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Nonlinear Robust Observer Design Using An Invariant Manifold Approach

Irfan Ullah Khan, David Wagg, Neil D Sims

Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK

Abstract

This paper presents a method to design a reduced order observer using an invariant manifold approach. The main

advantages of this method are that it enables a systematic design approach, and (unlike most nonlinear observer design

methods), it can be generalized over a larger class of nonlinear systems. The method uses specific mapping functions

in a way that minimises the error dynamics close to zero. Another important aspect is the robustness property which is

due to the manifold attractivity: an important feature when an observer is used in a closed loop control system. A two

degree-of-freedom system is used as an example. The observer design is validated using numerical simulation. Then

experimental validation is carried out using hardware-in-the-loop testing. The proposed observer is then compared with

a very well known nonlinear observer based on the off-line solution of the Riccati equation for systems with Lipschitz

type nonlinearity. In all cases, the performance of the proposed observer is shown to be very high.

Keywords: observer design, invariant manifold, Lipschitz non-linearity, error dynamics, mapping functions

1. Introduction

For nonlinear systems the theory of linear observer design has been extended e.g. extended Luenburger observer

[1, 2] or extended Kalman filter [3, 4]. As a result estimation is limited to a small domain and requires high computation

power. In 1973 Thau [5] and then in 1975 Kou [6] were the first to attempt nonlinear techniques for the observer

design. Since then a lot of work has been done on the observer design using nonlinear theory but mostly limited to

certain classes of system that cannot typically be generalized to other classes of systems.

The observers based on Lyapunov theory give sufficient conditions for the existence of the observer for nonlinear

systems [7, 8, 9]. It may be possible for the low order nonlinear systems to satisfy the conditions presented in the

theorems based on Lyapunov theory but it is very difficult to find higher order nonlinear systems that can satisfy

those conditions [10]. The observers based on extended linearization techniques linearize the error dynamics through

a nonlinear output injection function [11, 12, 13]. This type of observer functions locally at a fixed point and for

multi-input multi-output systems the design methodology can be very complicated.

For nonlinear observers, designs based on Lie-algebraic theory have also been used in the literature [10, 14, 15]. In

these techniques, the problems linked with nonlinear observer design have been dealt with by using linear techniques
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that exploit linear observer theory. One of the advantages of using Lie-algebraic theory over the extended linearization

techniques is that in the former case the observer is valid in any region where the transformation exists, whereas in the

latter case the observer is designed at a fixed point. This method can also be used to design observer for multi-input

multi-output systems. The down side of this technique is that the nonlinear system must satisfy both a non-generic

condition along with the finding of a necessary state transformation, which is not an easy task.

Generally there are two ways to deal with observer design in nonlinear systems [16]. If the system nonlinearities

are a linear function of unmeasured states or are monotonic, then observers based on linear theory can be used, or

passivity can be exploited. Alternatively, the observer requires the existence of an attractive and invariant manifold.

These types of observers comprise of a linear filter and nonlinear output mapping functions. The theory of sliding

mode has also been used to design observers for both linear and nonlinear systems [17, 18].

The observer design in the sliding mode methodology resembles the one proposed in this paper up to the extent

of defining an asymptotically stable surface. In the sliding mode observer, the sliding surface is defined in terms of

the error between the estimated and known states and a discontinuous/switching function is defined to bring the error

dynamics to the sliding surface [19, 20, 21], whereas in the proposed approach the observer design is reduced to make

the error dynamics asymptotically stable, which depends on the definition of some mapping functions. The sliding

mode observer is known for its insensitivity to parameter variation and disturbance rejection but the observer matching

condition restricts the applicability of the sliding mode observer and the system has to be minimum phase [22, 23].

This means that all the zeros of the system should be on the left hand side, or in other words the internal dynamics of

the system need to be stable for the design of first order sliding mode observer. To overcome this issue higher order

sliding mode observers are proposed [24, 25]. However, the technique proposed in the present contribution could be

extended, in a similar fashion for non-minimum phase systems [16].

Mainly there are two types of sliding mode observers. The type based on equivalent control methods are Utkin

observers and the type based on Lyapunov methods are Walcott and Zak observers [26]. The Utkin sliding mode

observer [27] does not have a static observer gain. The disadvantage of not having a static observer gain is that the state

estimation can be performed only with the bounded error and not asymptotically. The Walcott and Zak observer has a

static observer gain and the error is reduced based on system uncertainty. Another disadvantage of traditional sliding

mode observers is high frequency switching action.

In [28, 29, 30, 31] the observer designs based on the solution of the Riccati equation are proposed for systems

with Lipchitz type nonlinearity. In all these papers, to check the validity of the observer, the only test performed is

that different initial conditions are given to the actual system and it is shown that the observer is converging. There

is no discussion about the robustness of the observers against parameter variation, measurement noise or external

disturbance. In this paper in addition to the initial condition test, both the proposed observer and the observer based on

the off-line solution of the Riccati equation are tested for robustness against parameter variation, measurement noise

and external disturbance.

The theory for observer developed by Astolfi et al. [16] , has been implemented on many systems, such as ball and
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beam system, range estimation in a vision system and magnetic levitation system. The present contribution builds upon

these previous studies by demonstrating application of the observer to a real mechanical system both in open loop and

closed loop, so that the robustness to parameter variation, external disturbance and measurement noise, can be explored

for the first time. Therefore, the idea presented by Astolfi et al. is further extended to systems with nonlinear stiffness.

In this work a reduced order observer using the notion of an invariant manifold has been designed for a 2-DOF mass-

spring-damper system to estimate the displacement and velocity of one of the masses. In addition a comparative study

is presented with a very well known observer based on the off-line solution of the Riccati equation for systems with

Lipschitz type nonlinearity.

The approach presented in this paper requires the existence of a manifold that is invariant and attractive [32, 33, 34,

35, 36]. The manifold is made invariant by a nonlinear filter and attractive by proper selection of mapping functions.

To prove the validity of the proposed observer, it is compared with a very well known nonlinear observer based on

Lipschitz type non-linearity presented in [37], which is based on the off-line solution of the Riccati equation. The

reason for this comparison is that the system under consideration has a Lipschitz type nonlinearity. The result is that

both observers show satisfactory results under normal conditions, but the proposed new observer is more robust to

parameter variation and phase change in the excitation signal. Finally the proposed reduced order observer is tested in

a closed loop with a hybrid active and semi-active controller to demonstrate the practical utility of the technique.

The details of the proposed observer design is given in Section 2. In Section 3 we introduce the example system

that will be used throughout this paper. The proposed observer design is applied to the example system in Section 4.

In Section 5 an observer based on Lipschitz type nonlinearity is designed for the same example system. Comparison

results for both observers are given in Section 6. In Section 7 the experimental system is described and then the

experimental results are presented, followed by further discussion in Section 8.

2. Proposed Observer Design Methodology

Consider a nonlinear, time-varying system described as

η̇ = f(η, y, t), (1)

ẏ = h(η, y, t), (2)

where η ∈ R
n is the unmeasured state, y ∈ R

m is the measurable output, an over-dot represents differentiation with

respect to time, f(η, y, t) and h(η, y, t) are nonlinear functions. It is assumed that f(η, y, t) and h(η, y, t) are forward

complete, i.e. trajectories starting at time t0 are defined for all times t ≥ t0.

Let η̂ ∈ R
p represent the observer state, and p ≥ n. From this, the total number of states of the system is p+ n.

Then the dynamical system

˙̂η = α(η̂, y, t), (3)
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is called an observer for the system (1)-(2), if there exist mappings

β : Rp × R
m × R → R

p,

φ : Rn → R
p,

with φ left invertible, such that the manifold

Mt = {(η, y, η̂) ∈ R
n × R

m × R
p : β (η̂, y, t) = φ (η)} , (4)

has the following properties [16]:

1. All trajectories of the extended system (1)-(3) that start on the manifold Mt at time t remain there for all future

times, τ > t i.e. Mt is positively invariant.

2. All trajectories of the extended system (1)-(3) that start in a neighborhood of Mt asymptotically converge to

Mt.

A mapping function Ψ(x, y, t) : R
l×R

m×R → R
p is left invertible with respect to x, if there exists another mapping

ΨL : R
p × R

m × R → R
l such that ΨL(Ψ(x, y, t), y, t) = x for all x ∈ R

l and for all y, t.

So from the definition of left invertibility, the estimate of η is given by φL(φ(η)) and the estimate on the manifold is

given by φL(β(η̂, y, t)), as the estimation error η̂ − η is zero on the manifold.

The mapping function β should be chosen such that (A1) holds:

(A1) det

(

∂β

∂η̂

)

6= 0.

(A2) As off-the-manifold trajectories are given as

z = β (η̂, y, t)− φ (η) , (5)

the z dynamics are then given as

ż =
∂β

∂η̂
α(η̂, y, t) +

∂β

∂y
h(η, y, t) +

∂β

∂t
−

∂φ

∂η
f(η, y, t). (6)

On the manifold, z and ż will converge to zero and then the function α(η̂, y, t) will be an observer for the system

(1)-(2), given by

α(η̂, y, t) =

(

∂β

∂η̂

)

−1(

−
∂β

∂y
h(φL(β(η̂, y, t)), y, t)−

∂β

∂t
+

∂φ

∂η

∣

∣

∣

∣

η=φL(β(η̂,y,t))

f(φL(β(η̂, y, t)), y, t)

)

. (7)

For dynamics that are not on the manifold (i.e. z 6= 0), then substituting the function α(η̂, y, t) from (7) in (6) and

making sure that (A1) holds, gives

ż =
∂β

∂y

(

h (η, y, t)− h(φL (φ (η) + z) , y, t)

)

−
∂φ

∂η
f (η, y, t) +

∂φ

∂η

∣

∣

∣

∣

η=φL(φ(η)+z)

f
(

φL (φ (η) + z) , y, t
)

. (8)
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The mapping functions should be selected in such a way that (7) has a (locally) asymptotically stable equilibrium at

z = 0, uniformly in η, y, t , where φL is left inverse of φ and z is the distance between system trajectories and the

manifold.

It can be seen from (7) that (A1) should hold for the existence of function α(η̂, y, t). (A2) should hold for the

asymptotic convergence of off-the-manifold trajectories towards the manifold and to ensure that the distance z con-

verges to zero. The function α(y, η̂, t) renders the manifold invariant and (A2) makes the manifold attractive. So the

problem of observer design has been reduced into making the ż dynamics asymptotically stable.

3. 2-DOF Nonlinear Spring Damper System

The example system under consideration in this paper is the multi-input multi-output (MIMO) two degree-of-

freedom (2-DOF) nonlinear spring damper system shown in Fig. 1. A weak non-linearity is included in the system to

represent large deflections that typically occur in a flexible structure. The system is subjected to a excitation signal,

Ud, that creates unwanted vibrations of the two masses. To simulate the situation in flexible structures that suffer from

unwanted vibrations, the damping constant, C1, is chosen such that the two degree-of-freedom system is under-damped.

As a result the open-loop system has two lightly damped resonances.

The equation of motion for the two degree-of-freedom system is given by Eq. (9) where X1 and X2 represent the

displacement of mass m1 and m2 respectively, fa represents the active actuator force, fsa represents the semi-active

actuator (MR damper) force, K1, K2 are the linear spring stiffnesses, K3 is the nonlinear spring stiffness, C1 is the

damping coefficient and Ud is excitation signal.





m1 0

0 m2









Ẍ1

Ẍ2



+





C1 0

0 0









Ẋ1

Ẋ2



+





K1 +K2 −K2

−K2 K2









X1

X2



 =





−K3

0



X3
1

+





fa − fsa

fsa − Ud



 . (9)

The system can be represented in state space form as

ẋ =































x2

1

m1

(

fa − fsa −K1x1 − C1x2 −K2(x1 − x3)

−K3x
3
1

)

x4

1

m2

(

fsa −K2(x3 − x1)− Ud

)































, (10)

where x1 and x2 are the unknown states representing the displacement and velocity of mass m1 respectively; x3 and

x4 are the known states representing the displacement and velocity of mass m2 respectively.
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m2

m1

fsa

fa C1

Ud

K2

K1,K3

X1

X2

Figure 1: 2-DOF mass-spring-damper system, where fa represents the force of an active actuator and fsa represents the force of a semi-active

device (MR damper). m1, m2 represent the masses, K1, K2 are the linear spring stiffness, K3 is the nonlinear spring stiffness, C1 is the damping

coefficient and Ud is external disturbance signal.

The controller for the 2-DOF system is based on a hybrid active and semi-active control methodology which

combines an active actuator and semi-active device. The active actuator is designed to assist the semi-active device to

achieve as close to fully active control performance as possible. The purpose is to design an observer that will operate

effectively for this closed loop system. More specifically, an observer that can estimate the displacement and velocity

for one of the two degrees-of-freedom is a suitable solution in this case.

4. Proposed Observer Design for the Example System

Following the observer design methodology presented in Section 2, the mapping functions φ(x1, x2) and β (η̂, x3, x4)

can be defined as

φ(x1, x2) =











x1

x2

K3x
3
1











, β (η̂, x3, x4) =











β1 (η̂, x3, x4)

β2 (η̂, x3, x4)

β3 (η̂, x3, x4)











, (11)

The mapping φ(x1, x2) is defined in terms of the unknown states, in such a way that the rank of the matrix is equal to

the number of rows, hence the condition of left invertability is satisfied. The mapping β (η̂, x3, x4) is defined in terms

of the known states and the observer states.

Here z represents the distance between system trajectories and the manifold, such that

z = β (η̂, x3, x4)− φ(x1, x2). (12)
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The error dynamics are then given as

ż =
∂β

∂η̂
˙̂η +

∂β

∂x3
ẋ3 +

∂β

∂x4
ẋ4 − φ̇(x1, x2), (13)

which becomes

ż =
∂β

∂η̂
˙̂η +

∂β

∂x3
x4 +

∂β

∂x4

1

m2

(

fsa −K2(x3 − x1)
)

−
[

x2 ẋ2 3K3x
2
1x2

]⊺

, (14)

leading to

ż =
∂β

∂η̂
˙̂η +

∂β

∂x3
x4 +

∂β

∂x4

1

m2

(

fsa −K2(x3 − (β1 − z1))
)

−





























β2 − z2

1

m1

(

fa − fsa −K1(β1 − z1)− C1(β2 − z2)−K2(β1 − z1 − x3)−

(β3 − z3)
)

3K3(β1 − z1)
2(β2 − z2)





























. (15)

If the β (η̂, x3, x4) mapping function is selected in such a way that (A1) holds then the observer dynamics can be

selected as in (7) to give

˙̂η =

(

∂β

∂η̂

)

−1(

−
∂β

∂x3
x4 −

∂β

∂x4

1

m2

(

fsa −K2(x3 − β1)
)

)

+

(

∂β

∂η̂

)

−1





















β2

1

m1

(

fa − fsa −K1β1 − C1β2 −K2(β1 − x3)− β3

)

3K3β
2
1β2





















. (16)

Then the error dynamics becomes

ż =
∂β

∂x4

1

m2

(

−K2z1 − C2z2

)

−



















−z2

1

m1

(

(K1 +K2)z1 + C1z2 + C2z2 + z3

)

−3K3x
2
1z2



















. (17)

Now the mapping function β (η̂, x3, x4) needs to be selected in such a way that (A1) and (A2) are satisfied. The

β (η̂, x3, x4) mapping function is selected as

β (η̂, x4) =

[

η̂1 η̂2 η̂3 +
3K3m2αx4

C2

]⊺

, (18)

where α is a constant.
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1. The first condition that needs to be satisfied by the β (η̂, x4) mapping function is det

(

∂β

∂η̂

)

6= 0. For the

function given in (18) we have

det

(

∂β

∂η̂

)

= 1.

Therefore the first condition is satisfied.

2. The second condition is that the error dynamics

ż =



















z2

−
1

m1

(

(K1 +K2)z1 + (C1 + C2)z2 + z3

)

−
3K2K3αz1

C2
− 3K3αz2 + 3K3x

2
1z2



















, (19)

should have an asymptotically stable equilibrium at z = 0. As the error dynamics are nonlinear, Lyapunov’s

second method is utilized to analyze stability and the Lyapunov function candidate (20) is used.

V (z) =
1

2

(

z21 + z22 + z23

)

, (20)

As

V (0) = 0, (21a)

V (z) > 0, in D − {0} , (21b)

V (z) is radially unbounded, (21c)

Then

V̇ (z) = −

(

C1 + C2

m1

)

z22 −

(

K1 +K2

m1
− 1

)

|z1||z2| −

(

3K2K3α

C2

)

|z1||z3| −

(

3K3α+
1

m1

)

|z2||z3| < 0,

V̇ (z) < 0, in D − {0} . (21d)

hence the equilibrium point z = 0 is global asymptotic stability, where D is the subset of R
p in which the

Lyapunov function is defined.

In the next section the proposed observer is compared with an observer based on Lipschitz type nonlinearity.
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5. Observer Design Based on Lipschitz Type Non-linearity

For comparison purposes a nonlinear observer based on the solution of the Riccati equation is designed for the

system under consideration. This method is very well known for the class of systems that have Lipschitz type non-

linearity. The example system in this paper has a cubic stiffness, which is locally Lipschitz but there is a limit on its

growth due to the mechanical constraint, which makes it globally Lipschitz. Consider a system of the form

ẋ = Ax+ g(t, u, y) + f(t, u, x), (22)

y = Cx,

where x ∈ R
v is the system state, y ∈ R

m is the system measurable output, u ∈ R
z is the input, A and C are constant

matrices, g : R×R
z ×R

m → R
v , f : R×R

z ×R
v → R

v , and an over-dot represents the differentiation with respect

to time. The nonlinear function f(t, u, x) is assumed to be globally Lipschitz in x with a Lipschitz constant γ. A and

C are assumed to be observable. For the system in (22) the observer is defined as

˙̂x = Ax̂+ g(t, u, y) + f(t, u, x̂) + L(y − Cx̂), (23)

where x̂ represents the observer state, L ∈ R
n×q is the observer gain matrix. The error dynamics are represented as

˙̃x = (A− LC)x̃+ f(t, u, x) + f(t, u, x̂), (24)

where x̃ = x− x̂. Now the algorithm below presents a method to choose L which will make the error dynamics stable

1. Set ǫ to a positive value.

2. Solve the following Algebraic Riccati Equation (ARE)

AP + PA⊺ + P
(

γ2I −
1

ǫ
C⊺C

)

P + I + ǫI = 0. (25)

3. If P is symmetric and positive definite, then setting

L = (
1

2ǫ
)PC⊺, (26)

in (23) gives stable error dynamics (24).

4. If not, set ǫ =
ǫ

2
and go to step 2. If ǫ is below some precision value, abandon method.

The 2-DOF mass-spring-damper system (10) can be represented by (27)

ẋ = Ax+ f(x) + g(y)u, (27)
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where

A =



























0 1 0 0

−
(K1 +K2)

m1
−
(C1 + C2)

m1

K2

m1

C2

m1

0 0 0 1

K2

m2
0 −

K2

m2
0



























, g =



























0 0

1

m1
−

1

m1

0 0

0
1

m2



























, f =

























0

0

0

−K3x
3
1

























, C =

























0 0

0 0

1 0

0 1

























⊺

.

The Lipschitz constant is required to solve the Riccati equation (25). A function f(x) is said to be globally Lipschitz

if there exists a constant γ such that for all xa, xb ∈ R
n, the following holds,

|f(xa)− f(xb)| ≤ γ|xa − xb|. (28)

To find the Lipschitz constant for the system under consideration, (28) is used as

|f(x1a)− f(x1b)| ≤ |K3x
3
1a −K3x

3
1b|,

|f(x1a)− f(x1b)| ≤ γ|x1a − x1b|. (29)

Where γ = |K3||x
2
1a + x1ax1a + x2

1b|. As there is a constraint on x1 ≤ 27.5 mm because of the mechanical design,

this puts a saturation limit on the amplitude of non-linearity and makes the system globally Lipschitz. The Lipschitz

constant γ = 7.56 is computed using (29).

To compute the observer gain matrix L, the algorithm described in the same section is used, ǫ is set to 1 and P is

computed by solving the Riccati equation given in (25) using Matlab.

P =

























2.6699 −0.1297 −0.7979 0.0098

−0.1297 0.0189 −0.0039 0.0101

−0.7979 −0.0039 2.0582 −0.1985

0.0098 0.0101 −0.1985 0.0477

























. (30)

P is symmetric and positive definite, hence L is computed using (26), and the result is that

L =







−0.3990 −0.0020 1.0291 −0.0993

0.0049 0.0051 −0.0993 0.0238







⊺

. (31)

6. Simulation Results

After designing observers for the 2-DOF mass-spring-damper system using the proposed technique and the method

based on Lipschitz type non-linearity, simulations were carried out using Matlab/Simulink to check the performance
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Table 1: System parameters

mass (kg) stiffness (Nm−1) damping (Nsm−1)

m1 = 100 K1 = 100000 C1 = 1000

m2 = 112 K2 = 63000 C2 = 1000

of both the observers under different conditions. The system is excited by introducing the sinusoidal signal Ud at mass

m2 as shown in Fig. 1 with an amplitude of 70 N at 3 Hz. The resonant frequencies of the 2-DOF system are 2.76

Hz and 6.8 Hz. The observer is designed for a closed loop system with a hybrid controller to control vibrations in a

system with natural frequencies below 10 Hz. So the parameters are chosen accordingly. Table 1 shows the parameters

of the 2-DOF system.

Fig. 2 shows the actual and estimated displacement and velocity of mass m1 under different conditions. Under

normal conditions, i.e. without any parameter variation or any phase change in the excitation signal, the performance

of both observers is satisfactory as shown in Fig. 2a. In Fig. 2b delay has been added to the phase of the excitation

signal and the performance of the proposed observer is better than the observer based on Lipschitz type non-linearity.

Fig. 2c shows the same signals but with the system parameters varied. Both the masses m1 and m2 are increased by

25% and again the proposed observer is performing better. To check the performance of both the observers against

measurement noise, Gaussian noise is added to the acceleration of mass m2 as shown in Fig. 3a. Both the observers are

estimating well, but at some points the proposed observer performance is better, as shown in Fig. 4a. Now the Gaussian

noise is added to the displacement of mass m2 as shown in Fig. 3b. In this case again the performance of the proposed

observer is impressive, whereas on the other hand the observer based on Lipschitz type nonlinearity is not performing

well as shown in Fig. 4b.

To further check the robustness of both the observers against different disturbances which includes a ramp, step,

sinusoidal and random signals are used. Fig. 5a and Fig. 5b shows the performance of both the observers against step

and ramp disturbance signals respectively, introduced at mass m2 starting at one second and ends at two second. Again

the proposed observer out-performed the others. In Fig. 6a and Fig. 6b a sinusoidal disturbance of 1 Hz and 100 Hz

is introduced at mass m2 respectively. At low frequency sinusoidal disturbance the proposed observer is performing

better whereas at high frequency sinusoidal disturbance both the observers are performing well. In Fig. 7 a random

disturbance is introduced at mass m2, and again the proposed observer estimation is quite good as compared to the

observer based on Lipschitz type nonlinearity. In Fig. 8 different initial conditions are given to the actual system. The

converging rate of the proposed observer is faster. Robustness of the observer is an important aspect, especially when it

needs to be used in the closed loop control system. The examples shown here demonstrate the potential of the proposed

observer in terms of robustness to both parameter variation and phase change in the excitation signal.
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Figure 2: Simulated actual and estimated displacement and velocity of mass m1. The solid line represents actual measurements, dashed line

represents the estimated measurements using the proposed observer, dash-dot line represents the estimated measurements using the observer based

on Lipschitz type non-linearity, (a) under normal conditions, (b) with phase delay in the excitation signal, (c) with 25% increase in both the masses.
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Figure 3: Acceleration and displacement of mass m2 with and without Gaussian noise. The dashed line represents the signal without Gaussian

noise, solid line represents the signal with Gaussian noise, (a) Gaussian noise is added to the acceleration of mass m2, (b) Gaussian noise is added

to the displacement of mass m2.
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Figure 4: Simulated actual and estimated displacement and velocity of mass m1 with measurement noise (Gaussian noise). The solid line repre-

sents actual measurements, dashed line represents the estimated measurements using the proposed observer, dash-dot line represents the estimated

measurements using the observer based on Lipschitz type non-linearity, (a) Gaussian noise is added to the acceleration of mass m2, (b) Gaussian

noise is added to the displacement of mass m2.
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Figure 5: Simulated actual and estimated displacement and velocity of mass m1 with step and ramp disturbance signals introduced at mass m2. The

solid line represents actual measurements, dashed line represents the estimated measurements using the proposed observer, dash-dot line represents

the estimated measurements using the observer based on Lipschitz type non-linearity, (a) with step disturbance signal, (b) with ramp disturbance

signal.
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Figure 6: Simulated actual and estimated displacement and velocity of mass m1 with sinusoidal disturbance signal at mass m2. The solid line

represents actual measurements, dashed line represents the estimated measurements using the proposed observer, dash-dot line represents the

estimated measurements using the observer based on Lipschitz type non-linearity, (a) with sinusoidal disturbance of 1 Hz, (b) with sinusoidal

disturbance of 100 Hz.
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Figure 7: Simulated actual and estimated displacement and velocity of mass m1 with random disturbance signal at mass m2. The solid line

represents actual measurements, dashed line represents the estimated measurements using the proposed observer, dash-dot line represents the

estimated measurements using the observer based on Lipschitz type non-linearity.

0 0.2 0.4 0.6 0.8 1

0

5

10

x 1
 
(
m
m
)

0 0.2 0.4 0.6 0.8 1

time (sec)

-200

-100

0

100

x 2
 
(
m
m
/
s
)

Figure 8: Simulated actual and estimated displacement and velocity of mass m1 with different initial conditions. The solid line represents actual

measurements, dashed line represents the estimated measurements using the proposed observer, dash-dot line represents the estimated measurements

using the observer based on Lipschitz type non-linearity.
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Figure 9: Hardware in loop (HIL) test set-up, where fa represents the force of an active actuator and fsa represents the force of a semi-active

actuator (MR damper). m1, m2 represent the masses, K1, K2 are the liner spring stiffness, K3 is the nonlinear spring stiffness, C1 is the damping

coefficient.

7. Experimental Results

The experimental tests are performed as hardware-in-the-loop (HIL) tests. The experimental system is shown in

Fig. 9, and details on the experimental facility are given in [38]. The physical part of the HIL test is the degree-of-

freedom that includes mass m2, the MR damper and the linear spring. The other degree-of-freedom that includes the

mass m1, the active actuator, linear damper C1 and nonlinear spring is the non-physical part of the HIL test. This is

simulated numerically and applied to the physical system via a force applied by an Instron hydraulic actuator.

The displacement of mass m1 from Simulink goes into the Instron 8400 controller via a National Instruments data

acquisition card. The control signal from the Instron 8400 controller is applied to the Instron hydraulic actuator via

servo valves and the LVDT gives the feedback displacement signal.

In the experimental test, the excitation signal is generated by rotating unbalanced masses driven by a brush-less

DC motor, whose speed is controlled through a separate motor speed controller. The speed controller keeps the speed

of the motor close to the desired speed but there is a small amount of variation, so it is not a perfect single frequency

sine wave, and the phase is also unknown. Fig. 10 shows the actual and estimated displacement and velocity of mass

m2 under three different conditions. As mentioned earlier, the phase of the excitation signal is not known, so after

doing several trials, results were selected such that the phase of the excitation signal generated experimentally best

matches the phase applied in the simulation results. In this case both the observers are estimating quite well as shown

in Fig. 10a. In Fig. 10b the excitation signal has deliberately introduced phase delay and then in Fig. 10c both the

masses m1 and m2 are increased by 25% in addition to the phase delay. In both cases the proposed observer continues

to perform well, which experimentally validates the simulation results. It also adds further evidence of the potential for
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Figure 10: Experimental actual and estimated displacement and velocity of mass m1. The solid line represents actual measurements from the LVDT,

dashed line represents the estimated measurements using the proposed observer, dash-dot line represents the estimated measurements using the

observer based on Lipschitz type non-linearity, (a) under normal conditions, (b) with phase delay in the excitation signal, (c) with 25% increase in

both the masses.
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Figure 11: Error dynamics in experiment, where the dashed line represents the error dynamics in the proposed observer and the dash-dot line

represents the error dynamics in the observer based on Lipschitz type non-linearity, (a) under normal conditions, (b) with 25% increase in both the

masses, (c) with phase delay in the disturbance signal.
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Table 2: Comparison of observers based on parameter variation (simulation)

System parameters Proposed Lipschitz based

(25% increase) observer error (mm) observer error (mm)

m1 & m2 0.13 0.96

K1 & K2 0.18 1.04

C1 & C2 0.05 0.5

this observer for offering improved performance over existing observers.

For a quantitative analysis, a performance index is defined in terms of the absolute value of the radius of the phase

planes shown in Fig. 11. This shows the deterioration in performance for both the observers, with the parameter

variation and phase change in the excitation signal. The phase planes in Fig. 11 are plotted using experimental data.

The error is increased from 0.5 mm to 3 mm for the observer based on Lipschitz type nonlinearity in both the scenarios

as shown in Figs. 11b and 11c, but for the proposed observer, the error remains almost the same in all the cases. To

further check the robustness of both the observers to parameter variation, a comparison is summarized in Table 2.

Simulation results are used in order to investigate a broader range of parameter variations. It can be concluded that the

proposed observer is robust to both parameter variation and phase change in the excitation signal for the range and type

of parameters considered in this study.

The final step is to check the performance of the proposed observer as part of a closed loop control system in the

experimental setup. The controller uses a hybrid combination of a semi-active device and an active control actuator

to suppress vibrations. The control framework used is the immersion and invariance (I & I) control technique in

combination with sliding mode control (SMC). I & I is used to design the controller for the active actuator and SMC

is used to design the controller for the semi-active actuator using the same target/reference system. A full description

of the details of the hybrid active and semi-active control algorithm are beyond the scope of the present contribution.

However, Fig. 12 shows the actual and estimated displacement and velocity of mass m1 in the closed loop system. The

results show very good agreement.

8. Conclusion

One of the major issues with nonlinear observers is that most of them do not possess a structural design methodol-

ogy and if they do, then some of the conditions are very difficult to meet. Secondly most of these methods are designed

for a specific class of systems, like the one that is used for comparison purposes, it is only applicable to the systems that

have Lipschitz type non-linearity and satisfies the globally Lipschitz conditions. The proposed observer is restricted to

systems where an invariant manifold exists, and for such systems it provides a structured design methodology.
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Figure 12: Experimental actual and estimated displacement and velocity of mass m1 with hybrid active and semi-active controller, where the solid

line represents actual measurement from LVDT, dashed line represents the estimated measurement using the proposed observer. An Immersion and

invariance (I&I) methodology is used to design the controller for active actuator [16] and sliding mode control (SMC) methodology is used for

the semi-active controller [39]. Magneto-rheological (MR) damper is used as a semi-active actuator and hydraulic actuator is used as an active

actuator.

Robustness is a crucial property, especially when the observer needs to be used in a closed loop control system

because performance of the controller depends on the estimated signals. A qualitative analysis has been performed

based on the performance index defined in Section 7. It is shown that the proposed observer error remains almost the

same with the parameter variation and phase change in the excitation signal, whereas there is an increase in the error

in all the scenarios for the observer based on Lipschitz type non-linearity.

In this paper, a method to design a reduced order observer for a nonlinear system has been presented. A systematic

design method for the observer has been explained in detail. Then the performance of the proposed observer was tested

using a 2-DOF example system. As part of this process, the proposed observer was compared with a well known

observer based on Lipschitz type non-linearity. Based on this comparison, we conclude that the new observer has a

clear performance benefit, with significant potential to be extended to a wider range of nonlinear systems beyond the

one considered here.

The proposed observer was shown to have a better performance for the parameters and inputs selected in the

example of a 2-DOF system. In particular, the robustness of the proposed observer against parameter variation and

excitation signal is shown to be better both in the simulation and the experiment. Finally the proposed observer was

found to perform well when tested in a closed loop with a hybrid active and semi-active controller system.
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