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Climate risks increase with mean global temperature1 so knowledge about the amount of 

future global warming should better-inform risk assessments for policymakers. Expected 

near-term warming is encapsulated by the Transient Climate Response (TCR), formally defined 

as the warming following 70 years of 1 % per year increases in atmospheric CO2 concentration,

by which point atmospheric CO2 has doubled. Studies based on Earth’s historical energy 

budget have typically estimated lower values of TCR than climate models, suggesting that 

some models could overestimate future warming.2 However, energy-budget estimates rely on 

historical temperature records that are geographically incomplete and blend air temperatures 

over land and sea ice with water temperatures over open oceans. We show that there is no 

evidence that climate models overestimate TCR when their output is processed in the same 

way as the HadCRUT4 observation-based temperature record.3,4 Models suggest that 

air-temperature warming is 24 % greater than observed by HadCRUT4 over 1861—2009 

because slower-warming regions are preferentially sampled and water warms less than air.5 

Correcting for these biases and accounting for wider uncertainties in radiative forcing based on

recent evidence, we infer an observation-based best estimate for TCR of 1.66 °C with a 5—95 

% range of 1.0—3.3 °C, consistent with the climate models considered in the IPCC 5 th 

Assessment Report. 

TCR for the Climate Model Intercomparison Project, phase 5 (CMIP5) models is defined using 

simulations in which atmospheric CO2 increases at 1 % per year and  the multi-model mean is 1.8 °C 

(1.2—2.4 °C, henceforth bracketed values refer to 5—95 % ranges).6–8 TCR has also been estimated 

from Earth’s energy budget using:

TCR=
ΔT

ΔF
Δ F

2×C O
2  (1)
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Where ΔT  is observed change in temperature, Δ F  is change in radiative forcing and

Δ F
2×CO2  is the forcing change for doubled atmospheric CO2.  Energy-budget calculations have 

recently been able to provide more constrained estimates of TCR due to increased amplitudes of

ΔT  and Δ F  relative to their uncertainties (see Supplementary Information). These 

energy-budget estimates have typically fallen below the CMIP5 multi-model mean, e.g. 1.5 °C from 

Bengtsson & Schwartz (1.0—1.9 °C)9, 1.3 °C (0.9—2.0 °C) from Otto et al. (2013)2 and 1.3 °C (0.9—2.5 

°C) from Lewis & Curry (2015)10.

The lower best estimates of TCR from these observation-based studies relative to CMIP5 may be due 

to a combination of: biases in observed temperature series,11 varying efficacy of different 

forcings,12–16 time- and history-dependence of TCR,17 internal variability,18 overestimate of forcings,19 

efficacy of ocean heat uptake,20–22 structural uncertainties in energy-budget calculations or lower 

real-world TCR.

We focus on potential biases in temperature series due to geographical incompleteness of the data 

(‘masking’) and the combination of air and water measurements (‘blending’) by applying 

energy-budget TCR calculations to CMIP5 simulations and observations. We calculate energy-budget 

TCR with the Otto et al. (2013) method, henceforth ‘Otto’, which uses differences between an early 

baseline period and a recent reference period:

TCR=

´T
2000−2009

− ´T
1861−1880

´F
2000−2009

− ´F
1861−1880

Δ F
2×CO

2  (2)

Where 
´T

2000−2009  is the mean temperature anomaly over 2000—2009, and the other symbols 

follow this format. We shift the Otto baseline period by one year to include CMIP5 simulations 

beginning in 1861 and end at 2009 due to lack of available and consistent forcing data. Our 

conclusions are robust to the choice of time period and to two other energy-budget calculation 
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methods (see Supplementary Information). As we use published radiative forcing series2,7 our 

analysis only determines the effect on calculated TCR due to changes in the ΔT  term.

The single largest contribution to the formal error in calculated TCR is, however, due to uncertainty in

Δ F . Otto used a Gaussian distribution with a 5—95 % range of ±0.58 W m-2. The IPCC 5th 

Assessment Report reports a larger uncertainty range, so we use the Otto median with uncertainties 

based on Lewis & Curry’s more-sophisticated 2015 IPCC-based uncertainty distribution, which also 

accounts for non-Gaussian behaviour and cross correlation between terms (see Methods). This range

requires scaling as it uses slightly different time periods but our result is not sensitive to this (see 

Supplementary Information). Although we focus on TCR, the equilibrium climate sensitivity (ECS) is 

another common metric:

ECS=
ΔT

ΔF−ΔQ
ΔF

2×CO
2  (3)

Where Δ Q is the system heat uptake which, being positive during warming, means that ECS is 

larger than TCR. We do not calculate ECS here to avoid uncertainties associated with ΔQ , and to 

avoid the assumption of linear climate response which is less accurate over the longer time periods 

required for equilibrium.17 However, as ΔT  is in the numerators of Equations (1) and (3), any

ΔT  bias affects each calculation equally in percentage terms.

Formally, TCR refers to global near-surface air temperature (‘tas’ in CMIP5 nomenclature) for ΔT  

while observational temperature records have incomplete and varying geographical coverage and 

combine air temperatures over land and sea ice with near-surface water temperatures over oceans. 

These differences introduce biases as warming is not spatially uniform, sea ice coverage changes and 
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as air and water temperatures are expected to change differently.4,23 While some work accounted for 

these issues, it has not yet been included in energy-budget analyses.24 

Here we use Equation (2) to calculate TCR in a consistent way from both observations and CMIP5 

simulations. For observation-based TCR, ΔT  is from HadCRUT4 and Δ F  is the Otto median 

with IPCC-like uncertainty, which updated the CMIP5 mean based on observational constraints. For 

modelled TCR, ΔT  is from the Cowtan et al. (2015)4  CMIP5 series, Δ F  is the CMIP5 forcing 

series for each model where available, and the multi-model mean otherwise7 (see Methods, 

Supplementary Information). Modelled data use the historical scenario from 1861—2005 and the 

Representative Concentration Pathway 8.5 (RCP8.5) from 2006.25 Scenario choice has little effect over

the short period 2006—2009 used in the TCR calculation but may diverge from reality in the future. 

Model temperatures are reconstructed in three ways: by using global air temperature (‘tas-only’), by 

blending air temperature over land and sea ice with ocean temperatures over water (‘blended’) and 

by blending temperatures and using the historical geographical coverage of observations in 

HadCRUT4 (‘blended-masked’). We assume that the modelled near-surface water temperature over 

oceans (‘tos’ in CMIP5 nomenclature) is equivalent to measured sea surface temperatures. Results 

are similar between models with different ocean layering: for example with 2.5 metre top-layer 

depth instead of 10 metres, suggesting tos is a robust measure of modelled sea surface temperature 

(see Supplementary Information).

The ‘tas-only’ reconstructions are used in standard model assessments of TCR, the ‘blended’ 

reconstructions represent the same reconstruction techniques as HadCRUT4 but with perfect data 

coverage and the ‘blended-masked’ reconstructions represent HadCRUT4.

Figure 1 shows the ensemble-median global temperature series for each reconstruction. Between 

1861—1880 and 2000—2009, HadCRUT4 warms slightly more (0.75 °C) than the multi-model median

(0.73 °C) in a like-with-like comparison, although modelled tas-only series warmed more (0.93 °C). 
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This effect exceeds the approximately 10 % difference quoted in Cowtan et al. (2015)4  which referred

to the blending effect only, i.e. masking increases the effect further. Supplementary Table 8 shows 

that the masking bias is largely due to undersampling of rapidly warming polar regions. The blending 

and masking effects were not accounted for in the energy-budget studies cited here, although 

masking has been considered in some other analyses.26

After applying Equation (2), Figure 2 shows that the TCR from the blended-masked HadCRUT4 series 

of 1.34 °C falls at the 33rd percentile of the blended-masked model distribution but at the 7th 

percentile of TCR derived from tas-only model reconstructions.

Figure 3 shows that the energy-budget TCR inferred from tas-only temperature reconstructions is 

consistently higher than that inferred from blended or blended-masked reconstructions, and that 

both blending and masking contribute to the median bias of 24 % in ΔT . We correct for this bias 

by updating the blended-masked TCR derived from Equation (2) using Otto data for the best 

estimates of each parameter but a scaled Lewis & Curry forcing distribution accounting for 

correlation between Δ F  and 
Δ F

2×CO2  (see Methods). Our blended-masked estimate of 1.34

°C (range 0.8—2.6 °C) is updated by applying our derived correction of 24 % (including ±2 % Gaussian

uncertainty) to this distribution. The observation-based energy-budget calculation implies a best 

estimate for tas-only TCR of 1.66 °C (range 1.0—3.3 °C, see Methods, Supplementary Information) 

consistent with the CMIP5 range. This result is robust to a variety of assumptions and correction 

approaches (see Supplementary Information). Intrinsic uncertainties in natural variability, model 

structure and real-world Δ F  are large and improved understanding of these factors may adjust 

these results in future. Of the 24 % difference between tas-only TCR and the observation-based 

blended-masked estimate, we report that approximately 9 percentage points are due to blending 

and 15 percentage points to masking (from Supplementary Table 5).  
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Two further questions can be raised: is the difference in simulated warming rates between water and

air realistic, and what does this mean for future research and impacts?

Modelled global air temperatures warm 7—9% faster than blended air-water temperatures, with a 

component from the faster warming of air relative to water, and the remainder from changes in sea 

ice redistributing air and water measurements as discussed in Cowtan et al. (2015). We propose that 

changes in surface energy balance contribute to air temperatures warming faster: radiative 

equilibrium implies a temperature discontinuity at Earth’s surface with surface temperatures higher 

than air,27 which drives vertical latent and sensible heat fluxes. The size of this discontinuity depends 

on atmospheric optical depth such that more CO2 and warming-induced increases in water vapour 

suppress the surface temperature discontinuity, meaning greater air temperature warming. Further 

adjustments in surface energy balance associated with non-radiative heat transfer affect the 

amplitude of this effect: warming increases evaporation at the surface while condensation increases 

at altitude. The increased latent heat transfer outweighs reductions in sensible heat fluxes in 

models28 and is related to the lapse-rate feedback which acts to reduce surface warming and 

increase warming of the air aloft.

The blending effect implies a limiting case of a 7—9 % bias in model-observation comparisons for 

perfect geographical data coverage. Alternative measurements of surface and air temperatures over 

oceans are required to assess this expected bias in observations. The greatest immediate 

opportunities to reduce bias therefore appear to be in recovery efforts for historical data records29 

and improved spatial interpolation11 which should reduce the potential 24 % bias in observed global 

mean warming inferred over 1861—2009. Indeed, improved observational coverage has reduced the 

combined blending-masking bias to approximately 15 % over the period 1970—2010 (see 

Supplementary Information). This implies that future estimates of TCR will be less sensitive to this 

bias as more data become available. 
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Other research that uses temperature changes over multidecadal or longer time scales may well be 

sensitive to the choice of temperature metric and researchers should be clear about which 

temperature metric or reconstruction method they are using to minimise the risk of biases 

introduced through inconsistent comparisons. 

This issue also has considerable implications for policy discussions about limiting global average 

temperature to some particular level, such as 2 °C above pre-industrial.30 If our reported air-ocean 

warming differences are robust, then which global temperatures are relevant for policy? If it is 

decided that climate targets refer to global near-surface air temperature, then the current warming is

likely 24 % (range 9—40 %, see Supplementary Table 1) larger than reported by HadCRUT4. 

Previous energy-budget-based TCR estimates reported TCR values towards the lower end of the 

climate model range. These studies clearly highlighted their limitations, including issues of spatial 

coverage,11 time sensitivity and the efficacy of different forcings. Nevertheless Otto stated:

“Our results match those of other observation-based studies and suggest that the TCRs of some 

of the models in the CMIP5 ensemble with the strongest climate response to increases in 

atmospheric CO2 levels may be inconsistent with recent observations”

However, in our like-with-like comparison, the Otto TCR best estimate of 1.3 °C based on the 

HadCRUT4 blended-masked observational series falls at the 33rd percentile of the CMIP5 

blended-masked ensemble. There is therefore no evidence for significant disagreement between 

modelled and real-world TCR. This implies a TCR for global air temperature of 1.66 °C (1.0—3.4 °C), in

better agreement with the CMIP5 multi-model mean of 1.8 °C (1.2—2.4 °C). We conclude that 

previous analyses that reported observation-based estimates toward the low end of the model range

did so largely because of inconsistencies in the temperature reconstruction methods between 

models and observations.
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Figure 1 Median CMIP5-simulated temperature series by temperature reconstruction method compared with the HadCRUT4

observational series. (a): ensemble median temperature change relative to an 1861—1880 baseline for tas-only (red line), 

blended (magenta line with circles) and blended-masked simulations (blue line with triangles) along with HadCRUT4 

blended-masked observations (thick grey line). (b): blended minus tas-only (magenta line with circles) and blended-masked 

minus tas-only (blue line with triangles).
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Figure 2 Histograms of transient climate response (TCR) calculated for CMIP5 simulations with the observation-based 

HadCRUT4-derived value also shown as a vertical line. HadCRUT4 used with Otto median forcing, CMIP5 simulations with 

model-specific forcing where available, multi-model mean otherwise. (a) consistent comparison between blended-masked 

observations and blended-masked CMIP5 simulations, where the observations fall at the 33rd percentile of the model 

distribution (b) inconsistent comparison between blended-masked observations and global-air-temperature-derived values 

from CMIP5, where the observations fall at the 7th percentile of the model distribution.
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Figure 3 Energy budget estimates of transient climate response (TCR) using the Otto et al. energy-budget calculation 

applied to historical-RCP8.5 simulations. Values calculated from blended reconstructions (magenta circles) or 

blended-masked reconstructions (blue triangles) as a function of the tas-only derived TCR for each simulation. Best-fit lines 

shown for each case: solid magenta for blended and dashed blue for blended-masked, while the 1:1 line is shown as a 

dotted line. 
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Figure 4 Comparison of modelled and observed TCR estimated from Earth’s historical energy budget. The blue bars show 

blended-masked results, reported upwards as Otto et al.’s results using blended-masked HadCRUT4 observations, the same 

results using scaled Lewis & Curry forcing, and the range when the same calculation is applied to blended-masked CMIP5 

temperature series (one simulation per model). The red bars compare our bias-corrected estimates of tas-only TCR from 

HadCRUT4 using the Otto calculation with Lewis & Curry forcings, and the canonical CMIP5 model range. The updated 

observation-based estimate is higher due to the corrected blending-masking bias, and has a wider range due to the greater 

uncertainty in radiative forcing series used. Boxes represents 5—95 % range and thick vertical lines are the best estimate. 
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Methods

The primary results require five main steps, with further analysis and sensitivity tests available in the 

Supplementary Information. The main steps are as follows:

1) Extraction of observed and modelled temperature series

2) Best estimates of radiative forcing time series for models and observations

3) Application of energy-budget calculation

4) Deriving a bias correction for the observation-based TCR calculation.

5) Applying the bias-correction to the blended-masked observation-based value in order to 

infer the tas-only TCR from observations.

Temperature Series

The observed HadCRUT4 temperature record was taken from 

http://www.cru.uea.ac.uk/cru/data/temperature/HadCRUT4-gl.dat [downloaded 2016-03-22] while 

the CMIP5 temperature series were for the 84 CMIP5 historical-RCP8.5 simulations reported by 

Cowtan et al. (2015) with a small update to account for inconsistencies in how some models handled 

missing data and to include 2015 data. The code used for the present paper is available at 

http://www-users.york.ac.uk/~kdc3/papers/reconciled2016/ and the simulations used are listed in 

Supplementary Table 13. The Otto et al. (2013) uncertainty of ±0.20 °C for changes from 1860—1879 

to 2000—2009 is used, with ΔT  assumed to follow a Gaussian distribution based on Otto’s 

analysis of intrinsic measurement uncertainty combined with CMIP5-based estimates of internal 

variability.

For each simulation, 3 time series of temperature are calculated.

1) “tas-only” – the global mean average air temperature change. 

2) “blended” – the global mean average temperature change using near-surface air 

temperatures (“tas”) over land and sea ice, and near-surface ocean water temperatures 

(“tos”) over ice-free ocean. These are referred to as “unmasked/anomaly/variable ice” in 

Cowtan et al. (2015).

16
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3) “blended-masked” – similar to “blended” but calculated on a 5 x 5 degree with the historical 

month-by-month HadCRUT4 coverage mask applied. These are referred to as the “HadCRUT4

method” series in Cowtan et al. (2015). 

Our blended-masked simulations are designed to match the HadCRUT4 methodology as closely as 

possible, using the same gridding and following the corresponding month-by-month HadCRUT4 data 

coverage. Global temperature anomaly is determined by taking the arithmetic mean of the Southern-

and Northern Hemisphere area-weighted means, as in HadCRUT4. 

Each model’s own sea ice field is used to determine whether to use air or water temperature 

measurements: in months where sea ice is present the air temperature is used, otherwise the water 

temperature is used. As discussed in Cowtan et al. (2015), this may lead to discontinuities as sea ice 

area changes. In CMIP5 sea ice retreat occurs mostly in summer, and summer air temperatures warm

more quickly than ice-covered water temperatures which are strongly coupled to the freezing point 

of water and are insulated by the overlying sea ice. By the time sea ice melts, air temperatures have 

warmed by notably more relative to water temperatures since the reference period used in the 

anomaly calculation. The removal of ice therefore leads to an immediate jump downwards in 

reported temperature anomalies, as discussed in Cowtan et al. (2015). The use of “tos” is taken as 

the closest equivalent to observational SST records which sample near-surface water temperatures. 

Each individual CMIP5 simulation is then baselined such that the 1861—1880 mean temperature 

anomaly is zero, and the CMIP5 median then comes from the median temperature of the ensemble 

in each year.

The comparison in temperature changes shown in Figure 1 is based on the difference between the 

tas-only, blended and blended-masked simulations. The 24 % difference we report for ΔT  refers 

to the median of the set of model tas-only divided by blended-masked ΔT  values. The difference

17
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seen in Figure 1 is slightly higher as Figure 1 shows the difference of the medians rather than the 

median of the differences.  

Radiative Forcing

Radiative forcing used with HadCRUT4 to obtain the “observation-based” TCR was taken from Otto et

al. (2013). This series is largely diagnosed from models but was updated based on some 

observation-based constraints so we take it as the best understanding of real-world historical

Δ F . It uses a version of the CMIP5 multi-model-mean historical-RCP4.5 forcing with updates to 

better match observed natural variability and with an upward adjustment of 0.3 W m -2 based on 

evidence for weaker real-world cooling by tropospheric aerosol than that simulated by the CMIP5 

simulations. The weaker cooling effect of aerosols leads to an increase in the total forcing and 

therefore a lower calculated value of TCR as Δ F  is in the denominator of Equation (1).

For the CMIP5 simulation Δ F  we used the historical-RCP8.5 simulated forcing series from 

http://www.see.leeds.ac.uk/research/icas/research-themes/climate-change-and-impacts/physical-cli

mate-change/current-research/ipcc-intergovernmental-panel-on-climate-change-reports-and-forcing

s/ [last accessed 2016-03-25]. We use all models which provide a full radiative forcing time series 

from 1861 onwards. Each model uses its own forcing if available (N=54), or the multi-model mean 

otherwise (N=30). Supplementary Information shows that the TCR best estimate is not sensitive to 

this choice. 

There is substantial uncertainty in Δ F  and various values have been calculated for observational 

series. Otto et al. (2013) reported 1.95±0.58 W m-2 for the change from 1860—1879 to 2000—2009, 

while Lewis & Curry (2014) reported 1.98 W m-2 (0.99—2.86 W m-2) for the change from 1859—1882 

to 1995—2011. The Otto results represents the 5—95 % range of a Gaussian distribution, while Lewis

& Curry used updated forcing estimates from the IPCC 5th Assessment Report, accounting for 
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individual forcings and allowing for non-Gaussian distributions in some components. We build on the

Lewis & Curry forcing uncertainty as it more accurately represents the IPCC’s best understanding and 

includes a more sophisticated treatment of the cross correlations between terms.

To produce Δ F  and 
Δ F

2×CO2  distributions we use the Lewis & Curry (2014) code that is 

available at 

https://niclewis.wordpress.com/the-implications-for-climate-sensitivity-of-ar5-forcing-and-heat-upta

ke-estimates/ [last accessed 2016-04-30]. We extract 1 million samples from each of the output 

distributions. These distributions include some correlation due to the correlated uncertainty in the 

CO2 component that is present in each.

The Lewis & Curry Δ F  values are then scaled such that their medians match those from Otto 

data for 1861—1880 to 2000—2009, resulting in a distribution with the same shape as that derived 

in Lewis & Curry, a median of 1.94 W m-2 and 5—95 % range of 0.97—2.81 W m-2. This scaling is 

required to ensure that the best estimate matches the period used. 

The 
Δ F

2×CO2  distribution is then scaled such that it has a median of 3.44 W m-2 and a range of 

±10 %, consistent with Otto’s values, but maintaining the correlation with the Δ F  term as in 

Lewis & Curry.

Energy-budget calculation to obtain TCR

Temperature and radiative forcing differences were calculated using Equation (2) by taking the mean 

values for ΔT  and Δ F  from 2000—2009 and subtracting the means from 1861—1880. The 

mean forcing at CO2 doubling was taken to be 3.44 W m-2, from Forster et al. (2013). In addition, 

different time periods and the one-box calculation of Held et al. (2010) and the trend method of 
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Bengtsson & Schwartz (2013) were also assessed in the Supplementary Information and our results 

are found to be generally robust to the choice of method.

For the HadCRUT4-based estimate, the distributions of 
Δ F

2×CO2 , ΔT  and Δ F  were 

sampled 1,000,000 times to obtain the TCR distribution. Our best estimate is 1.34 °C versus 1.32 °C in

Otto due to the 1-year shift in the baseline period from 1860—1879 to 1861—1880, and possibly 

differences between HadCRUT4 versions and the skewed forcing distribution. Due to the broader 

forcing uncertainty, the range in our TCR is 0.8—2.6 °C (see Supplementary Table 12). 

For Figures 2 and 3 the best estimates of TCR according to the energy-budget calculation Equation (1)

are shown using each simulation’s temperature reconstructions (tas-only, blended and 

blended-masked) to calculate ΔT  with the model-specific Δ F  if available, and the 

multi-model mean Δ F  otherwise. For the model TCRs used in Figure 4, we use the first 

simulation of each model in the ensemble.

 Resultant TCR bias correction

Energy-budget calculations performed on blended-masked simulations were found to consistently 

underestimate the tas-only value and so a correction was determined by performing a linear 

regression of CMIP5 tas-only TCR against blended-masked TCR for the 84 available historical-CMIP5 

simulations. This linear regression was constrained to go through zero and found to have a gradient 

of 1.24±0.02 (5—95 % error, as throughout). To this precision, the same result is determined when 

using the 54 simulations for which model forcing is available. 

This result suggests that an upward revision of 24 % is required to accurately represent tas-only TCR 

given the result of a calculation using blended-masked temperature series. This 24 % value is 

appropriate for the time period used, and is found to change with time (see Supplementary 
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Information) – it was larger historically and is now tending towards approximately 15 % for 

HadCRUT4 coverage over 1970—2010 or 7—9 % for perfect coverage (i.e. blending bias only).

Applying TCR bias correction

Having obtained an adjustment factor, α , of 1.24±0.02 from linear regression, we can apply it to 

the blended-masked energy-budget TCR in order to estimate the relevant tas-only TCR from:

TC Rtas−only=α ΔF
2×CO

2

ΔT blended−masked

ΔF  (5)

We use the distributions described above with the HadCRUT4-based ΔT  and broader Δ F  

range with α  taken to be a Gaussian with the mean and error determined from the linear 

regression fit. Each of these distributions is sampled 1,000,000 times to derive a 1,000,000-member 

set of TCRtas-only values from which the median and range statistics are extracted. Our blended-masked

TCR of 1.34 °C (0.8—2.6 °C) becomes 1.66 °C (range 1.0—3.3 °C, see Supplementary Table 12). 

Alternatively α  could be sampled from the distribution of N=84 ratios of tas-only TCR to 

blended-masked TCR determined previously. Supplementary Table 13 shows that this would result in 

1.67 °C (range 1.0—3.3 °C).
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