abnormal toes including small T1, 6, complete
cutaneous syndactyly of T3, 4, and overgrowth of T3, 4, 5.

overgrowth is generally ipsilateral and overlapping with the vascu-
lar malformations. The typical vascular malformation is the lateral
venous anomaly, and the skeletal overgrowth lacks the distortion
and progressivity seen in persons with Proteus syndrome [Biesecker
et al., 1998; Cohen, 2000], and the patients reported here. More-
over, the patients currently described lack the hallmark skin finding
of Proteus syndrome (CCTN), as noted in Table II.

Genotype—Phenotype Correlation

Our data suggest that some genotype—phenotype correlation may
exist, that is, there are recognizable patterns of overgrowth associ-
ated with the five different mutations identified in these 35 patients.
The most frequently identified PIK3CA mutation was in codon
1047 (27 patients), and the predominant feature in patients with

that mutation was a progressive, mosaic phenotype of FAO with
other areas of deficient adiposity in those with severe overgrowth,
but less frequently associated with vascular malformations. Of the
27 patients with codon 1047 mutations, 19 had p.His1047Arg
substitution and eight had p.His1047Leu substitution. Of these
27 patients, 14 were previously diagnosed by us as having FAO, five
were diagnosed with HHML, four were diagnosed with macro-
dactyly, three were diagnosed with CLOVES syndrome, and one
with possible Epidermal Nevus Syndrome.

Those having a phenotype more compatible with CLOVES
syndrome had a mix of less frequently observed mutations, includ-
ing p.Glu542Lys, p.Glu545Lys, and p.Cys420Arg, as well as p.
His1047Arg, similar to the six patients reported by Kurek et al.
[2012]. Genetic studies of further patients with CLOVES syndrome
may provide a better understanding of the distribution of causative
somatic mutations within PIK3CA.

The mutations within PIK3CA were detected in affected tissues or
cultured cells at varying levels, but not detected in the blood (in 21
patients) or saliva (in three patients). There was not a clear correla-
tion of mutation level in either tissues or cultured cells to either the
quality (nature) of the manifestations or the overall severity of the
manifestations. Patient 1, who was considered to be mildly affected,
had a mutation burden of 31% in the sampled affected tissue,
whereas in Patient 21 the mutation burden was only 7% in the
sampled tissue. We hypothesize that the overall lack of correlation of
severity to mutation burden emanates from the severe sampling
limitations. Our ability to sample tissues is limited both by human
subjects considerations and practicality. Indeed, we predict that in
the more mildly affected patients, the many unaffected areas of their
bodies would show a low or zero level of the mutation, which would
contrast with patients who had extensive areas of overgrowth. In
contrast to our results showing an association of keratinocyte versus
fibroblast mutation level with the nature of the cutaneous mani-
festations of Proteus syndrome [Lindhurst et al., 2014], the present
study only assayed fibroblasts from biopsies.

Increased and Decreased Adipose Tissue

Some patients had striking lipoatrophy in areas not affected by
overgrowth, which occurred in those who had more severe over-
growth. Further, this finding was more common in patients with
CLOVES syndrome (4/9, 44%) or more severe manifestations of
FAO/HHML (6/21, 28%). Interestingly, in one patient (Patient 22),
when the overgrown adipose tissue was resected, there was increased
deposition of fat in the areas with previously decreased adipose
tissue. These observations raise questions about the role of PI3K
signaling in regulation of body fat deposition. Lindhurst et al. [2012]
suggested that the adipose tissue paucity in the non-overgrown areas
of the patients is caused by chronic negative energy balance of
adipose depots consequent to the demands of the pathologically
growing and energy-sequestering adipose tissue in affected regions.

PI3K signaling activates the serine/threonine kinases AKT1,
AKT?2, and AKT3. AKT1 is most widely expressed, and is associated
with growth [Chen et al., 2001], consistent with the Proteus
phenotype, while AKT2 is highly expressed in insulin-responsive
tissues including skeletal muscle, liver, and fat, and is more closely
implicated in the metabolic actions of insulin [Whiteman et al.,
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2002]. AKT3 is most highly expressed in brain and heart, with lower
expression in the tissues affected in the current patients. Somatic
occurrence of both AKT2 and AKT3 p.Glul7Lys mutants, paral-
ogous to the Proteus-associated AKT1 mutation, have been de-
scribed. The AKT2 mutation causes severe insulin-independent
hypoglycemia, mild asymmetric overgrowth, and progressive obe-
sity [Hussain et al., 2011], while the AKT3 mutation was associated
with brain overgrowth [Poduri et al., 2012; Rivere et al., 2012].
There was no evidence of either insulin resistance or hypoglycemia,
except in one patient who had infiltration of the pancreas with
fibroadipose tissue. The type 1 diabetes in this patient was attrib-
uted to the typical autoimmune pathophysiology based upon
testing, and not from the pancreatic involvement with FAO.

Polydactyly and/or cutaneous syndactyly was seen in nine patients
and exclusively involved the toes with variable pattern of involve-
ment. The pattern of cutaneous syndactyly involved toes 2-3 and 2—
4 most commonly. The frequency and pattern of polydactyly and
cutaneous syndactyly in these patients suggests this is a manifesta-
tion of this spectrum of disorders. The mechanism for this finding is
not known. However, this finding points to an early defect in limb
patterning and involvement of the PI3K/AKT signaling pathway.
One hypothesis is that the PI3K gene interacts with other genes
involved in limb patterning, including GLI3. Interaction of PI3K
and AKTI with GLI3 has been demonstrated in a novel KRAS-
initiated pathway leading to VMPI in cancer cells [Lo Re et al.,
2012]. Alternatively, we speculate that the overgrowth of the feet in
these patients may interact with normal patterning signals and
gradients, but produce polydactyly due to the increased size of the
limb. In support of this hypothesis, studies by Bouldin and Harfe
[2009] using the Dorking chicken mutant found that over-prolif-
eration due to FGF signaling caused polydactyly. In addition Lu
et al. [2005] found that over-expression of Fgf4 resulted in poly-
syndactyly in the mouse. As FGF signaling is not a primary
determinant of anterior—posterior patterning and is instead a
determinant of AER size and limb growth, we suggest that activa-
tion of the AKT/PIK3CA pathway analogously increases AER and/
or limb bud size.

Macrocephaly (OFC>90th centile) was present in 30% of
patients in this study. There was only one patient with a central
nervous system abnormality, hemimegalencephaly, but this is likely
attributable to our ascertainment bias.

Urinary and kidney abnormalities were found in approximately
40% of the patients; however renal function was normal. Renal
underdevelopment or agenesis has been reported in CLOVES
syndrome, but not in those with FAO or macrodactyly [Alomari,
2009; Kurek et al., 2012; Lindhurst et al., 2012].

Onset of overgrowth in the majority of patients was congenital and
documented prenatally in four. Often, there was infiltration of the
fibroadipose tissue into muscle and visceral organs often causing
secondary enlargement; therefore, the overgrowth primarily was in
fibroadipose tissue rather than from enlargement of the actual
muscle or visceral tissue. The nature of the overgrown tissue was
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best exemplified by patient 19, where serial sections of an ampu-
tated leg show that this limb was almost entirely fibroadipose tissue,
but also demonstrated radiolographically in patients 17 and 26.
Furthermore, the overgrowth was progressive in all patients, in size
and sometimes also in location with spread involving adjacent
areas. However, bilateral involvement did not correlate with the age
of the patient at evaluation, suggesting that bilateral manifestations
are not simply due to age.

Treatment of segmental overgrowth disorders has relied upon
surgical debulking [Biesecker, 2006] and orthopedic procedures to
limit growth [Tosi et al., 2011]. The majority (83%) of these 35
patients had surgical interventions for their overgrowth, many with
multiple surgeries including 43% with amputations of affected
limbs and or digits. These interventions occurred throughout the
patients’ early childhood and into adulthood. It is clear from the
patients presented herein that there is marked variability in rate of
progression and number of complications. More longitudinal
clinical data are needed regarding natural history on the effects
of rate of overgrowth at different ages and after surgical debulking.

While there were no identified malignancies in these patients, two
patients had tumors, one with potential premalignant findings of
nephrogenic rests, and another with ovarian cystadenoma, which
has not been reported previously. In addition, Kurek et al. [2012]
reported one patient with p.His1047Arg mutation having Wilms
tumor. The catalytic subunit of phosphatidylinositol-3-kinase
(PI3K) is somatically mutated in many cancers including colorectal,
ovarian, breast, and hepatocellular carcinomas, and in glioblastomas
[Vivanco and Sawyers, 2002; Campbell et al., 2004; Lee et al., 2005;
Levine et al.,, 2005; Li et al., 2005; Velho et al., 2005; Yuan and
Cantley, 2008]. These PIK3CA mutations were located mostly at
hotspots within the helical domain (encoded by exon 20), and they
resulted in gain of function mutations that were implicated in
oncogenicity [Samuels et al,, 2004; Ikenoue et al., 2005; Kang
et al.,, 2005]. Recently, Cizkova et al. [2013] found that patients
with HER2-positive breast cancer, having PIK3CA mutation posi-
tive tumors, which were treated with trastuzumab, had a worse
outcome than those with wild-type tumors. Given the prevalence of
PIK3CA codon H1047 mutations in cancer, a critical consideration
is whether patients with these mutations are at increased risk of
malignancy. Transgenic expression of the Pik3ca p.His1047Arg
mutation in lung [Engelman et al., 2008], or breast epithelium
[Adams et al., 2011; Meyer et al., 2011] in mice has been shown to
produce malignant tumors. However, in these studies mutant Pik3ca
was overexpressed, potentially exaggerating its oncogenicity. Ex-
pression of Pik3ca p.His1047Arg at endogenous levels in mouse
ovaries did not produce tumors after 1 year [Kinrossetal.,2012]. Itis
possible that expression at endogenous levels in the cellular context
of human mesodermal lineages has more benign consequences than
implied by the mouse models overexpressing mutant Pik3ca. It is of
note that codon 1047 oncogenic PIK3CA mutations are common in
benign seborrheic keratoses and epidermal nevi in humans [Hafner
et al,, 2007], demonstrating that there is no obligate association of
these mutations to malignancy. However, longitudinal studies are



KEPPLER-NOREUIL ET AL.

needed to properly assess this potential risk and to formulate
surveillance recommendations, should such a risk be identified.

Current recommendations for tumor surveillance are based
upon a reported Wilms tumor in a patient with CLOVES syn-
drome [Kurek et al., 2012] and of nephrogenic rests (a premalig-
nant tumor) in one of the patients reported here. Although the
evidence is not sufficient to demonstrate high risk, it may be
prudent to consider serial abdominal ultrasounds every 3—4
months until age 8 years in all patients with a somatic PIK3CA
mutation similar to the recommendations in isolated hemihyper-
plasia and Beckwith—-Wiedemann syndrome. In addition, because
of the finding of spinal root and major nerve neurofibromas, as
well as lipomatous lesions involving the spine, neurological mon-
itoring, and spinal MRI scan should be considered in patients with
truncal involvement. Finally, a reported risk of pulmonary em-
bolism in patients with CLOVES syndrome having thoracic and
central phlebectasia [Alomari et al., 2010] and as presented in this
series, spinal thrombosis in patient 21 and neonatal cerebral
infarcts in patient 30 suggest that it is important to be aware of
the possible associated thrombosis risk in this group of patients. It
is known that the related disorder, Proteus syndrome also has an
increased risk of thrombosis, and consideration of anticoagulant
prophylaxis is recommended in patients undergoing surgery or
other procedures that may predispose to deep venous thrombosis
or pulmonary embolism.

These patients should be monitored for other potential associ-
ated complications, including vascular malformations and skeletal
and spinal abnormalities. More specific recommendations for
surveillance will be forthcoming based upon analyses in a larger
population of patients with PIK3CA somatic mutations.

The results of this study highlight the need to collect specific clinical
data prospectively to design future clinical trials. Clinical informa-
tion regarding the assessment of cosmetic and functional param-
eters affected by the overgrowth, including but not limited to
mobility, extent of vascular malformations and its associated risks,
ventilation and metabolic status is essential in these patients to
understand natural history fully, as well as to evaluate treatment
effectiveness. Future targeted therapies may be possible with the
identification of activated PI3K/AKT signaling, either through
inhibition of PI3K, of AKT, or of downstream pathways such as
mTORCI, using clinically available drugs. Rapamycin was report-
edly beneficial in a child with type II segmental Cowden syndrome
associated with PTEN deficiency [Marsh et al., 2008]. Patients with
colorectal cancer and tumor positive for PIK3CA mutations, who
are treated with aspirin may have prolonged survival [Ogina et al.,
2013; Printz, 2013; Sahin and Garrett, 2013; Viudez et al., 2013].
Intensive efforts are underway to develop novel inhibitors for use in
cancer. The progressive nature of this disorder makes it a good
target for pharmaceutical therapy because downregulation of the
pathway may prevent the disease progression that is seen in many of
the patients reported here.

In conclusion, based upon the results of this clinical and molec-
ular analysis of 35 patients, we propose that the clinical entities
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formerly described as FAO, HHML, macrodactyly, and CLOVES
syndrome caused by PIK3CA somatic mutations represent a single
phenotypic spectrum. CLOVES syndrome represents a more severe
subset of that spectrum. In addition, previous authors [Lee et al.,
2012; Mirzaa et al., 2012; Riviere et al., 2012] have described the
megalencephaly syndromes that have overlapping findings with
CLOVES, FAO and HHML. Therefore, we propose the phenotypic
designation of PIK3CA-Related Overgrowth Spectrum. While
Mirzaa et al. [2013b] proposed a similar designation, “PIK3CA-
related segmental overgrowth”, our designation is distinct for the
following reasons: (1) the absence of the term “segmental” because
there are patients having the PIK3CA somatic mutation who
present with bilateral and systemic involvement, and (2) the
inclusion of the term, “spectrum” to emphasize that there are
different but related phenotypes rather than one specific phen-
toype. Thereis evidence of a correlation of genotype and phenotype,
with CLOVES syndrome associated with coiled domain mutations
and the FAO/HHML/macrodactyly phenotype associated with
mutations in the catalytic domain. The overgrowth findings
most commonly involve the lower extremities. Our data also
suggest that the distal limb is affected more often than is the
proximal segment, and with progression involves more proximal
structures. Other characteristic associated findings include poly-
dactyly (all types) and cutaneous syndactyly (together or separate-
ly), kidney and urinary tract abnormalities, and occasionally,
abnormalities of the ovaries (cysts) and testes (hydroceles). Longi-
tudinal studies of larger cohorts are needed to determine the rate
and extent of bony and muscular involvement, as well as the
pathogenetic mechanisms causing the distinct manifestations as-
sociated with somatic PIK3CA mutations. We recommend testing
for the PIK3CA mutations on affected tissues in a patient presenting
with any of the key features described herein.
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