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Abstract
More than five decades ago it was postulated that sensory neurons detect and selectively

enhance behaviourally relevant features of natural signals. Although we now know that sen-

sory neurons are tuned to efficiently encode natural stimuli, until now it was not clear what

statistical features of the stimuli they encode and how. Here we reverse-engineer the neural

code of Drosophila photoreceptors and show for the first time that photoreceptors exploit

nonlinear dynamics to selectively enhance and encode phase-related features of temporal

stimuli, such as local phase congruency, which are invariant to changes in illumination and

contrast. We demonstrate that to mitigate for the inherent sensitivity to noise of the local

phase congruency measure, the nonlinear coding mechanisms of the fly photoreceptors

are tuned to suppress random phase signals, which explains why photoreceptor responses

to naturalistic stimuli are significantly different from their responses to white noise stimuli.

Introduction
In his seminal papers [1][2] Horace Barlow postulated that sensory pathways are tuned to
detect, enhance, and efficiently encode the stimuli that are important for survival. However, as
Barlow pointed out [1], the signal transformations performed by sensory neurons are difficult
to characterize using ordinary physiological investigations. In particular, the responses of sen-
sory neurons contain components from linear and nonlinear transductions that are difficult to
separate [3].

Although it has been known for some time that sensory neurons, whether auditory [4][5]
[6], olfactory [7] or visual [8][9][10], respond nonlinearly when driven by stimuli that have
‘naturalistic’ properties, the nonlinear relationship between the statistical properties of the sti-
muli and the neuron responses—or in other words, the computations performed by these neu-
rons [11]—have not been fully characterized.

In the visual system, the detection of the boundary or edges of objects is crucial for object
segregation, categorization and recognition as well as for motion detection [12]. In this context,
the temporal structure of the retinal images is very important [12] since moving spatial edges
generated by self-motion or by moving objects produce temporal edges at the photoreceptor
level. Therefore, selectively enhancing the salience of these temporal features should facilitate
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downstream processing of the spatio-temporal visual stimuli for motion detection. As edges
correspond to points of local maximum phase alignment of the constituent Fourier compo-
nents, local phase congruency, which is invariant to illumination and contrast, is an accurate
measure of edge saliency that can be encoded by the photoreceptors [13][14][15].

There are many clues, which suggest photoreceptors are tuned to distinguish and selectively
process the temporal phase correlations present in light stimuli. These phase correlations are
biologically relevant [4][16][17].

It is well known, for example, that photoreceptor responses to naturalistic stimuli are highly
nonlinear [8] whereas Gaussian white noise stimuli tend to linearize the response [18].

Naturalistic stimuli exhibit local and global phase correlations caused by the edges, contours
and textures present in the natural scene [12,19], which can be described by higher-order statis-
tics [20–23] and can only be encoded by applying nonlinear transformations to the stimuli [24].

In contrast, Gaussian white noise signals exhibit no phase correlations and are completely
characterised by first- and second-order statistics. Because white noise stimuli lack higher-
order correlations present in natural scenes, linear encoding ensures that photoreceptors do
not generate spurious higher-order correlations that the fly brain would use to distinguish envi-
ronmental features.

Experimental and modelling studies investigating the role of photoreceptors in the detection
of moving point objects [25–27] provide further evidence that photoreceptors contribute to the
enhancement of image features that are essential for object recognition. The photoreceptors of
male houseflies, for example, exhibit surprisingly large responses to moving targets [28] which
cannot be explained by linear models derived from photoreceptor responses to white noise sti-
muli. This highlights the need to use naturalistic-like stimuli with a higher-order statistical
structure, in order to characterize the nonlinear encoding mechanisms of photoreceptors [29].

More recent work [16] has shown that temporal processing performed by photoreceptors of
male hoverflies (Eristalis tenax) enhances not only the moving target but also relatively static
features present in the background, which are important for navigational purposes. Although
this work highlights the importance of nonlinear processing in target detection, the relation-
ship between the image features and the nonlinear component of the response is not
elucidated.

The current paper provides a quantitative characterization of the relationship between the
statistical properties of environmental stimuli and fly photoreceptor responses. The study is
based on a nonlinear dynamical model that predicts accurately the responses of individual fly
photoreceptors to white noise and naturalistic stimuli, for the entire environmental range of
light intensities.

Higher-order frequency response functions analytically derived from the model equations
are then used to characterize the nonlinear transformations that enable Drosophila photorecep-
tors to encode measures of dependence between phase angles of different frequency compo-
nents of the temporal stimuli, which are invariant to contrast and illumination, such as local
phase congruency. We argue that these phase-related measures, which are encoded nonli-
nearly, may facilitate the identification of behaviourally important features in the natural
scenes.

By carrying out a comparative signal-to-noise analysis of the linear and nonlinear compo-
nents of the response, we show that photoreceptors are tuned to selectively improve the Signal-
to-Noise Ratio (SNR) of the nonlinear component of the photoreceptor response, which
encodes the local phase congruency measure. This explains why the photoreceptor responses
to naturalistic stimuli are significantly different from their responses to white noise stimuli.

To validate the results, we carried out electrophysiological experiments using temporal sti-
muli that allow us to separate the nonlinear component of the photoreceptor responses, which
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encode local phase congruency, directly from the measured responses. It is shown that our
model correctly predicts the measured nonlinear component of the photoreceptor response,
elicited by local and non-local phase correlations introduced deliberately in the synthetic
stimuli.

A similar analysis carried out using recordings from blind hdcJK910 mutant flies, indicates
that the nonlinear transformations underlying the detection of phase correlations in the tem-
poral light stimuli are performed by phototransduction alone, and do not require synaptic
interactions between neighbouring neurons.

The results could have important implications beyond fly photoreceptors. A similar nonlin-
ear encoding strategy may well be implemented in the mammalian retina or in other types of
sensory neurons.

Materials and Methods

Electrophysiology
Flies were prepared for intracellular in vivo recordings from blue-green sensitive R1-R6 photo-
receptors according to previously described methods [9,30]. To present the temporal stimulus
pattern at different light levels, we designed a computer controlled point light source with two
converging light paths (S1 Fig). In each path, LED drivers with light feedback (Cairn Research,
model OptoLED) assured a linear relation between the light pattern, stored on a computer and
the output of high power LED’s (Seoul, model Z-Power LED P4, white, 240 lm). Neutral den-
sity filters (Kodak Wratten, ND gel filters) were used to generate 5 distinct light intensity levels,
from L0 (bright) to L-4 (very dark). Only one path was active at a time. This allowed modifying
the filter setting of the inactive path in real time. Step changes of light intensity were thus
achieved by switching between the two paths implementing different filter settings. Both LED
drivers were carefully calibrated to produce exactly the same light output for a given reference
signal and filter setting.

The amplified temporal light stimuli (inputs) and voltage responses (outputs), sampled at 2
kHz, were low-pass filtered by analogue low-pass elliptic filters (KEMO Limited, model VBF/
23) with a 500 Hz cut-off before being used to drive the LEDs or to perform A/D conversion
respectively. The measured output of the LEDs was considered to be the input to the photore-
ceptor. A/D and D/A conversions (12bit resolution) were performed using National Instru-
ments A/D and D/A boards (PCI M-IO 16E4 and PCI 6713). Custom written software was
used to interface the NI boards with MATLAB (Mathworks, R7.14). For modelling and analysis
purposes the data was down‐sampled to 400 Hz, which provided sufficient bandwidth to cap-
ture in full the photoreceptor dynamics.

Stimuli
To characterize in full the nonlinear photoreceptor dynamics, we used naturalistic input sti-
muli that resemble the light fluctuations these cells are subjected to in a fly’s natural habitat.
Stimulus sequences with an average power spectrum S(f) = 1/f typical for natural images were
selected from the van Hateren stimulus collection [29].

To derive the adaptation rules over the full operating range, we concatenated stimulus
sequences with different mean intensity levels as shown in Fig 1a, which allowed us to charac-
terize the transient photoreceptor responses to step changes of mean light intensity.

To illustrate further the validity of the model, we generated a synthetic temporal stimulus
by scanning line-by-line an image (Fig 1d). The stimulus was used to excite both the final pho-
toreceptor model as well as measure in vivo, fly photoreceptor responses. The model simulation
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and the electrophysiological recordings were subsequently used to reassemble the correspond-
ing processed images for comparison.

The synthetic stimulus sequence mimics what a photoreceptor would experience as a fly
moves through a natural scene, containing shadows and sunlit areas. As light intensities in
such a scene can vary up to 10,000-fold, we modified our relative illumination range accord-
ingly in 5 distinct logarithmic levels (L0 = bright to L-4 = very dark).

Model Development
The photoreceptor model was derived directly from electrophysiological recordings using the
nonlinear system identification methodology [31,32] based on the NARMAX (Nonlinear

Fig 1. Evaluation of the adaptive photoreceptor model. a, Multi-level naturalistic stimulus sequence (top);
in vivo experimental recordings from a R1-R6 Drosophila photoreceptor (black) and the photoreceptor model
predictions (red) shown with an offset of -25 mV for comparison. b, Short segments of stationary data:
experimental (black) and model predicted (red) for two mean intensity levels. c, Model predictions (red)
superimposed on experimental response measurements (black) during transient regimes illustrate the
performance of the gain control model. d, Images reconstructed from the model predicted response time-
series (middle) and the in vivomeasured response time-series (left) corresponding to a temporal stimulus
sequence generated by scanning line-by-line the image on the left. The artifacts in the reconstructed images
(indicated by a red arrow) reflect photoreceptor adaptation to sharp bright-to-dim changes of intensity values
of pixels along the scanned line in the image.

doi:10.1371/journal.pone.0157993.g001
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AutoRegressive Moving Average with eXogenous inputs) model, which is applicable to a wide
class of nonlinear dynamical systems. The Wiener (Linear-Nonlinear) and Hammerstein
(Nonlinear-Linear) models, that are routinely used in neuroscience, can be viewed as special
types of NARMAX models. Notable advantages of NARMAX methodology include the fact
that it does not require knowledge of the model structure and that the noise is modelled explic-
itly to ensure unbiased estimates of model parameters, even if the noise is not additive or white.

The photoreceptor model consists of a polynomial discrete-time NARMAX model with
variable input gain complemented by a dynamic gain control model with three adaptation
time-scales (S1 File and S5 Fig). The nonlinear model with an appropriately adjusted gain
fully characterizes the photoreceptor dynamics for stimuli with constant mean intensity for
the entire operating range. The gain control model captures the dynamic relationship between
the stimulus and the gain of the photoreceptor while it adapts to changes in mean light inten-
sity. The three control loops reflect the dynamics of different biochemical mechanisms of light
adaptation (S1 File) which we characterized in our detailed biophysical model of the photore-
ceptor [33].

Photoreceptor Response Decomposition using the Generalized
Frequency Response Functions
Compared with previous models of fly photoreceptors [8,34], the current model not only pre-
dicts the photoreceptor responses over the entire environmental range of stimuli but also mod-
els explicitly the relationship between the stimulus intensity and the dynamic gain of the
nonlinear NARMAX filter. The model can also be used to characterize the nonlinear transfor-
mations performed by photoreceptors by deriving analytically the generalized frequency
response functions [35–37] (GFRFs) (Fig 2a–2c) of the system. GFRF’s, which are extensions
to the classical linear frequency response function, characterize the linear and nonlinear rela-
tionships between the photoreceptor’s input and output spectral components.

The approach is similar to that adopted in their pioneering work by Victor and Shapley [3],
investigating the receptive field mechanisms of retinal ganglion cells, and by French et al [34]
and Asyali and Juusola [38], in their study of Drosophila photoreceptor. Victor and Shapley [3]
applied stimuli composed of sums of sinusoids, to estimate, directly from data, the first and sec-
ond order kernels of a Wiener series expansion of the response. In the case of the fruit fly,
French et al [34] and Asyali and Juusola [38] used steps and white noise sequences, respec-
tively, to elicit photoreceptor responses and fit first and second order Volterra kernels.

In contrast, here we use a dynamical model to derive analytically the GFRFs i.e. the Fourier
Transforms of the kernels of the Volterra series associated with the nonlinear system (S1 File).

The main novelty of our analysis is that we use the GFRFs to compute spectral and temporal
decompositions of the response, which allow us to provide an analytical interpretation of the
role played by the nonlinear transductions at photoreceptor level rather than in the neurons
downstream of photoreceptors. This provides a unique insight into the nonlinear encoding
algorithms implemented by the fly photoreceptors.

Specifically, the first-order GFRF, H1(jω) (Fig 2b) can be used to evaluate the magnitude
and phase of Y1(jω), the first-order output spectrum of the system, for any single input fre-
quency U(jω) = |U(jω)|ejωt as Y1(jω) =H1(jω)U(jω).

The second-order GFRF, H2(jω1, jω2) (Fig 2c) can be used to evaluate the magnitude and
phase of the second-order output spectrum of the system Y2(jω) at a frequency ω, in response
to all pairs of input frequencies Uðjo1Þ ¼ jUðjo1Þjejo1t; Uðjo2Þ ¼ jUðjo2Þjejo2t satisfying
ω = ω1 ± ω2. In general, the nth-order frequency response function describes the contributions
made by combinations of n input frequencies to the nth-order output spectrum. The total
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Fig 2. Output frequency response decomposition elucidates differences in photoreceptor coding
white noise and naturalistic stimuli. a, Block diagram illustrating the output frequency response
decomposition approach. b,c, Plots of the magnitude and phase for the first- and second-order frequency
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output spectrum of the photoreceptor, subject to an arbitrary stimulus, is given by [39].

YðjoÞ ¼
XN
n¼1

YnðjoÞ ð1Þ

where Yn(jω) is obtained by integrating the contributions from all possible combinations of n
input frequencies satisfying ω1 + ω2 + � � � + ωn = ω

YnðjoÞ ¼
1ffiffiffi

n
p ð2pÞn�1

Z
Pn

i¼1
oi¼o

Hnðjo1; jo2; . . . ; jonÞ
Yn

i¼1
UðjoiÞdso ð2Þ

By applying the inverse Fourier transform, we obtain the equivalent time-domain decompo-
sition of the total system response

yðtÞ ¼
XN
n¼1

ynðtÞ ð3Þ

into first-order (linear), second- and higher-order responses. Eqs (1–3) provide the key to elu-
cidate the role of nonlinear transformations at the photoreceptor level.

In our case, given a naturalistic stimulus sequence the total response of the photoreceptor y
(t) = y0 + y1(t) + h.o.t. can be approximated just by the first and second-order responses; the
relative mean squared error introduced by ignoring the higher order terms is ~1.3% for the
bright intensity level L0 and less than 4E-3 for levels L-1, L-2, L-3. S7g Fig shows y(t) superim-
posed on y1(t) +y2(t) whilst S7h Fig shows the magnitude of Y1(jω)+Y2(jω) superimposed on
the total output spectrum Y(jω).

SNR Computations
The photoreceptor response decomposition derived earlier allows us to evaluate separately the
improvement in the Signal-to-Noise Ratio (SNR) of the linear and nonlinear components of
the response, relative to the SNR of the noisy stimulus incorporating edges. One would expect
that the photoreceptor processing selectively enhances the phase-related measure of feature
significance, which are encoded nonlinearly.

Given the input signal

usþnðtÞ ¼ usðtÞ þ unðtÞ
where us(t) is the feature-rich pulse sequence and un(t) is a white noise sequence, the signal-to-
noise ratio of u(t) is defined as

SNRðusþnÞ ¼ PðusÞ
PðunÞ

response functions. Slices through the second-order magnitude and phase functions are taken along the
integration lines given by f1+ f2 = 1Hz and f1+ f2 = 31Hz. d, Polar plots and distributions of the Fourier
components U(jω) of the white noise (black) and naturalistic phase (red) stimuli before and after weighting by
H2(jω1, jω2) for pairs of input frequencies (ω1,ω2) satisfyingω1+ω2 =ω’ = 2π rad/s. The total output
frequency component Y2(jω’) for white noise (black) and naturalistic (red) stimuli obtained by integrating
H2(jω1, jω2) U(jω1) U(jω2) along the lineω1+ω2 =ω’ = 2π. e, White noise (top, black line) and naturalistic-
phase (bottom, red line) stimuli. f, Output magnitude spectra |Y1(jω)| and |Y2(jω)| of the first- and second-
order responses, y1(t) and y2(t) to white-noise (top, black line) and naturalistic-phase (bottom, red line)
stimuli. g, The second-order component y2(t) of the model response y(t) for white noise (top, black) and
naturalistic-phase (bottom, red line) stimuli.

doi:10.1371/journal.pone.0157993.g002
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where

Pðus;nÞ ¼
Z T

0

jus;nðtÞj2dt

The noise-free photoreceptor output ys(t) is the response to the noise-free pulse sequence
us(t). The output distortion introduced by the noise is defined

ynðtÞ ¼ ysþnðtÞ � ysðtÞ
where ys+n(t) is the response to us+n(t).

To characterize the signal-to-noise properties of the first and higher-order responses, we
decompose ys(t) and yn(t) into first and second-order responses and compute

SNRðysþn
1;2 Þ ¼

Pðys1;2Þ
Pðyn1;2Þ

The photoreceptor’s noise reduction performance was characterized in terms of the SNR
improvement factor

Q1;2 ¼ M
SNRðysþn

1;2 Þ
SNRðusþnÞ

� �

which was computed as an average over 50 repetitions. The ‘noise-free’ input us(t) consists of a
sequence of positive and negative pulses of amplitude +/-4.75, each lasting 50ms, with a delay
of 200ms, superimposed on a constant level of background illumination L0. To account for the
optics of the photoreceptors lens, the pulses were smoothed by convolving the signal with a
Gaussian function (5ms standard deviation), accounting for the sensory neurons receptive field
properties.

Results

Photoreceptor Model Predicts Responses to Arbitrary Stimuli over the
Environmental Range of Light Intensities
To demonstrate that the estimated model provides an accurate representation of R1-R6 photo-
receptors for the entire environmental range of light intensities, the model was validated exten-
sively using intracellular recordings from the photoreceptors of different flies (S1 File). The
model predictions match remarkably well the experimental responses to naturalistic (S4 Fig)
and white noise stimuli (S6b Fig) as evidenced by the relative mean squared prediction errors
summarized in S1 and S2 Tables respectively. To further illustrate visually the prediction accu-
racy, we generated an input time series by scanning line by line a naturalistic image (Fig 1d).
This temporal stimulus was used to stimulate photoreceptors and measure in vivo their
responses that were converted back to an image. Fig 1d, shows the original image side-by-side
with the images reconstructed from the experimental and model predicted photoreceptor
response time series.

The second-order frequency response function explains the difference in
encoding naturalistic and white noise stimuli
To investigate the link between the phase structure of the stimulus and the response, we
derived a synthetic stimulus using the magnitude of a Gaussian white noise stimulus and the
phase spectrum of a naturalistic stimulus sequence with 1/f magnitude characteristic. The
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analytical GFRFs derived for our model were used to compute and compare the linear and sec-
ond-order responses y1(t) and y2(t) to the original Gaussian white noise (GWN) stimulus
(Fig 2e top) and to the modified GWN stimulus with naturalistic-phase (Fig 2e bottom).

In line with previous experimental studies [30], we found that |Y1(jω)|, the magnitude spec-
trum of the linear component of the photoreceptor response (Fig 2f–inset panels), dominates
the magnitude spectrum of the nonlinear component |Y2(jω)| (Fig 2f—main panels) for GWN
as well as naturalistic stimuli. However, whilst |Y1(jω)| essentially remains unchanged, there is
a marked increase of |Y2(jω)| for naturalistic stimulus compared to the GWN case (Fig 2f—
main panels). This is also reflected in the time domain. The amplitude of the second order
component y2(t) of the response to the modified GWN stimulus (Fig 2g bottom) is significantly
larger compared to the second order component corresponding to the original GWN stimulus
(Fig 2g top). Specifically, whilst the variance of the y2(t) component of the response to the ran-
dom-phase stimulus represents ~2% of the total response, for the naturalistic-phase stimulus
with the same magnitude spectrum, the variance of the y2(t) component increases to ~50% of
the variance of the total response.

This increase is entirely due to the non-random structure of the phase spectrum. For the

white noise stimulus the Fourier components UðjωkÞ ¼ jUðjωkÞjejθωk have phase angles θωk

that are uniformly distributed in the range [0, 2π) (Fig 2d top). Because the phase of
H2(jω1, jω2) is remarkably flat for frequencies satisfying ωi + ωj = ω (see for example the phase
slice along f1+f2 = f = 1 Hz and f1+f2 = f = 31 Hz shown in Fig 2c), the phase-angles of the
‘weighted input frequencies’H2(jω1, jω2)U(jω1)U(jω2) satisfying ωi + ωj = ω remain uniformly
distributed. Consequently, the magnitude of the second-order frequency spectrum of the
response Y2(jω), defined in Eq (2) for n = 2, will be small as shown in Fig 2f (top). In essence,
the uniform distribution of phases ofH2(jω1, jω2)U(jω1)U(jω2)means that for every complex
vectorH2(jω1, jω2)U(jω1)U(jω2) with phase φ there is a vectorH2(jω0

1, jω0
2)U(jω0

1)U(jω0
2)

with similar amplitude but opposite phase φ’ = φ±180; these vector pairs tend to cancel out
when the integral Eq (2) is computed. As a result, the corresponding second order temporal
response y2(t) is small as seen in Fig 2g (top). The second-order response is not zero because
the magnitude ofH2(jω1, jω2) is not constant along the constant frequency lines ωi + ωj = ω, as
shown in Fig 2c (magnitude slices along f1+f2 = 1Hz, for example).

For the modified GWN stimulus with ‘naturalistic’ phase spectrum and white noise magni-
tude spectrum, the phases of the frequency components U(jωi) and the phases ofH2(jωi, jωj)U
(jωi)U(jωj) are not distributed uniformly and as a result, the magnitude of Y2(jω) does not can-
cel out (Fig 2d bottom panels).

The results show that the photoreceptor is sensitive to the phase structure of the temporal
stimuli, specifically to correlations between the phases of different frequency components of
the temporal stimulus. The analysis shows that the photoreceptor responds linearly to white
noise and nonlinearly to naturalistic, feature rich stimuli because of the particular shape of the
phase function associated with the second-order frequency response function.

Fly photoreceptors are tuned to encode robustly temporal local phase
congruency
Spatially-localised features, such as edges, are ubiquitous in natural scenes. Edges correlate
with contours and textures in a natural scene, which form the basis for higher-level visual pro-
cessing tasks such as motion detection and object recognition. Not all edge features are charac-
terized by sharp changes in luminance at the boundary of an object. Often edges are blurred or
soft-edged like those of shadows [40]. However, all edge-like features exhibit high local phase
congruency i.e. the phases of the constituent Fourier components are aligned.
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The previous frequency response analysis predicts that points of high local phase congru-
ency, where the difference in phase between different frequency components is zero will elicit
very strong second-order responses in fly photoreceptors since in this case the magnitude of
Y2(jω) is just the integral of the magnitude ofH2(jω1, jω2)U(jω1)U(jω2) for ωi + ωj = ω i.e. no
cancellation occurs.

To test this hypothesis, we designed a synthetic stimulus consisting of a sequence of narrow
square pulses (S1 File) superimposed on a Gaussian white noise sequence with mean L0 (bright
stimulus). The variance of the stimulus was designed such that the output of the automatic
gain control module is essentially constant i.e. gain adaptation plays no role in these experi-
ments. The photoreceptor responses to this stimulus, predicted by our model, were found to
match closely (S3 Table) the in vivo intracellular recordings made from the fly photoreceptors
using the same stimulus sequence (S6 Fig).

As before, the model responses were decomposed into linear and nonlinear (second-order)
components according to Eqs (1–3) using the GFRFs derived for the NARMAX model with
the constant gain corresponding to the ‘bright’mean intensity level L0.

As seen in (Fig 3a and 3b), the pulses are hard to distinguish from the background noise in
the synthetic stimulus and the linear component of the model response. In contrast, the nonlin-
ear component of the response encodes their location quite precisely by large negative peaks
(Fig 3c). Even a simple threshold decoder can be used to extract the encoded ‘message’–posi-
tion of the pulses—from the nonlinear component of the response. A similar decoder applied
to the linear response would generate a significant number of false positives.

Remarkably, the nonlinear response appears very similar to the output (Fig 3d) of an estab-
lished algorithm for computing local phase congruency [15], which is widely used to detect
edges in computer vision. Given that the phase congruency measure is invariant to changes in
intensity and contrast, it provides arguably the most sparse and efficient representation for
edge-and line-like features [14].

A major practical implementation issue is that, being a normalized quantity, phase congru-
ency is highly sensitive to noise. Although the algorithm used to compute phase congruency
implements noise reduction techniques [15], it does not detect all the real pulses (Fig 3a) whilst
spurious detections still occur (see missing or extra red ‘peaks’ in Fig 3d compared with pulse
locations indicated in Fig 3a).

From this point of view, nonlinear transductions at photoreceptor level encode robustly local
phase congruence because the nonlinearity is tuned to reject white noise signals. To demonstrate
this, we compute the SNR improvement factors (S1 File) for the linear y1(t) and nonlinear y2(t)
components of the response to stimuli consisting of a pulse sequence with added white noise hav-
ing different variance levels. As seen in Fig 3g, for y2(t) the SNR improvement factorQ2 is signifi-
cantly higher (almost five fold improvement) thanQ1 computed for y1(t) (two fold improvement).

The nonlinear response encodes robustly the phase correlations buried in noise because the
phase ofH2(jω1, jω2) is almost constant along the integration paths ω1 + ω2 = ω, which ensures
that the phase shift introduced by the second-order frequency response function is indepen-
dent on the input frequencies.

Artificially changing the phase of the second-order frequency response function, makes the
second-order response noisier, reduces the amplitude of the response around the steps and
introduces spurious peaks in places where the local phase congruency is low, as seen in Fig 3e.
This provides strong evidence that the nonlinear transductions in fly photoreceptors are opti-
mized to enhance behaviourally important higher-order statistical correlations in the natural
scenes whilst being largely insensitive to random-phase stimuli.

The reverse-engineered algorithm implemented by photoreceptors is remarkable for its sim-
plicity and, to the best of our knowledge, provides an entirely new approach for computing

Fly Photoreceptors Encode Phase Congruency

PLOS ONE | DOI:10.1371/journal.pone.0157993 June 23, 2016 10 / 21



local phase congruency. While state-of-the art conventional algorithms based on wavelet filter
banks are complex, computationally expensive and sensitive to noise [15], the photoreceptor
algorithm implements a single nonlinear filtering operation to encode local phase congruency.

To illustrate the practical applicability of the photoreceptor-inspired edge detection algorithm,
we computed edge maps for the image shown in Fig 3h by applying a threshold decoder to the
standard local phase congruency map of the image (Fig 3h) and to the nonlinear component of
the photoreceptor responses to time-series of pixel intensity values along each line of the image.
Visually at least, the edge map generated using photoreceptor algorithm (Fig 3m) is ‘cleaner’
than the edge map generated using the standard local phase congruency algorithm (Fig 3l).

Fly photoreceptors encode non-local phase correlations between the
spectral components of the input
Natural images exhibit not only local but also global phase correlations. It has been argued that
both local and global higher order statistics of natural images play an important role in texture

Fig 3. Fly photoreceptors are tuned to detect and enhance phase congruent features. a, Synthetic stimulus (red)
consisting of a white noise sequence (dashed black line) superimposed by a sequence of square pulses (50 ms
duration) (top). b,c, Linear and nonlinear components of the photoreceptor model responses to the synthetic stimulus
(red) and to the pure white noise sequence (dashed black line). d, Local phase congruency measure computed for the
synthetic (red) and pure white noise stimuli (dashed black line). e, Changes to the phase of the second-order
frequency response function lead to noisier responses (purple) and makes it almost impossible to locate pulses. f,
Model used to evaluate SNR improvement factors. g, SNR improvement factors calculated for the linear, second-
order and total responses, given different levels of input noise. h, Input image used to generate light stimulus
sequence. i, Image reconstructed using the total photoreceptor response. j, Image reconstructed using the linear
component of the response. k, Image reconstructed using the nonlinear component of the response. l, Local phase
congruency map of the original image.m, Edge features extracted by thresholding the nonlinear response.

doi:10.1371/journal.pone.0157993.g003
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or symmetry discrimination [41,42]. To test the sensitivity of photoreceptors to non-local
phase correlations we designed a synthetic stimulus (Fig 4a), which exhibited quadratic phase
coupling (QPC) at 10Hz (i.e. phase(f1) + phase(f2) = phase(f3) where f1 + f2 = f3 = 10Hz).

Specifically, the QPC stimulus was constructed by computing the Fourier spectrum of a
Gaussian white noise signal, modifying the phases of the spectral components to satisfy the
above conditions whilst keeping the magnitude function unchanged and finally applying the
inverse Fourier transform (S1 File). As seen in Fig 4d, the resulting phase-modified signal has
the same Fourier magnitude spectrum as the original white noise signal. However, whilst the
phases of the QPC input frequencies U(jw) are still uniformly distributed between 0 and 2π,
they are clearly correlated as seen in Fig 4b.

The responses of the photoreceptor model to the white noise and QPC stimuli were decom-
posed into linear- and second-order responses (Fig 4c). Subsequently, the Fourier spectrum
was computed separately for each component of the photoreceptor response.

Because the linear response is not sensitive to the phase structure of the stimulus, the Fou-
rier magnitude spectra of the linear responses to the two stimuli sequences are identical (see
Fig 4e and 4b). In contrast, as expected, the second-order response to the QPC stimulus shows
a significant increase in the magnitude of the 10 Hz output frequency compared with the sec-
ond-order response to the white noise stimulus.

Fig 4. Fly photoreceptors detect quadratic phase coupling. a, White noise stimulus (black) and phase-modified white noise stimulus
exhibiting quadratic phase coupling (QPC) at 10Hz (red). b, Phase angle histograms of the frequency components of the two stimuli. c,
The second-order component of the model response to the white noise (black) and the QPC (red) stimuli. d, Magnitude spectra of the input
signals are identical. e, While the magnitude spectra of the linear components of the responses are identical, the magnitude spectrum of
the second-order component of the response to the QPC stimulus (red) shows significant magnitude increase at 10Hz, compared to the
spectrum of the white noise response (black).

doi:10.1371/journal.pone.0157993.g004
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Experimental Validation of the Photoreceptor Model Predictions
The higher order visual processing neurons have to extract the nonlinear codes generated at
photoreceptor level from the overall responses. A simple approach to extract the second-order
response to a given stimulus is illustrated in S9 Fig. Essentially, the sum of even-order
responses to a given stimulus is the average between the photoreceptor response to the stimulus
and the response to the out-of-phase (inverted) version of the stimulus. Since in our case the
higher-order responses greater than two are negligible, this method generates the second-order
component of the photoreceptor response. Using this approach it was possible to demonstrate
experimentally that the nonlinear computations performed by the photoreceptor are indeed
those predicted by the model-based analysis.

To extract the second-order responses to a given temporal stimulus directly from the experi-
mental recordings we constructed stimulus sequences by alternating the original stimulus
sequence with its inverted version (S1 File). The experimental responses to the two versions of
the stimuli were averaged and compared with the model predictions. Experiments were carried
out using white noise stimuli, stimuli consisting of a pulse sequence superimposed on white
noise as well as stimuli exhibiting quadratic phase coupling at 10Hz.

Fig 5a shows that the second-order components of the photoreceptor responses (seven repe-
titions) to the stimulus consisting of the pulse sequence superimposed by Gaussian white
noise, extracted directly from the experimental recordings and the model predicted y2
component.

As predicted, the nonlinear response is significant around points of maximum local phase
congruency; the amplitudes of the negative peaks in the nonlinear response at the location of
the pulses represent more than 25% of the corresponding peak amplitudes of the total
response. The close match between the model predicted and the experimentally derived y2
component around the negative excursions triggered by the embedded pulses, is further illus-
trated in S10 Fig. The linear- and the second-order components of the response account for
~91% and ~9% of the overall variance of the total response, respectively. The prediction error
variance corresponding to the y2 component extracted directly from experimental data (S10
Fig) represents ~14% of the total y2 variance.

On the other hand, the magnitude spectrum of the y2 component of the photoreceptor
response to the QPC stimulus (Fig 5b) shows a ~5 fold increase in magnitude at 10Hz com-
pared to the magnitude spectrum of the y2 component of the response to the original GWN
stimulus, as predicted by model.

Fig 5. Experimental validation. a, The second-order components of the photoreceptor responses extracted
directly from in vivo recordings (seven repetitions shown) are as predicted by our model. The stimulus used
was the pulse sequence superimposed by Gaussian white noise. b, The magnitude spectrum of the second-
order component of the response to the quadratically phase coupled (QPC) stimulus, extracted directly from
in vivo recordings, shows an increase in magnitude at 10Hz as predicted by our model.

doi:10.1371/journal.pone.0157993.g005
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Given that the photoreceptor model was derived using experimental recordings from a dif-
ferent fly, these results demonstrate further the validity of our model and, more importantly,
that the nonlinear encoding of phase correlations is a generic information processing strategy
of fly photoreceptors.

Investigating the role of the retinal network
Photoreceptor responses in wild flies are modulated by feedback from two classes of interneu-
rons, i.e. large monopolar cells (LMC) and amacrine cells (AC), and from axonal gap-junc-
tions, which pool the responses from six photoreceptors [43–45]. It is therefore natural to ask
to what extent the processing capabilities demonstrated earlier are due to temporal processing
by the photoreceptor alone. To elucidate this question, we measured photoreceptor responses
to the original multi-level naturalistic stimulus in blind hdcJK910 mutants [46,47] that lack his-
tamine in their photoreceptors. Fly photoreceptors use neurotransmitter histamine to commu-
nicate visual information to interneurons [48]. In the histamine deficient mutants, the lamina
interneurons fail to receive and transmit visual information and their feedback synapses can no
longer modulate photoreceptor output [47]. Essentially, these mutant flies are blind. By com-
paring intracellular recordings from photoreceptors of wild type flies to those of hdcJK910

mutants, one can test how the lamina network affects adaptation and information processing
in photoreceptors.

As seen in S11 Fig, mutant photoreceptor responses have dramatically reduced contrast sensi-
tivity for bright (L0) stimuli and their capability to quickly adapt to the mean illumination is sig-
nificantly impaired. However, the light adapted responses of histamine photoreceptors to
naturalistic stimuli having a mean luminance L-1 are very similar to wild-type responses. As we
are interested to investigate the nonlinear properties of isolated photoreceptors exhibiting a nor-
mal response range, we inferred and validated (S12 Fig) a mutant photoreceptor model using
measured responses to naturalistic stimuli sequences with mean luminance L-1 (S1 File). The sec-
ond-order GFRFs (Fig 6a), derived for this model, are very similar to those of wild-type photore-
ceptors. In particular, the phase constancy along integration lines is preserved in mutant flies. As
a consequence, the mutant photoreceptor responses to the two classes of synthetic stimuli are
very similar to the wild type responses (Fig 6b), providing strong evidence that the nonlinear
transformations, underlying the detection of high-order phase correlation in the temporal light
patterns, are performed by the photoreceptor alone, independently of neighbouring neurons.

Discussion
We have demonstrated that R1-R6 photoreceptors perform nonlinear transformations that
encode biologically relevant, higher-order statistical features that are represented in the Fourier
phase spectrum of temporal stimuli. In particular, we have shown that photoreceptors encode
points of maximum local phase congruency, which occur at the location of an edge or line, as
well as long-range phase correlations, which characterize symmetry and texture properties of
natural images [41].

An important conclusion of our analysis is that the nonlinear transductions in fly photore-
ceptors are tuned to maximize the response to combinations of spectral components that are
congruent in phase or are phase-coupled and to minimize the response to temporal stimuli
with a random phase spectrum. This ensures that the nonlinear coding is robust to noise and
explains why photoreceptors respond linearly to non-informative white noise stimuli and non-
linearly to naturalistic time-series exhibiting local and global phase correlations between their
spectral components. It also explains why the models derived using responses to white noise
stimuli fail to capture the key nonlinear transformations performed by photoreceptors.
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This strategy for processing temporal stimuli does not require dynamic adaptation to sti-
muli statistics beyond the mean and variance. Specifically, we show that what appears to be an
adaptation of the photoreceptor to the statistical structure of the stimuli is in fact explained by
the shape of the two-dimensional phase function corresponding to the second-order GFRF of
the photoreceptor, which is almost constant along the lines ωi + ωj = constant.

From the point of view of information theory, different encoding of naturalistic and white
noise signals can be viewed as a solution to the problem of matching the stimulus (source) with
the communication channel in a probabilistic sense in order to achieve an optimal trade-off
between two competing goals: minimizing distortion in decoding behaviourally relevant sti-
muli features and minimizing the information rate, that is, the energetic costs associated with
phototransduction [49].

The fact that the second-order phase function computed for a separate photoreceptor
model, derived for Caliphora, exhibits similar characteristics (see S8 Fig) to those of Drosoph-
ila, suggests that the maximization of sensitivity to phase aligned or coupled frequency com-
ponents is a fundamental ‘design principle’ of fly photoreceptors, which may well apply to
other sensory neurons. Previous studies of the primary visual cortex [42,50] have postulated
the presence of nonlinear mechanisms that are sensitive to phase correlations. Here we dem-
onstrate for the first time that in Drosophila these mechanisms operate at the photoreceptor

Fig 6. Isolated photoreceptors in the hdcJK910 mutant fly demonstrate similar phase processing
capabilities to those of wild-type flies. a, The second-order frequency response functions computed for
photoreceptors of hdcJK910 mutants are similar to those computed for wild-type photoreceptors. Nonlinear
component of the hdcJK910 photoreceptor model response clearly indicate location of the 50 ms pulses. c,
The magnitude spectrum of the second-order response to the quadratically phase coupled stimulus shows
increase in magnitude at 10Hz.

doi:10.1371/journal.pone.0157993.g006
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level. The main benefit of implementing nonlinear encoding at photoreceptor level is that it
may facilitate the efficient decoding of key stimuli features such as edges, at higher visual pro-
cessing levels. Essentially, as we have illustrated earlier, edge maps could easily be extracted
from the nonlinear component of the response using a simple threshold decoder. Given that
neural circuits are highly optimized, one would expect that in the absence of the nonlinear
photoreceptor code the higher visual processing stages would have to implement additional
computations, leading to more complex downstream neural circuit architectures. At the same
time, encoding temporal edges at photoreceptor level, before the information from six photo-
receptors has been pooled by the interneurons, should help improve further the signal-to-
noise ratio of the encoded features.

The similarities that exist between responses of primate cones and blowfly photoreceptors
[51] suggest that nonlinear transformations performed by cone photoreceptors ultimately
achieve the same processing goals, albeit using different molecular mechanisms and signal pro-
cessing steps.

Previous experimental and theoretical studies of early visual processing in humans indi-
cate the existence of detectors that are highly sensitive to features characterized by high phase
congruency [52,53]. We speculate that human photoreceptors implement similar nonlinear
processing of the visual stimuli to detect phase congruency, which could help explain why
neurons in the primary visual cortex can reliably signal phase congruence and how the phase
congruency information is extracted from the visual stimuli. Since moving spatial edges gen-
erated by saccadic eye movements or by moving objects generate temporal edges at photore-
ceptor level, selectively encoding these temporal features and enhancing their salience,
should facilitate downstream processing of the spatio-temporal visual stimuli for edge and
motion detection [54].

The simple technique we used to separate the second-order response directly from experi-
mental recordings could easily be used to test this hypothesis for mammalian retinal cones.

One could envisage a simple model where eye saccades map localized spatial edges onto
temporal edges that are encoded and enhanced by photoreceptors, enabling the downstream
neural circuits to use timing in addition to spatial information to detect edges and group them
into contours.

As it is not clear how the higher-order spiking neurons could implement efficiently this pro-
cessing step, it could be that all downstream visual processing relies on the phase congruency
information generated by photoreceptors to the extent that the absence of this information
may incapacitate downstream feature detectors. If this were true, applying such nonlinear
transformations to the visual stimuli, prior to delivering these to retinal or ganglion cells, may
improve significantly the performance of artificial retinas [55,56].

Supporting Information
S1 Fig. Experimental setup for the acquisition of in-vivo intracellular photoreceptor
responses to light stimuli patterns.
(TIF)

S2 Fig. Naturalistic stimuli. a, 2 s representative naturalistic stimulus sequence, used for the
modelling procedure. b, Typical 1/f power spectrum of a naturalistic stimulus. c, Naturalistic
input sequence and corresponding photoreceptor response. The grey arrows indicate the tran-
sient responses during adaptation. d, Adaptation to different duration of stationary stimuli. On
the tested timescales (2 s, black; 4 s, purple; 8 s, green) adaptation dynamics are little dependent
on the length of the stationary stimulus.
(TIF)
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S3 Fig. Neural responses at stationary regimes. a, Experimental transient (grey) and station-
ary (black) responses to NTSI stimuli with instant light changes. Slow transients and trends in
stationary regions were removed by polynomial fittings (red traces). b, Photoreceptor
responses to repeated stimuli sequences for different mean intensity levels (black) and average
response (red) over the 16 s intervals highlighted.
(TIF)

S4 Fig. Comparison of neural responses of different animals. The average photoreceptor
response of the six flies for different mean light intensity levels after normalization to a com-
mon response offset and deviation.
(TIF)

S5 Fig. Estimation and validation of the gain control model. a, Steady state gain (black) vs.
mean light intensity (brown). b, Block diagram of the photoreceptor model incorporating the
gain control law (dashed-line box). c, Multilevel light contrast stimulus. d, Gain control model
predictions (red) superimposed on the estimated gain response (black).
(TIF)

S6 Fig. Model validation using data recorded from different wild type fly photoreceptors at
light level L0. a, Normalized model predictions to a naturalistic stimulus data sequence com-
pared with the average response (n = 8) of 4 cells. b, as in a but for a 100 Hz band limited white
noise stimulus sequence for 3 cells. c, as in a but for a stimulus with positive and negative pulses
embedded in noise measured in 8 different photoreceptors. Gain response. The box plots are
used to show the variations across experimental recordings prior to normalization.
(TIF)

S7 Fig. Model response decomposition. a, Naturalistic input sequence. b, Input spectrum. c,
Linear component of the response. d, First-order output frequency response. e, Second-order
component of the output. f, Second-order output frequency response. g, Combined first- and
second-order time responses (red) match almost perfectly the overall model response (black).
h, the combined first- and second-order output frequency response (red) matches the overall
output frequency spectrum (black).
(TIF)

S8 Fig. Second-order phase functions (slices), shown along integration lines of constant fre-
quency, computed for a Calliphora photoreceptor model.
(TIF)

S9 Fig. a, Computation of even-order responses. b, Synthetic light stimulus consisting of a
sequence of square pulses superimposed on a white noise sequence. c, Inverted version of the
stimulus given in b. d and e, Photoreceptor model (mean subtracted) responses to the stimuli
given in b and c respectively. f, Even-order response computed by averaging the model predic-
tions shown in d and e, (red) and model predicted nonlinear response (black). g, Local phase
congruency measure computed for the synthetic stimulus.
(TIF)

S10 Fig. Nonlinear component of the response y2(t) predicted by the model (dash-dotted
red line) vs. y2(t) component extracted directly from experimental data (solid black line).
(TIF)

S11 Fig. Experimental recordings in photoreceptors of histamine mutants. a, ERG and volt-
age responses measured in photoreceptors of wild-type (black line), hdcJK910 mutant (red line)
and rescued hdcJK910 mutant (grey line) flies. ERG voltage responses of histamine deficient
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hdcJK910 mutants lack on-off transients (red arrows, middle panel), demonstrating that synaptic
communication between photoreceptors and lamina interneurons is interrupted. The voltage
responses (right panel) suggest that synaptic communication increases the range of environ-
mental light intensities to which R1‐R6 photoreceptors can adapt. Arrows highlight the key dif-
ferences in mutant photoreceptor responses compared to wild-type responses: contrast
saturation for bright stimuli and impaired dynamic adaptation. Both wild‐type and the hista-
mine rescued photoreceptors show normal processing of naturalistic contrast pattern stimuli.
b, Whole-cell patch-clamp recordings of current responses to 1s prolonged light and flash light
stimuli and to 1s Voltage steps in dissociated hdcJK910 photoreceptors.
(TIF)

S12 Fig. Modelling the photoreceptor responses of the histamine mutant flies. a, Boxplots
of response amplitudes during stationary light stimulation at light level L-1 for 5 different flies.
b, The mean response based of 8 responses to a single naturalistic stimulus sequence. The
mean responses of individual flies are normalized to the mean deviation and amplitude of all
flies tested. c, Experimentally measured responses to a repeated stimulus (data set #5) which
were used to infer a photoreceptor model. d, Prediction performance of the hdcJK910 photore-
ceptor model. e, Correlation tests.
(TIF)

S1 File. Supplementary Methods.
(PDF)

S1 Table. Relative mean square prediction error calculated using the model predicted out-
put and normalized photoreceptor responses, measured in six flies (S4 Fig), to the natural-
istic stimuli with different mean light intensity levels.
(DOCX)

S2 Table. Relative mean square prediction error calculated using the model predicted out-
put and normalized photoreceptor responses, measured in three flies (level L0 responses
shown in S6b Fig), to bandlimited (100 Hz) white noise stimuli with different mean inten-
sity levels.
(DOCX)

S3 Table. Relative mean square prediction error calculated using the model predicted out-
put and normalized photoreceptor responses, measured in eight flies (S6c Fig), to the
GWN+pulses stimulus sequence corresponding to a mean light intensity level L0.
(DOCX)
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