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unsupervised, habitual environments (termed free?living). Wearable technologies are revolutionising 32 

approaches to healthcare due to their utility, accessibility and affordability. They are positioned to 33 

transform Parkinson’s disease (PD) management through provision of individualised, comprehensive, 34 

and representative data. This is particularly relevant in PD where symptoms are often triggered by 35 

task and free?living environmental challenges that cannot be replicated with sufficient veracity 36 

elsewhere. This review concerns use of wearable technology in free?living environments for people 37 

with PD. It outlines the potential advantages of wearable technologies and evidence for these to 38 

accurately detect and measure clinically relevant features including motor symptoms, falls risk, 39 

freezing of gait, gait, functional mobility and physical activity. Technological limitations and 40 

challenges are highlighted and advances concerning broader aspects are discussed. Recommendations 41 

to overcome key challenges are made. To date there is no fully validated system to monitor clinical 42 

features or activities in free living environments. Robust accuracy and validity metrics for some 43 

features have been reported, and wearable technology may be used in these cases with a degree of 44 

confidence. Utility and acceptability appears reasonable, although testing has largely been informal. 45 

Key recommendations include adopting a multi?disciplinary approach for standardising definitions, 46 

protocols and outcomes. Robust validation of developed algorithms and sensor?based metrics is 47 

required along with testing of utility. These advances are required before widespread clinical adoption 48 

of wearable technology can be realised.
 
49 
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research and healthcare settings. WTCD comprise electronic technology worn on the body or 52 

embedded into mobile phones, watches, bracelets, and clothing, amongst others. The generic appeal 53 

of WTCD is obvious. Patient monitoring is free from contextual or environment barriers making 54 

assessment at home and in the community over continuous time periods (termed free?living) feasible 55 

and ecologically valid 1. Moreover data are free from the confounds of observer bias and attentional 56 

compensation associated with a one off testing session under observation 2, while devices are 57 

relatively low cost making their use economically as well as practically feasible. 58 

The benefits of remote monitoring with WTCD are multi?fold. Clinically, continuous 59 

monitoring of symptom severity and therapeutic response provides nuanced assessment. A complete 60 

picture of disease burden is available both to the clinician and the patient incorporating a broad range 61 

of features from the ‘���	�’ level of detail (e.g. disease symptoms, medication response and 62 

fluctuations, gait characteristics, turning, frequency of falls) through to more ‘�
�	�’ levels (e.g. 63 

habitual patterns of walking/activity, inactivity and sleep) (Figure 1). Enriched measurement, coupled 64 

with ease of use, also has implications for industry, paving the way for identification of early disease 65 

with the potential for enhanced diagnostic and progression markers (fundamental for trials of novel 66 

therapeutics and disease modifying therapies), harmonisation of outcomes and standardized testing 67 

protocols to enhance recruitment and assessment of treatments in clinical trials. For the patient, 68 

WTCD offer insight into symptoms, therapeutic efficacy and habitual mobility in the context of 69 

everyday life contributing to enhanced self?management that is both bespoke and contextualised. 70 

Despite the recent explosion of low cost commercially available devices (for the general 71 

population) promoting personal monitoring and feedback, the application of WTCD in healthcare has 72 

not yet been established 3. The lure of utility (i.e. ease of use, broad application, and low cost) is 73 

strong; however standards for clinical adoption and research application are far higher. While 74 

technology and design have advanced, algorithm development and data analysis have not kept pace. 75 

Validity and reliability are paramount and inform accurate detection and monitoring of disease and 76 

this next step is critical before widespread adoption 4. Although there are promising signs, there is still 77 
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algorithms to accurately detect a range of clinical features and report on criterion and discriminative 82 

validity of outcomes derived from WCTD. Utility and feasibility are also considered. Clinical features 83 

include monitoring of motor symptoms, medication response, sleep, falls and falls risk, freezing of 84 

gait (FOG), gait, functional mobility and physical activity (ambulatory activity and sedentary 85 

behaviour).  This rapidly expanding field and has been the subject of a number of recent systematic 86 

reviews 7?9 including Sánchez?Ferro et al. within this issue to which the reader is referred. We have 87 

therefore adopted a broader approach and provide a structured overview of the current status of 88 

continuous patient monitoring in the home and community in Parkinson’s disease (PD) which we 89 

define as ‘free?living’. We address four key aims: (1) the role and benefits of free?living monitoring; 90 

(2) the validity and utility (acceptability and feasibility) of WTCD to monitor a range of key clinical 91 

features relevant to PD; (3) critical challenges for adoption of WTCD for free?living assessment; and 92 

(4) future developments in this rapidly developing field. Throughout we focus mainly on the 93 

application of passive (no interaction from patient) single sensor?based devices and their application 94 

in PD but where relevant draw from work in ageing cohorts. Finally, we make recommendations 95 

based on this overview to progress free?living monitoring in PD. 96 

 97 
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Due to its heterogeneity and complexity, clinical assessment of PD is challenging. The 99 

intrinsic, fluctuating nature of PD and biphasic medication response in advanced disease requires 100 

continuous evaluation over prolonged periods to gain an accurate picture of symptoms and their 101 

fluctuations. The influence of attention on performance is well recognised especially with symptoms 102 

such as FOG, leading to an inaccurate clinical picture 2, 8. Assessments requiring concentration and 103 

recall such as falls diaries are further compromised by cognitive impairment, thus limiting utility. 104 

Also, use of clinical scales is restrictive. The Unified Parkinson’s Disease Rating Scale, (UPDRS) 10
, 105 
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limited by subjectivity and clinical expertise. WTCD overcome many of these limitations by 107 

objectively quantifying clinically relevant outcomes. Variation in testing is reduced 3, 11, 12. Patients 108 

also have much to gain from this approach, with less emphasis during clinical visits on symptom 109 

recall and evaluation of therapeutic response. Continuous monitoring also provides greater potential 110 

for patient involvement in defining optimal management 12.   111 

Measurement with WTCD is diverse. A single WTCD has the potential to provide the 112 

clinician/researcher with a comprehensive picture of their patient within one assessment. For example, 113 

Figure 1 shows that placement of a single sensor can quantify features such as volume and pattern of 114 

habitual behaviours (e.g. walking, sleeping, sedentary time, Figure 1, A) (defined here as �
�	�). The 115 

raw signal (Figure 1, B) can then be further broken down to detect very discrete features (e.g. a fall, 116 

gait characteristics, turning and freezing, figure 1, C?H) (defined here as ���	�).�Taking this approach 117 

enables multi?level measurement 13.   118 

<Figure 1> 119 
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Despite the obvious advantages of free?living assessment an important question remains – are 123 

the outcome measures derived from WTCD suitable for current clinical use and will patients and 124 

professionals use WTCD? Table 1, which form the basis of this section, provides an overview of 125 

detection accuracy, validity and utility of some WTCD. Our main inclusion criterion was that WTCD 126 

had been applied to free?living monitoring under either totally unsupervised or scripted protocol 127 

conditions, with an exception made for studies where tests are conducted in formal settings to 128 

optimise validation, such as detection of FOG. We report �	���	����

������ from studies that examine 129 

the association between WTCD?derived outcomes and other measures such as clinical scales. We also 130 

report studies that test ����	����
��
�� 

�������� which we define as the ability of WTCD?derived 131 

outcomes to discern groups or phenotypes. The list is by no means exhaustive but provides a current 132 

overview and highlights the vast interest in the area. We do not review static postural control despite 133 
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postural control (e.g. dynamic, turning) are considered.

135 

 136 

����	� ���������� �����
����� 	�������� 
��� ������� �Continuous monitoring has a lot to offer over 137 

snapshot clinical assessments which may not reveal the true extent of symptom burden. Earlier use of 138 

WTCD for motor symptom measurement focused on evaluation of a single symptom to detect 139 

hypokinesia, dyskinesia, tremor, bradykinesia, and akinesia derived on/off medication status 16, 17. 140 

This has evolved to assessment of multiple motor symptoms using either a single 18?20 or multiple 141 

sensor systems 17, 21?24.  To date preliminary results are promising. Overall, motor symptom 142 

measurement using WTCD is accurate and comparable with more established methods with some 143 

aspects of validity tested. Criterion validity is established for most motor symptoms (tremor, 144 

bradykinesia, dyskinesia) showing moderate to high correlations overall (R > 0.65) with standard 145 

clinical scales (e.g. UPDRS, Abnormal Involuntary Movement Score (AIMS), Modified Bradykinesia 146 

Rating Scale (MBRS), etc.) (see Table 1 for references). Measures of bradykinesia also show high 147 

specificity (88%) and sensitivity (95%) when compared to standardised tests (e.g. the Dot Slide test) 148 

18. Studies that test discriminative validity are not as advanced, apart from the work by Horne et al. 149 

which discerns motor symptom fluctuations in early stages of PD 20. Single sensors are sufficiently 150 

robust for application, although there are question marks over aspects of utility for some systems 151 

which require technical mastery and are demanding on the user (see ‘Utility’ section). Whilst there 152 

have been a number of key developments in this area with motor symptom monitoring assessed at 153 

home, the test protocols are still largely controlled and scripted as highlighted in table 1. True passive 154 

monitoring without patient input is as yet an area to be developed but remains the area of greatest 155 

interest as it will give the most ecologically valid picture of motor symptom burden and therapeutic 156 

efficacy. Assessment of sleep also shows promise. WTCD?derived outcomes for sleep discriminate 157 

PD from older adults (OA) 25, 26 for �
�	��outcomes (e.g. number and size of movements) with people 158 

with PD also showing increased episodes of nocturia, fewer turns during sleep, and greater arm 159 

movements. 160 

 161 
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greatly inform clinical management and therapeutic development and WTCD has a role to play. Real?163 

world detection of falls however is technically challenging. A plethora of algorithms, devices, and 164 

device locations (chest, waist or wrist 27?31) have been tested to improve the accuracy of falls 165 

detection, however, studies are almost completely limited to controlled settings and conducted on 166 

young healthy adults. Kangas et al. provides a rare example of using WTCD for falls detection in the 167 

real?world where falls were measured in institutionalised OA and verified by an observer 32. Fall 168 

detection sensitivity was 80% with a falls alarm rate per hour of 0.025, denoting one false alarm over 169 

40 hours of recording. This points to high accuracy, although the testing environment was far 170 

removed from ‘free?living’, and generalisability is therefore weak. Application in PD remains an area 171 

of unmet need. An alternative approach is to predict falls risk using WTCD which, in contrast to falls 172 

detection, is a more advanced field for both older adults and PD. Moreover, addressing a falls 173 

prevention approach could be argued to have greater clinical relevance 33, 34. Studies have compared 174 

groups with and without falls in PD using free?living monitoring over 3?7 days. Falls risk factors 175 

derived from gait during free?living walking bouts 33, 34 were superior to laboratory?based gait speed 176 

and fall history to discriminate fallers from non?fallers 35?38. Discriminative validity has been 177 

established for both �
�	��and ���	� characteristics of gait and sedentary behaviour (Figure 1, A?B) 178 

which are associated with type of PD fallers 39 and fall history (fallers vs. non?fallers) in OA 38, 40 and 179 

PD 41, respectively. ���	� features may offer more than �
�	� features 36, 37, and contribute 180 

substantially to predicting falls both in fallers and non?fallers 37, 38. Further refinement of algorithm 181 

and system development is however required to take the field forward. 182 

 183 

�	�����������
����Gait disturbances such as FOG are notoriously difficult to replicate in a controlled 184 

environment because of its spontaneous nature and the non?specific and poorly understood triggers 185 

that provoke it 3. Clinical scales such as the UPDRS and NFOG 42 are subjective and therefore 186 

limited. Despite the obvious need, free?living monitoring of FOG in PD has not been achieved. 187 

Detection of FOG episodes has been tested in controlled and structured conditions where FOG is 188 
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Studies show high sensitivity (range: 84.3%?86.2%) and moderate to high specificity (range 66.7%?190 

98.74%) for detection of FOG, and moderate agreement with clinical measures 43, 44. These results 191 

provide a critical step from which validation can be extended to free?living. An alternative approach is 192 

to identify potential predictors of FOG to understand the mechanisms and target therapeutic 193 

developments. A recent study comparing freezers vs. non?freezers found frequency?based gait 194 

characteristics collected during 3 days of free?living discriminated freezers. Gait characteristics were 195 

also moderately correlated with clinical measures of FOG 45. Further work is needed before free?196 

living monitoring can be used for FOG detection or indeed for understanding the characteristics of 197 

FOG but initial results are promising. 198 

 199 

�
����Measurement of gait per se (���	� characteristics ? Figure 1, E?F) is also of interest to the 200 

clinician to evaluate efficacy of clinical management (due to dopa?resistance) as well as for its 201 

potential for use of discrete gait characteristics as diagnostic, prognostic and progression markers 46?48. 202 

Gait assessment during free?living assessment also captures ongoing environmental and cognitive 203 

challenges which impair gait performance. Assessment in this context has greater ecological validity 204 

and gives a true picture of the burden of disease 3, 7, 49. Algorithms have been validated to detect 205 

discrete gait characteristics in the laboratory and also in proxy validation studies 50?55. Results showed 206 

good agreement with trusted gold standard reference (e.g. GaitRite or optical motion capture systems) 207 

for the majority of gait characteristics with potential advantages for asymmetry and variability 208 

measures. Apart from Del Din et al. 49, the few studies that have examined gait in free living 209 

conditions, quantify few gait characteristics 56?61. Discriminative validity has been tested, and has been 210 

shown to discriminate between PD and OA 49, 57, phenotypes of PD 61 and PD with higher or lower 211 

cognitive functions 60. Aside from studies exploring falls and FOG risk highlighted previously 57 only 212 

one study has investigated the effect of environment on gait. Free?living gait characteristics showed 213 

better discriminative validity than those collected in the laboratory, especially for medium to long 214 

bouts 49. Although initial work is promising, future work is required to confidently realise continuous 215 

monitoring of gait. There are also some fundamental challenges to the field (outlined below). 216 
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�������������Tests of functional mobility such as turning and Timed up and Go 218 

(TUG) 62?64 measure combined movements that invariably incorporate postural transitions. Detection 219 

of movements during functional mobility tasks appears accurate 62, 63, 65��and validity (criterion and 220 

discriminative) has been established by a limited number of studies 62, 65. Mean turn velocity, slower 221 

walking and turning, shorter steps and lower cadence distinguished PD from controls 62, 64 and also 222 

showed greater sensitivity to dysfunction than clinical rating scales 64, 65. Of interest, free?living 223 

assessment appears to discriminate pathology better than testing in the laboratory 54 (Figure 1, G). 224 

Measurement of functional mobility tasks can therefore be undertaken with a degree of confidence 225 

during a standardised test at home, although further work is required to replicate these findings.
226 

 227 

�����
��	��
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����
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	�����

���	�� �One of the earliest applications of WTCD aimed to 228 

quantify physical activity (e.g. ambulatory activity) amid rising concerns of the negative effects of 229 

sedentary behaviour on well?being. This is particularly relevant for people with PD because of the 230 

beneficial health benefits activity confers, and its role in mitigating secondary deficit. Ambulatory 231 

activity provides a picture of the true burden of disease and therapeutic efficacy 66. Proxy measures 232 

such as activity logs and diaries are unreliable and lack responsiveness compared with continuous 233 

WTCD monitoring 67. Physical activity such as intensity of movement (energy expenditure), temporal 234 

periods (bouts) of ambulatory activity (e.g. bouts of walking) and sedentary behaviours are quantified, 235 

from which �
�	� outcomes can be derived 66, 68?70 (Figure 1, A?B). The field has advanced further 236 

with the application of non?linear approaches to data analysis which in some instances are more 237 

sensitive than measures of central tendency (Table 1, Figure 2), such as pattern (alpha (α)) rather than 238 

volume of sedentary behaviour showing discriminative properties 71. Ambulatory activity 239 

differentiates disease stage 66, and progression 72, 73 and shows increased sensitivity to intervention 68, 240 

74. Rochester et al. 68 demonstrated the advantages of WTCD versus clinical measures when 241 

examining the impact of deep brain stimulation (DBS) on ambulatory activity. Whilst standard 242 

clinical measure for gait speed (4 meter test), levels of activity (Nottingham extended activities of 243 

daily living index (NEADL)) and disease progression (Hoehn and Yahr) failed to show the positive 244 
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effects of DBS on the outcomes, WTCD?based measures demonstrated significantly improved 245 

patterns of daily activity. Use of WTCD to measure ambulatory activity and sedentary behaviour is 246 

the most advanced of all the fields discussed in this section, and the most widely adopted. Nonetheless 247 

there are still questions over its application, driven by lack of common definitions of ambulatory 248 

activity, validation procedures and structured protocols in controlled settings for validation of 249 

algorithms 6. These will be considered below. 250 

 251 

��������
�����
������������� !"#���$�
�����
����
	������%�Most studies do not intentionally test the 252 

feasibility and utility of WTCD but instead draw on secondary data such as informal comments from 253 

patients, reporting adverse events, data loss, or attrition in sensor use over the study period. 254 

Importantly, there are no overwhelmingly negative reports, suggesting that WTCD are broadly 255 

accepted. Although few studies have intentionally tested utility (which we describe as ‘formal testing’ 256 

in Table 1), some focused efforts have been made. Utility has been tested for wearable systems 257 

comprising interactive 75 or multiple sensors 17, 22, 23, 76, using both non?standardised and standardised 258 

questionnaires and rating scales23 (e.g.  the post?study usability questionnaire), comfort 75, 76 (e.g. 259 

comfort rating scale (CRS)) and ‘wearability’/exertion 76 (e.g. Borg CR?10 Scale, Rapid Entire Body 260 

Assessment (REBA)). Overall the response has been positive, with WTCD generally well tolerated, 261 

comfortable and easy to use. Compliance is high, although in some cases results were influenced by 262 

socio?cultural aspects which may have positively biased results 23.  263 

 264 

In summary, to date there is no fully validated WTCD system for continuous monitoring of patient 265 

clinical features. Overall, studies are small, there is no consistent reporting of outcome measures, 266 

protocols differ, and devices differ along with device placement. Comparison to a gold standard is 267 

difficult. Knowledge on patient acceptability is limited. A clear process for validation including 268 

replication in external data sets is essential with appropriate reporting according to a standard. 269 

However the WTDC community is aware that this is an important and emerging area of research with 270 

potential for high clinical uptake, and collaborative efforts are underway to redress these issues (see 271 

reviews 7?9). Challenges to implementation are due at least in part to broader technological and 272 
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practical concerns which are common to all WTCD and influence their state of readiness, irrespective 273 

of application and use. Until these fundamental issues are redressed, robust use of WTCD will be 274 

compromised. The next section highlights some of these broad concerns and discusses approaches to 275 

advance the field. 276 

 277 

�������	��

�
��������
����
���   278 

We address 3 key areas fundamental to the use of WTCD that apply to all areas of 279 

measurement: (i) clear definitions of the clinical feature of interest, (ii) validation of real?world data 280 

and WTCD technical challenges, and (iii) consensus on outcomes. We illustrate these using examples 281 

from our own experience in gait and activity and that of others (Figure 3). Finally we summarise 282 

challenges with recommendations for future work and practical suggestions to inform the interested 283 

user (Table 2).   284 

 285 

"������������������
����
��	��
Although on the face of it this seems simple, there are many examples 286 

where unclear definitions have led to inconsistencies in outcomes and confusion when comparing 287 

between studies. A good example relates to ambulatory activity, from which �
�	� (e.g. walking 288 

bouts) and ���	� level gait outcomes are derived that underpin many different clinical and research 289 

questions (Figure 1). This stems from a basic definition of what constitutes a walking bout. In some 290 

studies only purposeful bouts of walking are considered (with a cut?off threshold > 60 seconds) 291 

because regular steady state is more likely to be achieved, thus avoiding potential errors in 292 

misclassification from short bouts. However this is problematic because adults perform almost 90% of 293 

walking bouts in less than 60s 40, 49, 77 resulting in significant data loss and potentially missing the 294 

most relevant data (such as change in variability of walking pattern). Another approach is to include 295 

all bouts of walking 49 which is arguably more relevant in patient populations. However this is not a 296 

complete solution because disagreement also exists regarding the number of steps required for a bout, 297 

which may vary, ranging from >3 steps to >10 steps. As a consequence comparison across studies is 298 

impossible where difference in step counts range from 2,000 to 10,000 steps 66, 68, 72, 73. The situation is 299 

further complicated by the use of ‘ghost’ (unknown to the end user and hard?wired into WTCD) 300 
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thresholds used by the manufacturer to define consecutive bouts of walking  that have a major impact 301 

on �
�	� outcomes 78 (e.g. total number and pattern of walking bouts) (Figure 3, (1)). This uneven 302 

approach significantly impacts on both �
�	� and ���	� outcomes and therefore consensus as to a 303 

clear definition of walking is urgently required 6, 78. Attempts are underway to improve definitions 304 

which will greatly help (Chastin et al.: AlPHABET: Development of A Physical Behaviour 305 

Taxonomy with an international open consensus1).  306 

 307 

����	����� ��
���������� 

���
����� 
��� �������
�� ��
�������#� &��������� ��� �����'�� 
��� �	��������308 

Establishing a gold standard to test algorithm validity for the range of features highlighted in this 309 

review during continuous uncontrolled monitoring in a free?living environment is a major challenge 310 

without obvious solutions. Real?life is unpredictable and unstructured. For example, context 311 

(environment and task) affects walking speed and direction which has implications for accuracy of 312 

algorithms used to detect steps and phases of the gait cycle from which gait characteristics are 313 

determined (Figure 3). Studies often adopt a number of different testing protocols and various sensor 314 

configurations (type and location (upper or lower body, Table 1) which also impacts the signal 315 

waveform influencing the accuracy of the algorithm used to extract micro outcomes and other type of 316 

information (features, outcomes). Moreover algorithms are usually validated using healthy controls 317 

data and adopted for analysing other groups’ data (i.e. PD) without considering that speed (fast or 318 

slow), pathology itself and disease stage may impact on the raw signal (Figure 3, (2)) and therefore 319 

influence algorithm performance. In addition other technical considerations need to be taken into 320 

account. Many commercial devices adopt black box designs with un?validated firmware/software 79 321 

which account for at least some of the significant disagreements in reported results 80, 81.  Other 322 

uncertainties due to externally induced motion (e.g. cars, lifts) also impact on accuracy to detect 323 

features of interest 81. Static and dynamic re?calibration of WTCD to account for possible axis 324 

misalignment or sensor alterations due to damage (device dropped, contact with water etc.) is also 325 

advised 82, however rarely undertaken because procedures are complicated and expensive. Further 326 

sources of variability are also introduced through changes in external factors such as weather, mood 327 
                                                
1 https://osf.io/2wuv9/ 
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or medication, influencing analysis of the signal. Collectively these result in errors and decreased 328 

confidence in outcomes and conformity to everyday use. Algorithm development will ultimately 329 

refine extraction and a joint approach such as use of secondary data sources will aid interpretation, for 330 

example data from patients’ diaries, testimony from carers, and use of clinical records 83. All of these 331 

potential sources of error should be considered and some suggestions are provided in Table 2. 332 

 333 

"���	������� �����
�� �������� ��
��	���
 Table 1 shows the vast range of outcomes reported. 334 

Standardised measurement is urgently needed with a clear rationale for selection of outcomes from 335 

which clinimetric testing will allow a refined battery of measures to emerge to encourage 336 

harmonisation across studies. Examples of measurement frameworks have been described 46, 49 337 

including our own ���	� and �
�	� level structure used throughout this paper 47. Others 37, 38, 45, 57, 61 338 

beside volume outcomes (e.g. total number of walking bouts, etc.) defined as ‘(�
�����’ metrics, use 339 

novel frequency?based outcomes to characterise gait (a) symmetry, variability and stability (e.g. 340 

harmonic ratio, amplitude of dominant frequency, dynamic stability, etc.) defined broadly as ‘(�
����) 341 

metrics. These novel (�
���� measures, although very promising for discriminative validity, may be 342 

difficult to interpret in clinical practice. 343 

 344 

<Figure 2> 345 

<Figure 3> 346 

 347 

����������	
����
����	
��
�*�
"����

�
���
+
348 

Modern devices incorporate a range of inertial sensors such as accelerometers, gyroscopes, 349 

magnetometers with Bluetooth connectivity which constitute cutting edge WTCD. While use is 350 

currently limited to controlled settings, improvements in battery technology will improve the accuracy 351 

of measurement addressing some of the challenges highlighted earlier. Moreover, novel methods for 352 

advanced data processing are being developed to reduce computational load with advanced 353 

computational processing carried out remotely via smartphone or in the cloud extending the 354 

application of WTCD 84. Studies have also investigated the use of smart phones (and audio devices) 355 
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which regularly come with the necessary hardware to quantify symptoms, movement or gait 85. These 356 

devices capture, analyse and relay information via cellular or other wireless networks and also provide 357 

a more comprehensive assessment such as the addition of a microphone for use with speech analysis 358 

algorithms in PD diagnosis 86, 87 and visual displays to facilitate applications (apps) for the study of 359 

cognition 88.  Rigorous device testing however is needed to ensure confidence in their application.  360 

Long term monitoring via a smart phone facilitates network interconnectivity and integration 361 

to the Internet of Things (IoT) 5,  through delayed or real?time uploading of data to cloud computing 362 

infrastructures. Data can be relayed to the patient (bio?feedback) via unobtrusive displays, haptic and 363 

audible cues. Data is stored and sent to clinicians for tracking disease progression, optimising disease 364 

management and providing further, more clinically informed feedback to the patient. Data storage and 365 

data access on this scale constitutes ‘big data analytics’. Developments in this field can expand 366 

assessment to capture the ‘lived experience’ or ‘lifespace’ of PD, capturing the extent to which people 367 

travel and their patterns of movement within the community 89. This is exemplified by a recent 368 

collaborative project between the Michael .J Fox Foundation and Apple utilising their projects, 369 

FoxInsight2 and the Apple ResearchKit3 (inc. the Parkinson mPower app4 available via iTunes), 370 

respectively. 371 

Collection of data on the scale and in a free?living context raises new ethical challenges with 372 

respect to acquisition, analysis and storage.  Current ethical reviews may not be sufficient to identify 373 

modern issues 90. Technology and terminology has evolved faster than legal and ethical systems and 374 

unforeseen issues can emerge 91. Informed, principled, and collaborative experimentation are therefore 375 

necessary to ensure privacy and confidentiality, and compliance with ethical principles. 376 

 377 

�����������
���
����������
����

378 

There is no doubting the possibilities and potential of real world monitoring and assessment 379 

of clinical features for people with PD. It is conceivable to imagine a future where ���	� level data is 380 

used to enhance diagnostics, measure efficacy of intervention and monitor disease progression, and 381 
                                                
2 The Michael J. Fox Foundation for Parkinson's Research, https://foxinsight.michaeljfox.org/ 
3 Apple Inc., http://www.apple.com/uk/researchkit/ 
4 http://parkinsonmpower.org/ 
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predict risk of disease, falls and cognitive decline. �
�	�� level data, on the other hand, reflects the 382 

global burden of disease and impact of therapy. Both sources of data provide insights into 383 

personalised treatment. As this special issue in the journal indicates, this is a rapidly developing field. 384 

However, much work remains before widespread clinical adoption is a reality. We highlight key 385 

recommendations and some practical solutions to move this field forward (Table 2).  These challenges 386 

are likely to be met most effectively by adopting a multidisciplinary approach between key 387 

stakeholders such as clinicians, patients, engineers, computer scientists, and statisticians. 388 

 389 
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Table 1: Studies examining free?living monitoring of Parkinson’s disease (PD) using wearable technology and connected devices (WTCD).  
Number and position of WTDC used in each study is detailed in column two using a colour code (blue = chest, violet = wrist, black = pocket, green = thigh, 
yellow = shank, orange = ankle, grey = foot, red = lower back). 
,
Clinical feature/ activity detected or measures has been classified using three types of validity: 1) accurate detection of clinical feature/ method of appraisal: 
the ability of WCTD algorithms to accurately detect a clinical feature/activity which is comparable to detection by another means ? in the study cited or 
previous studies (e.g. self?report, EMG); 2) criterion validity: the association between WTCD?derived outcomes and measures such as clinical scales; and 3) 
discriminative validity: the ability of WTCD?derived outcomes to discriminative between groups. Formal testing of utility (feasibility/compliance 
intentionally tested and reported) of WTCD is also reported. 
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Das et al. 
(2012), 2 PD, 

4* 

Accelerometers ??█?? 
█ █ █ █  

Dyskinesia, 
tremor 

Yes, against patients’ 
diaries using weakly 
supervised machine 
learning technique. 

Acceleration derived features 
(Mean energy, high frequency 

energy content, correlation, 
frequency domain entropy) 

No No No 

Griffiths et al. 
(2012), 34 

PD/10 OA, 10 

Parkinson's 
KinetiGraph (PKG; 

Global Kinetics 
Corporation) █ 

Bradykinesia, 
dyskinesia 

Yes, for bradykinesia 
against dot slide task 
measure (specificity 

88%, sensitivity 95%) 
during scripted tests.  

Acceleration derived features: 
Mean Spectral Power within 

specific bands, peak,  
amount of time with no 

movement 

Yes, dyskinesia against the 
AIMS score and both 

dyskinesia and bradykinesia 
against UPDRS III and IV 

No No 

Mera et al. 
(2012), 10 PD/ 

10 OA, 3?6 
Kinesia™ █?? 

Motor tasks, 
tremor, 

bradykinesia, 
motor 

fluctuations 

No 

Symptoms severity scale (0?4 
points), voluntary movement 

threshold  evaluated with 
gyroscope derived features 

(RMS, peak of power 
spectrum) 

Yes, for tremor and 
bradykinesia. Potential 

issues of recognition when 
the 2 symptoms overlap. 
Yes against videos in the 
lab for symptom severity 
scale validated against 

UPDRS tremor and MBRS 
speed, amplitude and 

rhythm scores in previous 
work 75, 92 

No 

Yes, formal 
testing 

previous work 
75 

Pastorino et al. 
(2013), 2 PD, 7  

ALA?6g (PERFORM) 
??█?? █ █ █ █ 

Akinesia, 
ON/OFF state 

Yes, ‘proof of 
concept’ validation Level of akinesia No No Yes, formal 

testing 
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(but 32 hours 
analysed) 

against patients’ 
diaries 

Tzallas et al. 
(2014), 12 PD, 
5 (8 hours per 

day) 

ALA?6g (PERFORM) 
??█?? █ █ █ █ 

Tremor, LID, 
Bradykinesia, 

FOG 

Yes, in the lab and 
during structured test 
(e.g. for FOG events 

Opening door/ 
Straight 10m walking) 

against video 
annotations. 

Acceleration derived 
measures (time and frequency 

domains, RMS, range, 
entropy, energy) 

Yes, machine learning and 
leave one out validation 

technique validated in the 
lab and applied in free?
living conditions and 

compared against patients’ 
diaries.  Use of videos in 

the lab for assessing 
symptoms severity using 

UPDRS.  

No Yes, formal 
testing 

Ferreira et al. 
(2015), 11 PD, 

12 weeks 

SENSE?PARK System 
█ █ █  

Gait, 
hypokinesia, 
dyskinesia, 

tremor, sleep 

No/NA (feasibility 
study and usability) NA NA No Yes, formal 

testing 

Hammerla et al. 
(2015), 34 PD, 

7 
Axivity AX3 █ █ 

Sleeping, 
ON/OFF state, 

dyskinesia 

Yes, in the lab 
(against video 

recordings) using 
machine learning and 

leave one out 
validation technique, 

in free?living 
conditions results are 

compared against 
patients’ diaries. 

Model pre?trained in 
free?living conditions 

did not give good 
results (laboratory 

data is a poor model 
for naturalistic 

behaviours)  

Acceleration derived 
measures (magnitude, jerk, 
power spectral density, etc.) 

No No 

Yes, formal 
testing but in 
subsequent 

work 93 

Horne et al. 
(2015), 64 

PD/38 OA, 10 

Parkinson's 
KinetiGraph (PKG; 

Global Kinetics 
Corporation) █ 

Bradykinesia, 
dyskinesia, 
fluctuations 

Yes, against measures 
of bradykinesia and 
dyskinesia (previous 
work see Griffiths 

2012) 

Fluctuation Score based on 
Interquartile Range of 

bradykinesia and dyskinesia 
scores. 

Yes, against clinical scores 
derived measure Yes No 
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Prudon et al. 
(2013), 106 

PD/99 OA, 3 
nights 

Acti?watch, Camntech 
█ █ 

Leg 
movements 
during sleep 

Yes, in patients with 
periodic leg 

movement (against 
electromyography), 

previous work 

Periodic leg movements index Yes, against disease 
severity No No 

Louter et al. 
(2015), 11 PD, 

2 nights 
Dynaport McRoberts █ Turning 

during sleep 

Yes, against 
polysomnography in 

adults with obstructive 
sleep apnoea 

syndrome, previous 
work 94 

Acceleration derived 
measures (e.g. mean) and 
axial movement measures 
(frequency, size, duration, 

speed) 

Yes, against Acti?watch but 
in young healthy adults 

previous work 94 
Yes 

Yes, no 
formal testing, 
previous work 

Sringean et al. 
(2015), 19 PD, 

1 night 

NIGHT?Recorder 
system █ █ █ █ █ 

Turning, 
Standing 

No, video and sleep 
diaries collected but 
validity not formally 

tested. 

Acceleration and gyroscope 
derived measures (duration of 

sleep, axial movements, 
velocity, etc.) 

Yes, against clinical scores 
(UPDRS axial score, item 

#28, etc.) 
Yes 

Yes, no 
formal testing, 

no adverse 
events 

reported 
�
����
����
����+��� 

Weiss et al. 
(2013), 71 OA, 

3 
Dynaport McRoberts █ Walking (at 

least 60s) No 

Number of walking bouts, 
walking duration, total 

number of steps, median 
number of steps per bout, 

bout duration, cadence, step 
and stride regularity, 

frequency domain measures 
(harmonic ratio, amplitude, 

slope and width of dominant 
frequency), step duration, step 
symmetry, acceleration range, 

etc.  

Yes, against clinical scores 
of fall risk and laboratory 

based measures 
Yes No 

Weiss et al. 
(2014), 107 PD, 

3 
Dynaport McRoberts █ Walking (at 

least 60s) No 

Number of walking bouts, % 
of activity duration, total 
number of steps, median 
number of steps per bout, 

bout duration, cadence, stride 
regularity, frequency domain 

measures (harmonic ratio, 

Yes, against clinical scores 
of fall risk Yes 

Yes, no 
formal testing, 

data loss 
reported. 
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amplitude and width of 
dominant frequency), etc. 

Brodie et al. 
(2015), 18 EF, 
58 (average) 

Senior Mobility 
Monitor (SMM, 

Philips) ��█�� 

Walking (at 
least 3 or 8 

steps) 
No 

Steps per day, walking bouts 
per day, steps per bout, 

cadence, distribution of bout 
length 

No Yes No 

Hiorth et al. 
(2015), 48 PD, 

7 
activPAL █ 

Sedentary 
behaviour/ 
standing/ 
walking 

Yes, but not formal in 
PD. Previous work in 

OA against other 
accelerometer 95 and 
video recordings in 

people with 
rheumatoid arthritis 
during simulation of 

ADL in the laboratory 
96 

Volume (e.g. total number of 
sedentary/standing/walking 

bouts), pattern (α), variability 
of sedentary bouts and 

number of strides per walking 
bout. 

Yes, against clinical scores Yes No 

Mactier et al. 
(2015), 111 PD, 

7 
activPAL █ Walking 

Yes, but not formal in 
PD. Previous work in 

OA against other 
accelerometer 95 and 
video recordings in 

people with 
rheumatoid arthritis 
during simulation of 

ADL in the laboratory 
96 

Volume (e.g. total number of 
walking bouts), pattern (α), 

variability of bouts, 
accumulation of stepping 

bouts 

No Yes No 

Rispens et al. 
(2015), 113 

OA, 14 
Dynaport McRoberts █ Walking (at 

least 10s)  

Yes, previous work in 
OA 97 for walking 
volume parameters 

against videos, no for 
gait characteristics. 

Acceleration based outcomes: 
gait speed, speed variability, 
stride time, stride regularity, 
stride time variability, stride 
frequency, frequency domain 

measures (harmonic ratio, 
amplitude, slope and width of 

dominant frequency), etc. 

Yes, measures against self?
reported fall history No No 

van Schooten et 
al. (2015), 169 

OA, 8 
Dynaport McRoberts █ 

Walking (at 
least 10s), 

sitting, lying, 
and standing 

Yes, previous work in 
OA 97 for walking 
volume parameters 

against videos, no for 

Total duration of walking, 
sitting, 

standing, and lying per day, 
number of 

Yes, against falls history Yes No 
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:�415), 16 OA, 
5?155 

CareTech Ab ??█?? Fallsǂ 

Yes, fall event against 
care personnel’s 

reports and in 
previous work in OA 
during simulation of 

fall events in 
controlled conditions 

98 in OA  

Fall event with alarm 
generation No No 

Yes, based on 
alarm 

accuracy 

�	�����������
���,�-�. 

Moore et al. 
(2013), 25 PD, 

NA 

Xsens MTx  █ █ █ █ 
█ █ █ 

Turning/ 
walking 
(TUG)ǂ 

Yes, in the laboratory 
for FOG event against 

video recordings 

FOG event through 
acceleration derived 

frequency measures (power 
spectrum, etc.). 

No No No 

Tripoliti et al. 
(2013), 11 PD/5 

OA, NA 

Body Sensor AGYRO, 
AGYRO links, ANCO 

S.A.█ █ █ █ █ █ 

Walking, FOG 
detectionǂ 

Yes, against video 
recordings and visual 

inspection during 
structured test 
(Opening door/ 

Straight 10m walking) 
sing different 
classification 

algorithms and cross?
validations 

FOG detection through 
entropy of WTCD signal No No No 

Weiss et al. 
(2015), 72 PD, 

3 
Dynaport McRoberts █ Walking (at 

least 60s) No 

Number of walking bouts, % 
of activity duration, total 
number of steps, median 
number of steps per bout, 

bout duration, cadence, stride 
regularity, frequency domain 

Yes, against clinical scores 
(FOG questionnaire) Yes No 
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measures (harmonic ratio, 
width of dominant 

frequency), etc. 
�
�� 

Cancela et al. 
(2011), 10 PD, 

1 (not clear) 

ALA?6g (PERFORM) 
??█?? █ █ █ █ 

Walking (on 
vs off 

medication) 

Yes, only for step 
frequency during 10m 

scripted protocol 
against visual 
examination 

Step frequency, stride length 
and speed, entropy, arm 

swing 
No 

Yes, only for 
entropy in 

previous work 99 
No 

Weiss et al. 
(2011), 22 
PD/17 OA 

(1PD/1CL at 
home), 3 

Mobi8 █ 

Walking 
(during 

scripted test in 
the lab and 

during 
simulation of 

ADL and free?
living) 

No 

Acceleration derived 
measures (time and frequency 
domains): stride time, stride 
time variability, amplitude, 
width, slope of dominant 

frequency, etc. 

Yes, against clinical scores Yes No 

Cancela et al. 
(2014), 11 PD, 
5?7 (8 hours per 

day) 

ALA?6g (PERFORM) 
??█?? █ █ █ █ Walking 

Yes, only for step 
frequency, previous 
work (see Cancela 

2011) 

Step frequency, step velocity, 
stride length, entropy No 

Yes, only for 
entropy in 

previous work 99 

Yes, formal 
testing and 

also assessed 
in separate 

study 76 

Herman et al. 
(2014), 110 PD, 

3 
Dynaport McRoberts █ Walking (at 

least 60s) No 

Total number of activity 
bouts, total % of activity 
duration, total number of 
steps, mean activity bout 

duration, median number of 
steps per bout, cadence, stride 

regularity, amplitude of 
dominant frequency, width of 

dominant frequency, stride 
regularity, harmonic ratio, 
Phase Coordination Index. 

Yes, previous work Yes, previous 
work No. 

Weiss et al. 
(2015), 107 PD, 

3 
Dynaport McRoberts █ Walking (at 

least 60s) No 

Total % of activity duration, 
total number of steps, 
cadence, amplitude of 

dominant frequency, stride 
regularity, harmonic ratio, 

Yes, previous work Yes, previous 
work 

Yes, no 
formal testing, 

data loss 
reported 
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:�416), 47 
PD/50 OA, 7 

Axivity AX3  █ Walking (at 
least 3 steps) No 

14 gait characteristics: mean 
step time, stance time, swing 

time, step length, step 
velocity, step time variability, 
stance time variability, swing 
time variability, step length 

variability, step velocity 
variability, step time 

asymmetry, stance time 
asymmetry, swing time 
asymmetry, step length 

asymmetry. 

Yes, gait characteristics 
validated against laboratory 
reference (previous work 53) 

Yes No 

 ����/��/
��/���, ��. 
Zampieri et al. 
(2011), 6 PD/8 

OA, 1 
Physilog  █ █ █ █ █ 

Walking/turni
ng/postural 
transitions ǂ 

Yes, in previous 
work100 

Cadence, stride velocity, 
stride length, peak arm 

velocity, turning velocity 
No Yes No 

Smith et al. 
(2016), 12 OA, 

5 
SHIMMER █  █ Walking/turni

ng ǂ No 

Time to complete test, 
cadence, gait characteristics 
(step time, stride time, stride 
length, stride velocity, etc.), 

turning magnitude, etc. 

No No No 

 �	���� 

El?Gohary et al. 
(2013), 12 

PD/18 OA, 7* 

Opal(ADPM) ��█�� in 
the lab / Opal(ADPM) 

??█?? █ █ at home 

Turning/ 
walking (at 
least 10s) 

Yes, in the lab against 
motion analysis 

system and video 
recordings 

Number of turns, peak 
velocity, mean velocity, 

duration of turn 
No Yes No 

Mancini et al. 
(2015), 13 PD/8 

OA, 7* 

Opal(ADPM) ??█?? █ 
█ 

Turning/ 
walking (at 
least 10s) 

Yes, in the lab 
(previous work, see 

El?Gohary 2013) 

Number of turns/hour, turn 
angle, turn duration, number 

of steps/turn, turn mean 
velocity and coefficient of 

variation of these measures. 

Yes Yes 

Yes, no 
formal testing, 

report of 
‘ease’ of use. 

�����
��	��
���
����
���������
	�����

���	 
Chastin et al. 

(2007), 17 
PD/17 OA, 7  

activPAL █ Sedentary 
behaviour 

Yes, but not formal in 
PD. Previous work in 

OA against other 

Volume of sedentary bouts, 
pattern (α), pattern of 

accumulation of bouts (GINI 
No Yes No 
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:�413), 467 PD, 
14 

TracmorD, Philips/ 
??█?? or ??█?? or █ 

Physical 
Activity/Seden
tary behaviour 

Yes, against doubly 
labeled water 

technique (correlation) 
in adults but not in PD 

101 

Energy expenditure, time 
spent in activities, distribution 

of activities, etc. 
Yes No No 

Benka Wallen 
et al. (2015), 95 

PD, 7 

ActiGraph GT3X+ 
��
█�� 

Physical 
Activity/Seden

tary 
behaviour/ 
Steps (60s 

epochs) 

Yes, in young adults 
under controlled 

conditions by visual 
observation but not in 

PD 102 

Volume (magnitude vector of 
acceleration) and time spent 
in physical activities, steps 

per day, etc.   

No No No 

Lim et al. 
(2010), 153 PD, 

1 

Vitaport3, TEMEC 
Instruments BV  █ █ 

█ █ █ 

Sitting, 
standing, 
walking 

Yes in PD against 
video (under 

controlled conditions), 
previous work 103 

% of time spent on dynamic, 
static, sitting, standing or 

walking activities, number of 
walking bouts > 5s and > 10s 

No No No 

Cavanaugh et 
al. (2012), 33 

PD, 7 

StepWatch 3 Step 
Activity Monitor 

(SAM) █ 

Walking 
(average every 

60s) 

Yes, for stride count 
in PD against 

instrumented walkway 
in the lab, previous 

work  104 

Total number of steps, 
maximum output for steps, 

number of minutes with > 100 
steps, number and duration of 
walking bouts, peak activity 

index, % of day spent inactive 

No No 

Yes, not 
formal testing, 

reasons for 
data loss and 
attrition in 

sensor 
acceptability 
after 1 year 

with decrease 
in participant 
use reported 

Rochester et al. 
(2012), 17 PD, 

7 
activPAL █ Walking 

Yes, but not formal in 
PD. Previous work in 

OA against other 
accelerometer 95 and 
video recordings in 

Volume of walking bouts, 
pattern of accumulation of 

bouts (GINI index) and 
diversity of bouts, distribution 
and variability of bouts (S2)  

Yes No No 
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:�413), 89 
PD/97 OA, 7 

activPAL █ Walking 

Yes, but not formal in 
PD. Previous work in 

OA against other 
accelerometer 95 and 
video recordings in 

people with 
rheumatoid arthritis 
during simulation of 

ADL in the laboratory 
96 

Volume of walking bouts, 
pattern (α), time spent 

walking in short?medium or 
long bouts, frequency and 
variability of bouts (S2) 

Yes Yes No 

Cavanaugh et 
al. (2015), 17 

PD, 7 

StepWatch 3 Step 
Activity Monitor 

(SAM) █ 

Walking 
(average every 

60s) 

Yes, for stride count 
in PD against 

instrumented walkway 
in the lab, previous 

work (see Cavanaugh 
2012) 

Mean daily steps, maximum 
output for steps, Moderate 

intensity minutes  (number of 
minutes with > 100 steps) 

Yes No 

Yes, not 
formal testing,  

reasons for 
data loss and 
attrition in 

sensor 
acceptability 
after 2 years 

with decrease 
in participant 
use reported 

ADL = Activities of Daily Living; Alpha = α; Lab = Laboratory; Length of recording= number of weeks/days/minutes of recording; MBRS = Modified Bradykinesia Rating Scale; min = 
miutes; N = number of participants; OA = Older Adults; PD = Parkinson’s disease; RMS = Root Mean Square; UPDRS = Unified Parkinson's Disease Rating Scale; % = Percentage; *Night 
excluded; ǂ = scripted protocol/supervised conditions used. 
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D�'��
�1: 
Use of wearable technology and connected devices (WTCD) (adapted with permission from previous 
work) 47 A)  �
�	� level quantification of activities over an extended period of time (volume, patterns 
and variability); (B) bouts of activities (e.g. lying (sleeping), walking, sitting); (C?H) ���	� level 
quantification from specific events: C) and D) postural transitions, E) shuffling, F) gait, G) turning, H) 
freezing of gait (FOG) and fall. 
 
Figure 2: 
Examples of linear and non?linear approaches to activity data analysis: volume and pattern metrics for 
two subjects (Subject 1 and 2) (published with permission) 68. 
A1 and A2 ? Patterns of activity indicating bouts of sedentary, standing and walking at different 
stepping rates (cadences). 
B1 and B2 ? Volume Metrics: total walking time for the two subjects is equal but made up of walking 
bouts at different cadences. 
C ? Pattern Metrics: (i) and (ii) distribution of walking bouts for these two subjects with equal mean 
(M) and different dispersion (S2). C (iii) Accumulation pattern of walking time for subject 1 and 2; 
subject 2 tends to accumulate walking time with predominantly longer periods. 
 
Figure 3:  
Challenges/limitations of free?living measurement using examples from gait in free?living collected 
with a single accelerometer?based WTCD. Data (unpublished) from the Incidence of Cognitive 
Impairment in Cohorts with Longitudinal Evaluation?GAIT (ICICLE?GAIT) study 105. 
 
Panel (1) – Definition of feature of interest (e.g. walking):   

A)� Impact of “selected” definition of walking on data processing: different threshold of walking 
bout length and (ghost) maximum resting period (MRP) between consecutive walking bouts 
can be utilised.  
Examples: (i): use of walking bout threshold of 60s and no MRP (MRP = 0s) (only bouts 
longer than 60 s will be considered); (ii): use of walking bout threshold of 3 steps and no 
MRP (MRP = 0s); (iii) use of walking bout threshold of 3 steps and MRP = 5s. 

B)� Impact of choice in A) on �
�	� outcomes (e.g. number of bouts considered, total number of 
steps reported for people with Parkinson’s disease (PD) and controls (CL)). For example 
using definition (i) only a small percentage of all the walking bouts will be considered (bouts 
> 60s only) and therefore fewer steps will be reported if compared to results of using 
definition (ii). 

C)� Impact of choice in A) on ���	�� gait characteristics (e.g. reported step velocity may vary 
across studies due to choice of definition ((i), (ii) or (iii)). 
 

Panel (2) – Influence of free?living protocol on data: 
Walking speed changes with respect to the environment, task, and disease severity which 
influences the accelerometer raw signal (D) impacting on algorithm performance and 
evaluation of outcomes (E). 
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Table 1: Studies examining free�living monitoring of Parkinson’s disease (PD) using wearable technology and connected devices (WTCD).  
Number and position of WTDC used in each study is detailed in column two using a colour code (blue = chest, violet = wrist, black = pocket, green = thigh, 
yellow = shank, orange = ankle, grey = foot, red = lower back). 
��Clinical feature/ activity detected or measures has been classified using three types of validity: 1) accurate detection of clinical feature/ method of appraisal: 
the ability of WCTD algorithms to accurately detect a clinical feature/activity which is comparable to detection by another means � in the study cited or 
previous studies (e.g. self�report, EMG); 2) criterion validity: the association between WTCD�derived outcomes and measures such as clinical scales; and 3) 
discriminative validity: the ability of WTCD�derived outcomes to discriminative between groups. Formal testing of utility (feasibility/compliance 
intentionally tested and reported) of WTCD is also reported. 

 

	
��
���������

�������
�����

����������

���������

����� ��
�

�

���������

���
���!�

"�
�#�

�

"�����
����
��
����

���������������
���$�

%�
�������

������&����

%��&���&�� ���
������'�����

��
��&��� ���
�#��

'�����

��
(
���

�

���������	�����
����
���
������
�	���
 

Das et al. 
(2012), 2 PD, 

4* 

Accelerometers ��█�� 
█ █ █ █  

Dyskinesia, 
tremor 

Yes, against patients’ 
diaries using weakly 
supervised machine 
learning technique. 

Acceleration derived features 
(Mean energy, high frequency 

energy content, correlation, 
frequency domain entropy) 

No No No 

Griffiths et al. 
(2012), 34 

PD/10 OA, 10 

Parkinson's 
KinetiGraph (PKG; 

Global Kinetics 
Corporation) █ 

Bradykinesia, 
dyskinesia 

Yes, for bradykinesia 
against dot slide task 
measure (specificity 

88%, sensitivity 95%) 
during scripted tests.  

Acceleration derived features: 
Mean Spectral Power within 

specific bands, peak,  
amount of time with no 

movement 

Yes, dyskinesia against the 
AIMS score and both 

dyskinesia and bradykinesia 
against UPDRS III and IV 

No No 

Mera et al. 
(2012), 10 PD/ 

10 OA, 3�6 
Kinesia™ █�� 

Motor tasks, 
tremor, 

bradykinesia, 
motor 

fluctuations 

No 

Symptoms severity scale (0�4 
points), voluntary movement 

threshold  evaluated with 
gyroscope derived features 

(RMS, peak of power 
spectrum) 

Yes, for tremor and 
bradykinesia. Potential 

issues of recognition when 
the 2 symptoms overlap. 
Yes against videos in the 
lab for symptom severity 
scale validated against 

UPDRS tremor and MBRS 
speed, amplitude and 

No 

Yes, formal 
testing 

previous work 
75 
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�hythm scores in previous 
work 75, 92 

Pastorino et al. 
(2013), 2 PD, 7  
(but 32 hours 

analysed) 

ALA�6g (PERFORM) 
��█�� █ █ █ █ 

Akinesia, 
ON/OFF state 

Yes, ‘proof of 
concept’ validation 

against patients’ 
diaries 

Level of akinesia No No Yes, formal 
testing 

Tzallas et al. 
(2014), 12 PD, 
5 (8 hours per 

day) 

ALA�6g (PERFORM) 
��█�� █ █ █ █ 

Tremor, LID, 
Bradykinesia, 

FOG 

Yes, in the lab and 
during structured test 
(e.g. for FOG events 

Opening door/ 
Straight 10m walking) 

against video 
annotations. 

Acceleration derived 
measures (time and frequency 

domains, RMS, range, 
entropy, energy) 

Yes, machine learning and 
leave one out validation 

technique validated in the 
lab and applied in free�
living conditions and 

compared against patients’ 
diaries.  Use of videos in 

the lab for assessing 
symptoms severity using 

UPDRS.  

No Yes, formal 
testing 

Ferreira et al. 
(2015), 11 PD, 

12 weeks 

SENSE�PARK System 
█ █ █  

Gait, 
hypokinesia, 
dyskinesia, 

tremor, sleep 

No/NA (feasibility 
study and usability) NA NA No Yes, formal 

testing 

Hammerla et al. 
(2015), 34 PD, 

7 
Axivity AX3 █ █ 

Sleeping, 
ON/OFF state, 

dyskinesia 

Yes, in the lab 
(against video 

recordings) using 
machine learning and 

leave one out 
validation technique, 

in free�living 
conditions results are 

compared against 
patients’ diaries. 

Model pre�trained in 
free�living conditions 

did not give good 

Acceleration derived 
measures (magnitude, jerk, 
power spectral density, etc.) 

No No 

Yes, formal 
testing but in 
subsequent 

work 93 
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�esults (laboratory 
data is a poor model 

for naturalistic 
behaviours)  

Horne et al. 
(2015), 64 

PD/38 OA, 10 

Parkinson's 
KinetiGraph (PKG; 

Global Kinetics 
Corporation) █ 

Bradykinesia, 
dyskinesia, 
fluctuations 

Yes, against measures 
of bradykinesia and 
dyskinesia (previous 
work see Griffiths 

2012) 

Fluctuation Score based on 
Interquartile Range of 

bradykinesia and dyskinesia 
scores. 

Yes, against clinical scores 
derived measure Yes No 

��

	�

Prudon et al. 
(2013), 106 

PD/99 OA, 3 
nights 

Acti�watch, Camntech 
█ █ 

Leg 
movements 
during sleep 

Yes, in patients with 
periodic leg 

movement (against 
electromyography), 

previous work 

Periodic leg movements index Yes, against disease 
severity No No 

Louter et al. 
(2015), 11 PD, 

2 nights 
Dynaport McRoberts █ Turning 

during sleep 

Yes, against 
polysomnography in 

adults with obstructive 
sleep apnoea 

syndrome, previous 
work 94 

Acceleration derived 
measures (e.g. mean) and 
axial movement measures 
(frequency, size, duration, 

speed) 

Yes, against Acti�watch but 
in young healthy adults 

previous work 94 
Yes 

Yes, no 
formal testing, 
previous work 

Sringean et al. 
(2015), 19 PD, 

1 night 

NIGHT�Recorder 
system █ █ █ █ █ 

Turning, 
Standing 

No, video and sleep 
diaries collected but 
validity not formally 

tested. 

Acceleration and gyroscope 
derived measures (duration of 

sleep, axial movements, 
velocity, etc.) 

Yes, against clinical scores 
(UPDRS axial score, item 

#28, etc.) 
Yes 

Yes, no 
formal testing, 

no adverse 
events 

reported 
�
����
����
�������� 

Weiss et al. 
(2013), 71 OA, 

3 
Dynaport McRoberts █ Walking (at 

least 60s) No 

Number of walking bouts, 
walking duration, total 

number of steps, median 
number of steps per bout, 

bout duration, cadence, step 

Yes, against clinical scores 
of fall risk and laboratory 

based measures 
Yes No 
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and stride regularity, 
frequency domain measures 
(harmonic ratio, amplitude, 

slope and width of dominant 
frequency), step duration, step 
symmetry, acceleration range, 

etc.  

Weiss et al. 
(2014), 107 PD, 

3 
Dynaport McRoberts █ Walking (at 

least 60s) No 

Number of walking bouts, % 
of activity duration, total 
number of steps, median 
number of steps per bout, 

bout duration, cadence, stride 
regularity, frequency domain 

measures (harmonic ratio, 
amplitude and width of 

dominant frequency), etc. 

Yes, against clinical scores 
of fall risk Yes 

Yes, no 
formal testing, 

data loss 
reported. 

Brodie et al. 
(2015), 18 EF, 
58 (average) 

Senior Mobility 
Monitor (SMM, 

Philips) ))█)) 

Walking (at 
least 3 or 8 

steps) 
No 

Steps per day, walking bouts 
per day, steps per bout, 

cadence, distribution of bout 
length 

No Yes No 

Hiorth et al. 
(2015), 48 PD, 

7 
activPAL █ 

Sedentary 
behaviour/ 
standing/ 
walking 

Yes, but not formal in 
PD. Previous work in 

OA against other 
accelerometer 95 and 
video recordings in 

people with 
rheumatoid arthritis 
during simulation of 

ADL in the laboratory 
96 

Volume (e.g. total number of 
sedentary/standing/walking 

bouts), pattern (α), variability 
of sedentary bouts and 

number of strides per walking 
bout. 

Yes, against clinical scores Yes No 

Mactier et al. 
(2015), 111 PD, 

7 
activPAL █ Walking 

Yes, but not formal in 
PD. Previous work in 

OA against other 

Volume (e.g. total number of 
walking bouts), pattern (α), 

variability of bouts, 
No Yes No 
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accelerometer 95 and 
video recordings in 

people with 
rheumatoid arthritis 
during simulation of 

ADL in the laboratory 
96 

accumulation of stepping 
bouts 

Rispens et al. 
(2015), 113 

OA, 14 
Dynaport McRoberts █ Walking (at 

least 10s)  

Yes, previous work in 
OA 97 for walking 
volume parameters 

against videos, no for 
gait characteristics. 

Acceleration based outcomes: 
gait speed, speed variability, 
stride time, stride regularity, 
stride time variability, stride 
frequency, frequency domain 

measures (harmonic ratio, 
amplitude, slope and width of 

dominant frequency), etc. 

Yes, measures against self�
reported fall history No No 

van Schooten et 
al. (2015), 169 

OA, 8 
Dynaport McRoberts █ 

Walking (at 
least 10s), 

sitting, lying, 
and standing 

Yes, previous work in 
OA 97 for walking 
volume parameters 

against videos, no for 
gait characteristics. 

Total duration of walking, 
sitting, 

standing, and lying per day, 
number of 

strides, number of walking 
bouts, duration of 

bouts, number of transitions. 
Gait characteristics: gait 

speed, stride frequency, stride 
length frequency domain 
measures (harmonic ratio, 

power at dominant 
frequency), etc. 

Yes, against falls history Yes No 

Kangas et al. 
(2015), 16 OA, 

5�155 
CareTech Ab ��█�� Fallsǂ 

Yes, fall event against 
care personnel’s 

reports and in 
previous work in OA 
during simulation of 

Fall event with alarm 
generation No No 

Yes, based on 
alarm 

accuracy 
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�all events in 
controlled conditions 

98 in OA  
��

���������
�������� 

Moore et al. 
(2013), 25 PD, 

NA 

Xsens MTx  █ █ █ █ 
█ █ █ 

Turning/ 
walking 
(TUG)ǂ 

Yes, in the laboratory 
for FOG event against 

video recordings 

FOG event through 
acceleration derived 

frequency measures (power 
spectrum, etc.). 

No No No 

Tripoliti et al. 
(2013), 11 PD/5 

OA, NA 

Body Sensor AGYRO, 
AGYRO links, ANCO 

S.A.█ █ █ █ █ █ 

Walking, FOG 
detectionǂ 

Yes, against video 
recordings and visual 

inspection during 
structured test 
(Opening door/ 

Straight 10m walking) 
sing different 
classification 

algorithms and cross�
validations 

FOG detection through 
entropy of WTCD signal No No No 

Weiss et al. 
(2015), 72 PD, 

3 
Dynaport McRoberts █ Walking (at 

least 60s) No 

Number of walking bouts, % 
of activity duration, total 
number of steps, median 
number of steps per bout, 

bout duration, cadence, stride 
regularity, frequency domain 

measures (harmonic ratio, 
width of dominant 

frequency), etc. 

Yes, against clinical scores 
(FOG questionnaire) Yes No 

�
�� 

Cancela et al. 
(2011), 10 PD, 

1 (not clear) 

ALA�6g (PERFORM) 
��█�� █ █ █ █ 

Walking (on 
vs off 

medication) 

Yes, only for step 
frequency during 10m 

scripted protocol 
against visual 

Step frequency, stride length 
and speed, entropy, arm 

swing 
No 

Yes, only for 
entropy in 

previous work 99 
No 
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examination 

Weiss et al. 
(2011), 22 
PD/17 OA 

(1PD/1CL at 
home), 3 

Mobi8 █ 

Walking 
(during 

scripted test in 
the lab and 

during 
simulation of 

ADL and free�
living) 

No 

Acceleration derived 
measures (time and frequency 
domains): stride time, stride 
time variability, amplitude, 
width, slope of dominant 

frequency, etc. 

Yes, against clinical scores Yes No 

Cancela et al. 
(2014), 11 PD, 
5�7 (8 hours per 

day) 

ALA�6g (PERFORM) 
��█�� █ █ █ █ Walking 

Yes, only for step 
frequency, previous 
work (see Cancela 

2011) 

Step frequency, step velocity, 
stride length, entropy No 

Yes, only for 
entropy in 

previous work 99 

Yes, formal 
testing and 

also assessed 
in separate 

study 76 

Herman et al. 
(2014), 110 PD, 

3 
Dynaport McRoberts █ Walking (at 

least 60s) No 

Total number of activity 
bouts, total % of activity 
duration, total number of 
steps, mean activity bout 

duration, median number of 
steps per bout, cadence, stride 

regularity, amplitude of 
dominant frequency, width of 

dominant frequency, stride 
regularity, harmonic ratio, 
Phase Coordination Index. 

Yes, previous work Yes, previous 
work No. 

Weiss et al. 
(2015), 107 PD, 

3 
Dynaport McRoberts █ Walking (at 

least 60s) No 

Total % of activity duration, 
total number of steps, 
cadence, amplitude of 

dominant frequency, stride 
regularity, harmonic ratio, 
Phase Coordination Index. 

Yes, previous work Yes, previous 
work 

Yes, no 
formal testing, 

data loss 
reported 

Del Din et al. 
(2016), 47 Axivity AX3  █ Walking (at 

least 3 steps) No 14 gait characteristics: mean 
step time, stance time, swing 

Yes, gait characteristics 
validated against laboratory Yes No 
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PD/50 OA, 7 time, step length, step 
velocity, step time variability, 
stance time variability, swing 
time variability, step length 

variability, step velocity 
variability, step time 

asymmetry, stance time 
asymmetry, swing time 
asymmetry, step length 

asymmetry. 

reference (previous work 53) 

���
���	�
����������� 
Zampieri et al. 
(2011), 6 PD/8 

OA, 1 
Physilog  █ █ █ █ █ 

Walking/turni
ng/postural 
transitions ǂ 

Yes, in previous 
work100 

Cadence, stride velocity, 
stride length, peak arm 

velocity, turning velocity 
No Yes No 

Smith et al. 
(2016), 12 OA, 

5 
SHIMMER █  █ Walking/turni

ng ǂ No 

Time to complete test, 
cadence, gait characteristics 
(step time, stride time, stride 
length, stride velocity, etc.), 

turning magnitude, etc. 

No No No 

������� 

El�Gohary et al. 
(2013), 12 

PD/18 OA, 7* 

Opal(ADPM) ))█)) in 
the lab / Opal(ADPM) 

��█�� █ █ at home 

Turning/ 
walking (at 
least 10s) 

Yes, in the lab against 
motion analysis 

system and video 
recordings 

Number of turns, peak 
velocity, mean velocity, 

duration of turn 
No Yes No 

Mancini et al. 
(2015), 13 PD/8 

OA, 7* 

Opal(ADPM) ��█�� █ 
█ 

Turning/ 
walking (at 
least 10s) 

Yes, in the lab 
(previous work, see 

El�Gohary 2013) 

Number of turns/hour, turn 
angle, turn duration, number 

of steps/turn, turn mean 
velocity and coefficient of 

variation of these measures. 

Yes Yes 

Yes, no 
formal testing, 

report of 
‘ease’ of use. 

 �!��
�����
���"����
����
�
��
���!
#
"���� 
Chastin et al. 

(2007), 17 activPAL █ Sedentary 
behaviour 

Yes, but not formal in 
PD. Previous work in 

Volume of sedentary bouts, 
pattern (α), pattern of No Yes No 

Page 44 of 81

John Wiley & Sons

Movement Disorders

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49



For Peer Review

	
��
���������

�������
�����

����������

���������

����� ��
�

�

���������

���
���!�

"�
�#�

�

"�����
����
��
����

���������������
���$�

%�
�������

������&����

%��&���&�� ���
������'�����

��
��&��� ���
�#��

'�����

��
(
���

�

PD/17 OA, 7  OA against other 
accelerometer 95 and 
video recordings in 

people with 
rheumatoid arthritis 
during simulation of 

ADL in the laboratory 
96  

accumulation of bouts (GINI 
index) 

Dontje et al. 
(2013), 467 PD, 

14 

TracmorD, Philips/ 
��█�� or ��█�� or █ 

Physical 
Activity/Seden
tary behaviour 

Yes, against doubly 
labeled water 

technique (correlation) 
in adults but not in PD 

101 

Energy expenditure, time 
spent in activities, distribution 

of activities, etc. 
Yes No No 

Benka Wallen 
et al. (2015), 95 

PD, 7 

ActiGraph GT3X+ �))
█)) 

Physical 
Activity/Seden

tary 
behaviour/ 
Steps (60s 

epochs) 

Yes, in young adults 
under controlled 

conditions by visual 
observation but not in 

PD 102 

Volume (magnitude vector of 
acceleration) and time spent 
in physical activities, steps 

per day, etc.   

No No No 

Lim et al. 
(2010), 153 PD, 

1 

Vitaport3, TEMEC 
Instruments BV  █ █ 

█ █ █ 

Sitting, 
standing, 
walking 

Yes in PD against 
video (under 

controlled conditions), 
previous work 103 

% of time spent on dynamic, 
static, sitting, standing or 

walking activities, number of 
walking bouts > 5s and > 10s 

No No No 

Cavanaugh et 
al. (2012), 33 

PD, 7 

StepWatch 3 Step 
Activity Monitor 

(SAM) █ 

Walking 
(average every 

60s) 

Yes, for stride count 
in PD against 

instrumented walkway 
in the lab, previous 

work  104 

Total number of steps, 
maximum output for steps, 

number of minutes with > 100 
steps, number and duration of 
walking bouts, peak activity 

index, % of day spent inactive 

No No 

Yes, not 
formal testing, 

reasons for 
data loss and 
attrition in 

sensor 
acceptability 
after 1 year 

with decrease 
in participant 
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use reported 

Rochester et al. 
(2012), 17 PD, 

7 
activPAL █ Walking 

Yes, but not formal in 
PD. Previous work in 

OA against other 
accelerometer 95 and 
video recordings in 

people with 
rheumatoid arthritis 
during simulation of 

ADL in the laboratory 
96 

Volume of walking bouts, 
pattern of accumulation of 

bouts (GINI index) and 
diversity of bouts, distribution 
and variability of bouts (S2)  

Yes No No 

Lord et al. 
(2013), 89 

PD/97 OA, 7 
activPAL █ Walking 

Yes, but not formal in 
PD. Previous work in 

OA against other 
accelerometer 95 and 
video recordings in 

people with 
rheumatoid arthritis 
during simulation of 

ADL in the laboratory 
96 

Volume of walking bouts, 
pattern (α), time spent 

walking in short�medium or 
long bouts, frequency and 
variability of bouts (S2) 

Yes Yes No 

Cavanaugh et 
al. (2015), 17 

PD, 7 

StepWatch 3 Step 
Activity Monitor 

(SAM) █ 

Walking 
(average every 

60s) 

Yes, for stride count 
in PD against 

instrumented walkway 
in the lab, previous 

work (see Cavanaugh 
2012) 

Mean daily steps, maximum 
output for steps, Moderate 

intensity minutes  (number of 
minutes with > 100 steps) 

Yes No 

Yes, not 
formal testing,  

reasons for 
data loss and 
attrition in 

sensor 
acceptability 
after 2 years 

with decrease 
in participant 
use reported 
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ADL = Activities of Daily Living; Alpha = α; Lab = Laboratory; Length of recording= number of weeks/days/minutes of recording; MBRS = Modified Bradykinesia Rating Scale; min = 
miutes; N = number of participants; OA = Older Adults; PD = Parkinson’s disease; RMS = Root Mean Square; UPDRS = Unified Parkinson's Disease Rating Scale; % = Percentage; *Night 
excluded; ǂ = scripted protocol/supervised conditions used.�
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unsupervised, habitual environments (termed free?living). Wearable technologies are revolutionising 32 

approaches to healthcare due to their utility, accessibility and affordability. They are positioned to 33 

transform Parkinson’s disease (PD) management through provision of individualised, comprehensive, 34 

and representative data. This is particularly relevant in PD where symptoms are often triggered by 35 

task and free?living environmental challenges that cannot be replicated with sufficient veracity 36 

elsewhere. This review concerns use of wearable technology in free?living environments for people 37 

with PD. It outlines the potential advantages of wearable technologies and evidence for these to 38 

accurately detect and measure clinically relevant features including motor symptoms, falls risk, 39 

freezing of gait, gait, functional mobility and physical activity. Technological limitations and 40 

challenges are highlighted and advances concerning broader aspects are discussed. Recommendations 41 

to overcome key challenges are made. To date there is no fully validated system to monitor clinical 42 

features or activities in free living environments. Robust accuracy and validity metrics for some 43 

features have been reported, and wearable technology may be used in these cases with a degree of 44 

confidence. Utility and acceptability appears reasonable, although testing has largely been informal. 45 

Key recommendations include adopting a multi?disciplinary approach for standardising definitions, 46 

protocols and outcomes. Robust validation of developed algorithms and sensor?based metrics is 47 

required along with testing of utility. These advances are required before widespread clinical adoption 48 

of wearable technology can be realised.
 
49 
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research and healthcare settings. WTCD comprise electronic technology worn on the body or 52 

embedded into mobile phones, watches, bracelets, and clothing, amongst others. The generic appeal 53 

of WTCD is obvious. Patient monitoring is free from contextual or environment barriers making 54 

assessment at home and in the community over continuous time periods (termed free?living) feasible 55 

and ecologically valid 1. Moreover data are free from the confounds of observer bias and attentional 56 

compensation associated with a one off testing session under observation 2, while devices are 57 

relatively low cost making their use economically as well as practically feasible. 58 

The benefits of remote monitoring with WTCD are multi?fold. Clinically, continuous 59 

monitoring of symptom severity and therapeutic response provides nuanced assessment. A complete 60 

picture of disease burden is available both to the clinician and the patient incorporating a broad range 61 

of features from the ‘���	�’ level of detail (e.g. disease symptoms, medication response and 62 

fluctuations, gait characteristics, turning, frequency of falls) through to more ‘�
�	�’ levels (e.g. 63 

habitual patterns of walking/activity, inactivity and sleep) (Figure 1). Enriched measurement, coupled 64 

with ease of use, also has implications for industry, paving the way for identification of early disease 65 

with the potential for enhanced diagnostic and progression markers (fundamental for trials of novel 66 

therapeutics and disease modifying therapies), harmonisation of outcomes and standardized testing 67 

protocols to enhance recruitment and assessment of treatments in clinical trials. For the patient, 68 

WTCD offer insight into symptoms, therapeutic efficacy and habitual mobility in the context of 69 

everyday life contributing to enhanced self?management that is both bespoke and contextualised. 70 

Despite the recent explosion of low cost commercially available devices (for the general 71 

population) promoting personal monitoring and feedback, the application of WTCD in healthcare has 72 

not yet been established 3. The lure of utility (i.e. ease of use, broad application, and low cost) is 73 

strong; however standards for clinical adoption and research application are far higher. While 74 

technology and design have advanced, algorithm development and data analysis have not kept pace. 75 

Validity and reliability are paramount and inform accurate detection and monitoring of disease and 76 

this next step is critical before widespread adoption 4. Although there are promising signs, there is still 77 
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algorithms to accurately detect a range of clinical features and report on criterion and discriminative 82 

validity of outcomes derived from WCTD. Utility and feasibility are also considered. Clinical features 83 

include monitoring of motor symptoms, medication response, sleep, falls and falls risk, freezing of 84 

gait (FOG), gait, functional mobility and physical activity (ambulatory activity and sedentary 85 

behaviour).  This rapidly expanding field and has been the subject of a number of recent systematic 86 

reviews 7?9 including Sánchez?Ferro et al. within this issue to which the reader is referred. We have 87 

therefore adopted a broader approach and provide a structured overview of the current status of 88 

continuous patient monitoring in the home and community in Parkinson’s disease (PD) which we 89 

define as ‘free?living’. We address four key aims: (1) the role and benefits of free?living monitoring; 90 

(2) the validity and utility (acceptability and feasibility) of WTCD to monitor a range of key clinical 91 

features relevant to PD; (3) critical challenges for adoption of WTCD for free?living assessment; and 92 

(4) future developments in this rapidly developing field. Throughout we focus mainly on the 93 

application of passive (no interaction from patient) single sensor?based devices and their application 94 

in PD but where relevant draw from work in ageing cohorts. Finally, we make recommendations 95 

based on this overview to progress free?living monitoring in PD. 96 

 97 
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98 

Due to its heterogeneity and complexity, clinical assessment of PD is challenging. The 99 

intrinsic, fluctuating nature of PD and biphasic medication response in advanced disease requires 100 

continuous evaluation over prolonged periods to gain an accurate picture of symptoms and their 101 

fluctuations. The influence of attention on performance is well recognised especially with symptoms 102 

such as FOG, leading to an inaccurate clinical picture 2, 8. Assessments requiring concentration and 103 

recall such as falls diaries are further compromised by cognitive impairment, thus limiting utility. 104 

Also, use of clinical scales is restrictive. The Unified Parkinson’s Disease Rating Scale, (UPDRS) 10
, 105 
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limited by subjectivity and clinical expertise. WTCD overcome many of these limitations by 107 

objectively quantifying clinically relevant outcomes. Variation in testing is reduced 3, 11, 12. Patients 108 

also have much to gain from this approach, with less emphasis during clinical visits on symptom 109 

recall and evaluation of therapeutic response. Continuous monitoring also provides greater potential 110 

for patient involvement in defining optimal management 12.   111 

Measurement with WTCD is diverse. A single WTCD has the potential to provide the 112 

clinician/researcher with a comprehensive picture of their patient within one assessment. For example, 113 

Figure 1 shows that placement of a single sensor can quantify features such as volume and pattern of 114 

habitual behaviours (e.g. walking, sleeping, sedentary time, Figure 1, A) (defined here as �
�	�). The 115 

raw signal (Figure 1, B) can then be further broken down to detect very discrete features (e.g. a fall, 116 

gait characteristics, turning and freezing, figure 1, C?H) (defined here as ���	�).�Taking this approach 117 

enables multi?level measurement 13.   118 

<Figure 1> 119 

 120 
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Despite the obvious advantages of free?living assessment an important question remains – are 123 

the outcome measures derived from WTCD suitable for current clinical use and will patients and 124 

professionals use WTCD? Table 1, which form the basis of this section, provides an overview of 125 

detection accuracy, validity and utility of some WTCD. Our main inclusion criterion was that WTCD 126 

had been applied to free?living monitoring under either totally unsupervised or scripted protocol 127 

conditions, with an exception made for studies where tests are conducted in formal settings to 128 

optimise validation, such as detection of FOG. We report �	���	����

������ from studies that examine 129 

the association between WTCD?derived outcomes and other measures such as clinical scales. We also 130 

report studies that test ����	����
��
�� 

�������� which we define as the ability of WTCD?derived 131 

outcomes to discern groups or phenotypes. The list is by no means exhaustive but provides a current 132 

overview and highlights the vast interest in the area. We do not review static postural control despite 133 
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	�14, 15, because studies are laboratory and/or clinic based, however, facets of 134 

postural control (e.g. dynamic, turning) are considered.

135 

 136 

����	� ���������� �����
����� 	�������� 
��� ������� �Continuous monitoring has a lot to offer over 137 

snapshot clinical assessments which may not reveal the true extent of symptom burden. Earlier use of 138 

WTCD for motor symptom measurement focused on evaluation of a single symptom to detect 139 

hypokinesia, dyskinesia, tremor, bradykinesia, and akinesia derived on/off medication status 16, 17. 140 

This has evolved to assessment of multiple motor symptoms using either a single 18?20 or multiple 141 

sensor systems 17, 21?24.  To date preliminary results are promising. Overall, motor symptom 142 

measurement using WTCD is accurate and comparable with more established methods with some 143 

aspects of validity tested. Criterion validity is established for most motor symptoms (tremor, 144 

bradykinesia, dyskinesia) showing moderate to high correlations overall (R > 0.65) with standard 145 

clinical scales (e.g. UPDRS, Abnormal Involuntary Movement Score (AIMS), Modified Bradykinesia 146 

Rating Scale (MBRS), etc.) (see Table 1 for references). Measures of bradykinesia also show high 147 

specificity (88%) and sensitivity (95%) when compared to standardised tests (e.g. the Dot Slide test) 148 

18. Studies that test discriminative validity are not as advanced, apart from the work by Horne et al. 149 

which discerns motor symptom fluctuations in early stages of PD 20. Single sensors are sufficiently 150 

robust for application, although there are question marks over aspects of utility for some systems 151 

which require technical mastery and are demanding on the user (see ‘Utility’ section). Whilst there 152 

have been a number of key developments in this area with motor symptom monitoring assessed at 153 

home, the test protocols are still largely controlled and scripted as highlighted in table 1. True passive 154 

monitoring without patient input is as yet an area to be developed but remains the area of greatest 155 

interest as it will give the most ecologically valid picture of motor symptom burden and therapeutic 156 

efficacy. Assessment of sleep also shows promise. WTCD?derived outcomes for sleep discriminate 157 

PD from older adults (OA) 25, 26 for �
�	��outcomes (e.g. number and size of movements) with people 158 

with PD also showing increased episodes of nocturia, fewer turns during sleep, and greater arm 159 

movements. 160 

 161 
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greatly inform clinical management and therapeutic development and WTCD has a role to play. Real?163 

world detection of falls however is technically challenging. A plethora of algorithms, devices, and 164 

device locations (chest, waist or wrist 27?31) have been tested to improve the accuracy of falls 165 

detection, however, studies are almost completely limited to controlled settings and conducted on 166 

young healthy adults. Kangas et al. provides a rare example of using WTCD for falls detection in the 167 

real?world where falls were measured in institutionalised OA and verified by an observer 32. Fall 168 

detection sensitivity was 80% with a falls alarm rate per hour of 0.025, denoting one false alarm over 169 

40 hours of recording. This points to high accuracy, although the testing environment was far 170 

removed from ‘free?living’, and generalisability is therefore weak. Application in PD remains an area 171 

of unmet need. An alternative approach is to predict falls risk using WTCD which, in contrast to falls 172 

detection, is a more advanced field for both older adults and PD. Moreover, addressing a falls 173 

prevention approach could be argued to have greater clinical relevance 33, 34. Studies have compared 174 

groups with and without falls in PD using free?living monitoring over 3?7 days. Falls risk factors 175 

derived from gait during free?living walking bouts 33, 34 were superior to laboratory?based gait speed 176 

and fall history to discriminate fallers from non?fallers 35?38. Discriminative validity has been 177 

established for both �
�	��and ���	� characteristics of gait and sedentary behaviour (Figure 1, A?B) 178 

which are associated with type of PD fallers 39 and fall history (fallers vs. non?fallers) in OA 38, 40 and 179 

PD 41, respectively. ���	� features may offer more than �
�	� features 36, 37, and contribute 180 

substantially to predicting falls both in fallers and non?fallers 37, 38. Further refinement of algorithm 181 

and system development is however required to take the field forward. 182 

 183 

�	�����������
����Gait disturbances such as FOG are notoriously difficult to replicate in a controlled 184 

environment because of its spontaneous nature and the non?specific and poorly understood triggers 185 

that provoke it 3. Clinical scales such as the UPDRS and NFOG 42 are subjective and therefore 186 

limited. Despite the obvious need, free?living monitoring of FOG in PD has not been achieved. 187 

Detection of FOG episodes has been tested in controlled and structured conditions where FOG is 188 
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Studies show high sensitivity (range: 84.3%?86.2%) and moderate to high specificity (range 66.7%?190 

98.74%) for detection of FOG, and moderate agreement with clinical measures 43, 44. These results 191 

provide a critical step from which validation can be extended to free?living. An alternative approach is 192 

to identify potential predictors of FOG to understand the mechanisms and target therapeutic 193 

developments. A recent study comparing freezers vs. non?freezers found frequency?based gait 194 

characteristics collected during 3 days of free?living discriminated freezers. Gait characteristics were 195 

also moderately correlated with clinical measures of FOG 45. Further work is needed before free?196 

living monitoring can be used for FOG detection or indeed for understanding the characteristics of 197 

FOG but initial results are promising. 198 

 199 

�
����Measurement of gait per se (���	� characteristics ? Figure 1, E?F) is also of interest to the 200 

clinician to evaluate efficacy of clinical management (due to dopa?resistance) as well as for its 201 

potential for use of discrete gait characteristics as diagnostic, prognostic and progression markers 46?48. 202 

Gait assessment during free?living assessment also captures ongoing environmental and cognitive 203 

challenges which impair gait performance. Assessment in this context has greater ecological validity 204 

and gives a true picture of the burden of disease 3, 7, 49. Algorithms have been validated to detect 205 

discrete gait characteristics in the laboratory and also in proxy validation studies 50?55. Results showed 206 

good agreement with trusted gold standard reference (e.g. GaitRite or optical motion capture systems) 207 

for the majority of gait characteristics with potential advantages for asymmetry and variability 208 

measures. Apart from Del Din et al. 49, the few studies that have examined gait in free living 209 

conditions, quantify few gait characteristics 56?61. Discriminative validity has been tested, and has been 210 

shown to discriminate between PD and OA 49, 57, phenotypes of PD 61 and PD with higher or lower 211 

cognitive functions 60. Aside from studies exploring falls and FOG risk highlighted previously 57 only 212 

one study has investigated the effect of environment on gait. Free?living gait characteristics showed 213 

better discriminative validity than those collected in the laboratory, especially for medium to long 214 

bouts 49. Although initial work is promising, future work is required to confidently realise continuous 215 

monitoring of gait. There are also some fundamental challenges to the field (outlined below). 216 
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�������������Tests of functional mobility such as turning and Timed up and Go 218 

(TUG) 62?64 measure combined movements that invariably incorporate postural transitions. Detection 219 

of movements during functional mobility tasks appears accurate 62, 63, 65��and validity (criterion and 220 

discriminative) has been established by a limited number of studies 62, 65. Mean turn velocity, slower 221 

walking and turning, shorter steps and lower cadence distinguished PD from controls 62, 64 and also 222 

showed greater sensitivity to dysfunction than clinical rating scales 64, 65. Of interest, free?living 223 

assessment appears to discriminate pathology better than testing in the laboratory 54 (Figure 1, G). 224 

Measurement of functional mobility tasks can therefore be undertaken with a degree of confidence 225 

during a standardised test at home, although further work is required to replicate these findings.
226 

 227 

�����
��	��
���
����
���������
	�����

���	�� �One of the earliest applications of WTCD aimed to 228 

quantify physical activity (e.g. ambulatory activity) amid rising concerns of the negative effects of 229 

sedentary behaviour on well?being. This is particularly relevant for people with PD because of the 230 

beneficial health benefits activity confers, and its role in mitigating secondary deficit. Ambulatory 231 

activity provides a picture of the true burden of disease and therapeutic efficacy 66. Proxy measures 232 

such as activity logs and diaries are unreliable and lack responsiveness compared with continuous 233 

WTCD monitoring 67. Physical activity such as intensity of movement (energy expenditure), temporal 234 

periods (bouts) of ambulatory activity (e.g. bouts of walking) and sedentary behaviours are quantified, 235 

from which �
�	� outcomes can be derived 66, 68?70 (Figure 1, A?B). The field has advanced further 236 

with the application of non?linear approaches to data analysis which in some instances are more 237 

sensitive than measures of central tendency (Table 1, Figure 2), such as pattern (alpha (α)) rather than 238 

volume of sedentary behaviour showing discriminative properties 71. Ambulatory activity 239 

differentiates disease stage 66, and progression 72, 73 and shows increased sensitivity to intervention 68, 240 

74. Rochester et al. 68 demonstrated the advantages of WTCD versus clinical measures when 241 

examining the impact of deep brain stimulation (DBS) on ambulatory activity. Whilst standard 242 

clinical measure for gait speed (4 meter test), levels of activity (Nottingham extended activities of 243 

daily living index (NEADL)) and disease progression (Hoehn and Yahr) failed to show the positive 244 
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effects of DBS on the outcomes, WTCD?based measures demonstrated significantly improved 245 

patterns of daily activity. Use of WTCD to measure ambulatory activity and sedentary behaviour is 246 

the most advanced of all the fields discussed in this section, and the most widely adopted. Nonetheless 247 

there are still questions over its application, driven by lack of common definitions of ambulatory 248 

activity, validation procedures and structured protocols in controlled settings for validation of 249 

algorithms 6. These will be considered below. 250 

 251 

��������
�����
������������� !"#���$�
�����
����
	������%�Most studies do not intentionally test the 252 

feasibility and utility of WTCD but instead draw on secondary data such as informal comments from 253 

patients, reporting adverse events, data loss, or attrition in sensor use over the study period. 254 

Importantly, there are no overwhelmingly negative reports, suggesting that WTCD are broadly 255 

accepted. Although few studies have intentionally tested utility (which we describe as ‘formal testing’ 256 

in Table 1), some focused efforts have been made. Utility has been tested for wearable systems 257 

comprising interactive 75 or multiple sensors 17, 22, 23, 76, using both non?standardised and standardised 258 

questionnaires and rating scales23 (e.g.  the post?study usability questionnaire), comfort 75, 76 (e.g. 259 

comfort rating scale (CRS)) and ‘wearability’/exertion 76 (e.g. Borg CR?10 Scale, Rapid Entire Body 260 

Assessment (REBA)). Overall the response has been positive, with WTCD generally well tolerated, 261 

comfortable and easy to use. Compliance is high, although in some cases results were influenced by 262 

socio?cultural aspects which may have positively biased results 23.  263 

 264 

In summary, to date there is no fully validated WTCD system for continuous monitoring of patient 265 

clinical features. Overall, studies are small, there is no consistent reporting of outcome measures, 266 

protocols differ, and devices differ along with device placement. Comparison to a gold standard is 267 

difficult. Knowledge on patient acceptability is limited. A clear process for validation including 268 

replication in external data sets is essential with appropriate reporting according to a standard. 269 

However the WTDC community is aware that this is an important and emerging area of research with 270 

potential for high clinical uptake, and collaborative efforts are underway to redress these issues (see 271 

reviews 7?9). Challenges to implementation are due at least in part to broader technological and 272 
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practical concerns which are common to all WTCD and influence their state of readiness, irrespective 273 

of application and use. Until these fundamental issues are redressed, robust use of WTCD will be 274 

compromised. The next section highlights some of these broad concerns and discusses approaches to 275 

advance the field. 276 

 277 

�������	��

�
��������
����
���   278 

We address 3 key areas fundamental to the use of WTCD that apply to all areas of 279 

measurement: (i) clear definitions of the clinical feature of interest, (ii) validation of real?world data 280 

and WTCD technical challenges, and (iii) consensus on outcomes. We illustrate these using examples 281 

from our own experience in gait and activity and that of others (Figure 3). Finally we summarise 282 

challenges with recommendations for future work and practical suggestions to inform the interested 283 

user (Table 2).   284 

 285 

"������������������
����
��	��
Although on the face of it this seems simple, there are many examples 286 

where unclear definitions have led to inconsistencies in outcomes and confusion when comparing 287 

between studies. A good example relates to ambulatory activity, from which �
�	� (e.g. walking 288 

bouts) and ���	� level gait outcomes are derived that underpin many different clinical and research 289 

questions (Figure 1). This stems from a basic definition of what constitutes a walking bout. In some 290 

studies only purposeful bouts of walking are considered (with a cut?off threshold > 60 seconds) 291 

because regular steady state is more likely to be achieved, thus avoiding potential errors in 292 

misclassification from short bouts. However this is problematic because adults perform almost 90% of 293 

walking bouts in less than 60s 40, 49, 77 resulting in significant data loss and potentially missing the 294 

most relevant data (such as change in variability of walking pattern). Another approach is to include 295 

all bouts of walking 49 which is arguably more relevant in patient populations. However this is not a 296 

complete solution because disagreement also exists regarding the number of steps required for a bout, 297 

which may vary, ranging from >3 steps to >10 steps. As a consequence comparison across studies is 298 

impossible where difference in step counts range from 2,000 to 10,000 steps 66, 68, 72, 73. The situation is 299 

further complicated by the use of ‘ghost’ (unknown to the end user and hard?wired into WTCD) 300 
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thresholds used by the manufacturer to define consecutive bouts of walking  that have a major impact 301 

on �
�	� outcomes 78 (e.g. total number and pattern of walking bouts) (Figure 3, (1)). This uneven 302 

approach significantly impacts on both �
�	� and ���	� outcomes and therefore consensus as to a 303 

clear definition of walking is urgently required 6, 78. Attempts are underway to improve definitions 304 

which will greatly help (Chastin et al.: AlPHABET: Development of A Physical Behaviour 305 

Taxonomy with an international open consensus1).  306 

 307 
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Establishing a gold standard to test algorithm validity for the range of features highlighted in this 309 

review during continuous uncontrolled monitoring in a free?living environment is a major challenge 310 

without obvious solutions. Real?life is unpredictable and unstructured. For example, context 311 

(environment and task) affects walking speed and direction which has implications for accuracy of 312 

algorithms used to detect steps and phases of the gait cycle from which gait characteristics are 313 

determined (Figure 3). Studies often adopt a number of different testing protocols and various sensor 314 

configurations (type and location (upper or lower body, Table 1) which also impacts the signal 315 

waveform influencing the accuracy of the algorithm used to extract micro outcomes and other type of 316 

information (features, outcomes). Moreover algorithms are usually validated using healthy controls 317 

data and adopted for analysing other groups’ data (i.e. PD) without considering that speed (fast or 318 

slow), pathology itself and disease stage may impact on the raw signal (Figure 3, (2)) and therefore 319 

influence algorithm performance. In addition other technical considerations need to be taken into 320 

account. Many commercial devices adopt black box designs with un?validated firmware/software 79 321 

which account for at least some of the significant disagreements in reported results 80, 81.  Other 322 

uncertainties due to externally induced motion (e.g. cars, lifts) also impact on accuracy to detect 323 

features of interest 81. Static and dynamic re?calibration of WTCD to account for possible axis 324 

misalignment or sensor alterations due to damage (device dropped, contact with water etc.) is also 325 

advised 82, however rarely undertaken because procedures are complicated and expensive. Further 326 

sources of variability are also introduced through changes in external factors such as weather, mood 327 
                                                
1 https://osf.io/2wuv9/ 
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or medication, influencing analysis of the signal. Collectively these result in errors and decreased 328 

confidence in outcomes and conformity to everyday use. Algorithm development will ultimately 329 

refine extraction and a joint approach such as use of secondary data sources will aid interpretation, for 330 

example data from patients’ diaries, testimony from carers, and use of clinical records 83. All of these 331 

potential sources of error should be considered and some suggestions are provided in Table 2. 332 

 333 

"���	������� �����
�� �������� ��
��	���
 Table 1 shows the vast range of outcomes reported. 334 

Standardised measurement is urgently needed with a clear rationale for selection of outcomes from 335 

which clinimetric testing will allow a refined battery of measures to emerge to encourage 336 

harmonisation across studies. Examples of measurement frameworks have been described 46, 49 337 

including our own ���	� and �
�	� level structure used throughout this paper 47. Others 37, 38, 45, 57, 61 338 

beside volume outcomes (e.g. total number of walking bouts, etc.) defined as ‘(�
�����’ metrics, use 339 

novel frequency?based outcomes to characterise gait (a) symmetry, variability and stability (e.g. 340 

harmonic ratio, amplitude of dominant frequency, dynamic stability, etc.) defined broadly as ‘(�
����) 341 

metrics. These novel (�
���� measures, although very promising for discriminative validity, may be 342 

difficult to interpret in clinical practice. 343 

 344 

<Figure 2> 345 

<Figure 3> 346 

 347 
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Modern devices incorporate a range of inertial sensors such as accelerometers, gyroscopes, 349 

magnetometers with Bluetooth connectivity which constitute cutting edge WTCD. While use is 350 

currently limited to controlled settings, improvements in battery technology will improve the accuracy 351 

of measurement addressing some of the challenges highlighted earlier. Moreover, novel methods for 352 

advanced data processing are being developed to reduce computational load with advanced 353 

computational processing carried out remotely via smartphone or in the cloud extending the 354 

application of WTCD 84. Studies have also investigated the use of smart phones (and audio devices) 355 
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which regularly come with the necessary hardware to quantify symptoms, movement or gait 85. These 356 

devices capture, analyse and relay information via cellular or other wireless networks and also provide 357 

a more comprehensive assessment such as the addition of a microphone for use with speech analysis 358 

algorithms in PD diagnosis 86, 87 and visual displays to facilitate applications (apps) for the study of 359 

cognition 88.  Rigorous device testing however is needed to ensure confidence in their application.  360 

Long term monitoring via a smart phone facilitates network interconnectivity and integration 361 

to the Internet of Things (IoT) 5,  through delayed or real?time uploading of data to cloud computing 362 

infrastructures. Data can be relayed to the patient (bio?feedback) via unobtrusive displays, haptic and 363 

audible cues. Data is stored and sent to clinicians for tracking disease progression, optimising disease 364 

management and providing further, more clinically informed feedback to the patient. Data storage and 365 

data access on this scale constitutes ‘big data analytics’. Developments in this field can expand 366 

assessment to capture the ‘lived experience’ or ‘lifespace’ of PD, capturing the extent to which people 367 

travel and their patterns of movement within the community 89. This is exemplified by a recent 368 

collaborative project between the Michael .J Fox Foundation and Apple utilising their projects, 369 

FoxInsight2 and the Apple ResearchKit3 (inc. the Parkinson mPower app4 available via iTunes), 370 

respectively. 371 

Collection of data on the scale and in a free?living context raises new ethical challenges with 372 

respect to acquisition, analysis and storage.  Current ethical reviews may not be sufficient to identify 373 

modern issues 90. Technology and terminology has evolved faster than legal and ethical systems and 374 

unforeseen issues can emerge 91. Informed, principled, and collaborative experimentation are therefore 375 

necessary to ensure privacy and confidentiality, and compliance with ethical principles. 376 

 377 

�����������
���
����������
����

378 

There is no doubting the possibilities and potential of real world monitoring and assessment 379 

of clinical features for people with PD. It is conceivable to imagine a future where ���	� level data is 380 

used to enhance diagnostics, measure efficacy of intervention and monitor disease progression, and 381 
                                                
2 The Michael J. Fox Foundation for Parkinson's Research, https://foxinsight.michaeljfox.org/ 
3 Apple Inc., http://www.apple.com/uk/researchkit/ 
4 http://parkinsonmpower.org/ 
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predict risk of disease, falls and cognitive decline. �
�	�� level data, on the other hand, reflects the 382 

global burden of disease and impact of therapy. Both sources of data provide insights into 383 

personalised treatment. As this special issue in the journal indicates, this is a rapidly developing field. 384 

However, much work remains before widespread clinical adoption is a reality. We highlight key 385 

recommendations and some practical solutions to move this field forward (Table 2).  These challenges 386 

are likely to be met most effectively by adopting a multidisciplinary approach between key 387 

stakeholders such as clinicians, patients, engineers, computer scientists, and statisticians. 388 

 389 
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Table 1: Studies examining free?living monitoring of Parkinson’s disease (PD) using wearable technology and connected devices (WTCD).  
Number and position of WTDC used in each study is detailed in column two using a colour code (blue = chest, violet = wrist, black = pocket, green = thigh, 
yellow = shank, orange = ankle, grey = foot, red = lower back). 
,
Clinical feature/ activity detected or measures has been classified using three types of validity: 1) accurate detection of clinical feature/ method of appraisal: 
the ability of WCTD algorithms to accurately detect a clinical feature/activity which is comparable to detection by another means ? in the study cited or 
previous studies (e.g. self?report, EMG); 2) criterion validity: the association between WTCD?derived outcomes and measures such as clinical scales; and 3) 
discriminative validity: the ability of WTCD?derived outcomes to discriminative between groups. Formal testing of utility (feasibility/compliance 
intentionally tested and reported) of WTCD is also reported. 
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Das et al. 
(2012), 2 PD, 

4* 

Accelerometers ??█?? 
█ █ █ █  

Dyskinesia, 
tremor 

Yes, against patients’ 
diaries using weakly 
supervised machine 
learning technique. 

Acceleration derived features 
(Mean energy, high frequency 

energy content, correlation, 
frequency domain entropy) 

No No No 

Griffiths et al. 
(2012), 34 

PD/10 OA, 10 

Parkinson's 
KinetiGraph (PKG; 

Global Kinetics 
Corporation) █ 

Bradykinesia, 
dyskinesia 

Yes, for bradykinesia 
against dot slide task 
measure (specificity 

88%, sensitivity 95%) 
during scripted tests.  

Acceleration derived features: 
Mean Spectral Power within 

specific bands, peak,  
amount of time with no 

movement 

Yes, dyskinesia against the 
AIMS score and both 

dyskinesia and bradykinesia 
against UPDRS III and IV 

No No 

Mera et al. 
(2012), 10 PD/ 

10 OA, 3?6 
Kinesia™ █?? 

Motor tasks, 
tremor, 

bradykinesia, 
motor 

fluctuations 

No 

Symptoms severity scale (0?4 
points), voluntary movement 

threshold  evaluated with 
gyroscope derived features 

(RMS, peak of power 
spectrum) 

Yes, for tremor and 
bradykinesia. Potential 

issues of recognition when 
the 2 symptoms overlap. 
Yes against videos in the 
lab for symptom severity 
scale validated against 

UPDRS tremor and MBRS 
speed, amplitude and 

rhythm scores in previous 
work 75, 92 

No 

Yes, formal 
testing 

previous work 
75 

Pastorino et al. 
(2013), 2 PD, 7  

ALA?6g (PERFORM) 
??█?? █ █ █ █ 

Akinesia, 
ON/OFF state 

Yes, ‘proof of 
concept’ validation Level of akinesia No No Yes, formal 

testing 
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(but 32 hours 
analysed) 

against patients’ 
diaries 

Tzallas et al. 
(2014), 12 PD, 
5 (8 hours per 

day) 

ALA?6g (PERFORM) 
??█?? █ █ █ █ 

Tremor, LID, 
Bradykinesia, 

FOG 

Yes, in the lab and 
during structured test 
(e.g. for FOG events 

Opening door/ 
Straight 10m walking) 

against video 
annotations. 

Acceleration derived 
measures (time and frequency 

domains, RMS, range, 
entropy, energy) 

Yes, machine learning and 
leave one out validation 

technique validated in the 
lab and applied in free?
living conditions and 

compared against patients’ 
diaries.  Use of videos in 

the lab for assessing 
symptoms severity using 

UPDRS.  

No Yes, formal 
testing 

Ferreira et al. 
(2015), 11 PD, 

12 weeks 

SENSE?PARK System 
█ █ █  

Gait, 
hypokinesia, 
dyskinesia, 

tremor, sleep 

No/NA (feasibility 
study and usability) NA NA No Yes, formal 

testing 

Hammerla et al. 
(2015), 34 PD, 

7 
Axivity AX3 █ █ 

Sleeping, 
ON/OFF state, 

dyskinesia 

Yes, in the lab 
(against video 

recordings) using 
machine learning and 

leave one out 
validation technique, 

in free?living 
conditions results are 

compared against 
patients’ diaries. 

Model pre?trained in 
free?living conditions 

did not give good 
results (laboratory 

data is a poor model 
for naturalistic 

behaviours)  

Acceleration derived 
measures (magnitude, jerk, 
power spectral density, etc.) 

No No 

Yes, formal 
testing but in 
subsequent 

work 93 

Horne et al. 
(2015), 64 

PD/38 OA, 10 

Parkinson's 
KinetiGraph (PKG; 

Global Kinetics 
Corporation) █ 

Bradykinesia, 
dyskinesia, 
fluctuations 

Yes, against measures 
of bradykinesia and 
dyskinesia (previous 
work see Griffiths 

2012) 

Fluctuation Score based on 
Interquartile Range of 

bradykinesia and dyskinesia 
scores. 

Yes, against clinical scores 
derived measure Yes No 
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Prudon et al. 
(2013), 106 

PD/99 OA, 3 
nights 

Acti?watch, Camntech 
█ █ 

Leg 
movements 
during sleep 

Yes, in patients with 
periodic leg 

movement (against 
electromyography), 

previous work 

Periodic leg movements index Yes, against disease 
severity No No 

Louter et al. 
(2015), 11 PD, 

2 nights 
Dynaport McRoberts █ Turning 

during sleep 

Yes, against 
polysomnography in 

adults with obstructive 
sleep apnoea 

syndrome, previous 
work 94 

Acceleration derived 
measures (e.g. mean) and 
axial movement measures 
(frequency, size, duration, 

speed) 

Yes, against Acti?watch but 
in young healthy adults 

previous work 94 
Yes 

Yes, no 
formal testing, 
previous work 

Sringean et al. 
(2015), 19 PD, 

1 night 

NIGHT?Recorder 
system █ █ █ █ █ 

Turning, 
Standing 

No, video and sleep 
diaries collected but 
validity not formally 

tested. 

Acceleration and gyroscope 
derived measures (duration of 

sleep, axial movements, 
velocity, etc.) 

Yes, against clinical scores 
(UPDRS axial score, item 

#28, etc.) 
Yes 

Yes, no 
formal testing, 

no adverse 
events 

reported 
�
����
����
����+��� 

Weiss et al. 
(2013), 71 OA, 

3 
Dynaport McRoberts █ Walking (at 

least 60s) No 

Number of walking bouts, 
walking duration, total 

number of steps, median 
number of steps per bout, 

bout duration, cadence, step 
and stride regularity, 

frequency domain measures 
(harmonic ratio, amplitude, 

slope and width of dominant 
frequency), step duration, step 
symmetry, acceleration range, 

etc.  

Yes, against clinical scores 
of fall risk and laboratory 

based measures 
Yes No 

Weiss et al. 
(2014), 107 PD, 

3 
Dynaport McRoberts █ Walking (at 

least 60s) No 

Number of walking bouts, % 
of activity duration, total 
number of steps, median 
number of steps per bout, 

bout duration, cadence, stride 
regularity, frequency domain 

measures (harmonic ratio, 

Yes, against clinical scores 
of fall risk Yes 

Yes, no 
formal testing, 

data loss 
reported. 
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amplitude and width of 
dominant frequency), etc. 

Brodie et al. 
(2015), 18 EF, 
58 (average) 

Senior Mobility 
Monitor (SMM, 

Philips) ��█�� 

Walking (at 
least 3 or 8 

steps) 
No 

Steps per day, walking bouts 
per day, steps per bout, 

cadence, distribution of bout 
length 

No Yes No 

Hiorth et al. 
(2015), 48 PD, 

7 
activPAL █ 

Sedentary 
behaviour/ 
standing/ 
walking 

Yes, but not formal in 
PD. Previous work in 

OA against other 
accelerometer 95 and 
video recordings in 

people with 
rheumatoid arthritis 
during simulation of 

ADL in the laboratory 
96 

Volume (e.g. total number of 
sedentary/standing/walking 

bouts), pattern (α), variability 
of sedentary bouts and 

number of strides per walking 
bout. 

Yes, against clinical scores Yes No 

Mactier et al. 
(2015), 111 PD, 

7 
activPAL █ Walking 

Yes, but not formal in 
PD. Previous work in 

OA against other 
accelerometer 95 and 
video recordings in 

people with 
rheumatoid arthritis 
during simulation of 

ADL in the laboratory 
96 

Volume (e.g. total number of 
walking bouts), pattern (α), 

variability of bouts, 
accumulation of stepping 

bouts 

No Yes No 

Rispens et al. 
(2015), 113 

OA, 14 
Dynaport McRoberts █ Walking (at 

least 10s)  

Yes, previous work in 
OA 97 for walking 
volume parameters 

against videos, no for 
gait characteristics. 

Acceleration based outcomes: 
gait speed, speed variability, 
stride time, stride regularity, 
stride time variability, stride 
frequency, frequency domain 

measures (harmonic ratio, 
amplitude, slope and width of 

dominant frequency), etc. 

Yes, measures against self?
reported fall history No No 

van Schooten et 
al. (2015), 169 

OA, 8 
Dynaport McRoberts █ 

Walking (at 
least 10s), 

sitting, lying, 
and standing 

Yes, previous work in 
OA 97 for walking 
volume parameters 

against videos, no for 

Total duration of walking, 
sitting, 

standing, and lying per day, 
number of 

Yes, against falls history Yes No 
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:�415), 16 OA, 
5?155 

CareTech Ab ??█?? Fallsǂ 

Yes, fall event against 
care personnel’s 

reports and in 
previous work in OA 
during simulation of 

fall events in 
controlled conditions 

98 in OA  

Fall event with alarm 
generation No No 

Yes, based on 
alarm 

accuracy 

�	�����������
���,�-�. 

Moore et al. 
(2013), 25 PD, 

NA 

Xsens MTx  █ █ █ █ 
█ █ █ 

Turning/ 
walking 
(TUG)ǂ 

Yes, in the laboratory 
for FOG event against 

video recordings 

FOG event through 
acceleration derived 

frequency measures (power 
spectrum, etc.). 

No No No 

Tripoliti et al. 
(2013), 11 PD/5 

OA, NA 

Body Sensor AGYRO, 
AGYRO links, ANCO 

S.A.█ █ █ █ █ █ 

Walking, FOG 
detectionǂ 

Yes, against video 
recordings and visual 

inspection during 
structured test 
(Opening door/ 

Straight 10m walking) 
sing different 
classification 

algorithms and cross?
validations 

FOG detection through 
entropy of WTCD signal No No No 

Weiss et al. 
(2015), 72 PD, 

3 
Dynaport McRoberts █ Walking (at 

least 60s) No 

Number of walking bouts, % 
of activity duration, total 
number of steps, median 
number of steps per bout, 

bout duration, cadence, stride 
regularity, frequency domain 

Yes, against clinical scores 
(FOG questionnaire) Yes No 
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measures (harmonic ratio, 
width of dominant 

frequency), etc. 
�
�� 

Cancela et al. 
(2011), 10 PD, 

1 (not clear) 

ALA?6g (PERFORM) 
??█?? █ █ █ █ 

Walking (on 
vs off 

medication) 

Yes, only for step 
frequency during 10m 

scripted protocol 
against visual 
examination 

Step frequency, stride length 
and speed, entropy, arm 

swing 
No 

Yes, only for 
entropy in 

previous work 99 
No 

Weiss et al. 
(2011), 22 
PD/17 OA 

(1PD/1CL at 
home), 3 

Mobi8 █ 

Walking 
(during 

scripted test in 
the lab and 

during 
simulation of 

ADL and free?
living) 

No 

Acceleration derived 
measures (time and frequency 
domains): stride time, stride 
time variability, amplitude, 
width, slope of dominant 

frequency, etc. 

Yes, against clinical scores Yes No 

Cancela et al. 
(2014), 11 PD, 
5?7 (8 hours per 

day) 

ALA?6g (PERFORM) 
??█?? █ █ █ █ Walking 

Yes, only for step 
frequency, previous 
work (see Cancela 

2011) 

Step frequency, step velocity, 
stride length, entropy No 

Yes, only for 
entropy in 

previous work 99 

Yes, formal 
testing and 

also assessed 
in separate 

study 76 

Herman et al. 
(2014), 110 PD, 

3 
Dynaport McRoberts █ Walking (at 

least 60s) No 

Total number of activity 
bouts, total % of activity 
duration, total number of 
steps, mean activity bout 

duration, median number of 
steps per bout, cadence, stride 

regularity, amplitude of 
dominant frequency, width of 

dominant frequency, stride 
regularity, harmonic ratio, 
Phase Coordination Index. 

Yes, previous work Yes, previous 
work No. 

Weiss et al. 
(2015), 107 PD, 

3 
Dynaport McRoberts █ Walking (at 

least 60s) No 

Total % of activity duration, 
total number of steps, 
cadence, amplitude of 

dominant frequency, stride 
regularity, harmonic ratio, 

Yes, previous work Yes, previous 
work 

Yes, no 
formal testing, 

data loss 
reported 
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:�416), 47 
PD/50 OA, 7 

Axivity AX3  █ Walking (at 
least 3 steps) No 

14 gait characteristics: mean 
step time, stance time, swing 

time, step length, step 
velocity, step time variability, 
stance time variability, swing 
time variability, step length 

variability, step velocity 
variability, step time 

asymmetry, stance time 
asymmetry, swing time 
asymmetry, step length 

asymmetry. 

Yes, gait characteristics 
validated against laboratory 
reference (previous work 53) 

Yes No 

 ����/��/
��/���, ��. 
Zampieri et al. 
(2011), 6 PD/8 

OA, 1 
Physilog  █ █ █ █ █ 

Walking/turni
ng/postural 
transitions ǂ 

Yes, in previous 
work100 

Cadence, stride velocity, 
stride length, peak arm 

velocity, turning velocity 
No Yes No 

Smith et al. 
(2016), 12 OA, 

5 
SHIMMER █  █ Walking/turni

ng ǂ No 

Time to complete test, 
cadence, gait characteristics 
(step time, stride time, stride 
length, stride velocity, etc.), 

turning magnitude, etc. 

No No No 

 �	���� 

El?Gohary et al. 
(2013), 12 

PD/18 OA, 7* 

Opal(ADPM) ��█�� in 
the lab / Opal(ADPM) 

??█?? █ █ at home 

Turning/ 
walking (at 
least 10s) 

Yes, in the lab against 
motion analysis 

system and video 
recordings 

Number of turns, peak 
velocity, mean velocity, 

duration of turn 
No Yes No 

Mancini et al. 
(2015), 13 PD/8 

OA, 7* 

Opal(ADPM) ??█?? █ 
█ 

Turning/ 
walking (at 
least 10s) 

Yes, in the lab 
(previous work, see 

El?Gohary 2013) 

Number of turns/hour, turn 
angle, turn duration, number 

of steps/turn, turn mean 
velocity and coefficient of 

variation of these measures. 

Yes Yes 

Yes, no 
formal testing, 

report of 
‘ease’ of use. 

�����
��	��
���
����
���������
	�����

���	 
Chastin et al. 

(2007), 17 
PD/17 OA, 7  

activPAL █ Sedentary 
behaviour 

Yes, but not formal in 
PD. Previous work in 

OA against other 

Volume of sedentary bouts, 
pattern (α), pattern of 

accumulation of bouts (GINI 
No Yes No 
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:�413), 467 PD, 
14 

TracmorD, Philips/ 
??█?? or ??█?? or █ 

Physical 
Activity/Seden
tary behaviour 

Yes, against doubly 
labeled water 

technique (correlation) 
in adults but not in PD 

101 

Energy expenditure, time 
spent in activities, distribution 

of activities, etc. 
Yes No No 

Benka Wallen 
et al. (2015), 95 

PD, 7 

ActiGraph GT3X+ 
��
█�� 

Physical 
Activity/Seden

tary 
behaviour/ 
Steps (60s 

epochs) 

Yes, in young adults 
under controlled 

conditions by visual 
observation but not in 

PD 102 

Volume (magnitude vector of 
acceleration) and time spent 
in physical activities, steps 

per day, etc.   

No No No 

Lim et al. 
(2010), 153 PD, 

1 

Vitaport3, TEMEC 
Instruments BV  █ █ 

█ █ █ 

Sitting, 
standing, 
walking 

Yes in PD against 
video (under 

controlled conditions), 
previous work 103 

% of time spent on dynamic, 
static, sitting, standing or 

walking activities, number of 
walking bouts > 5s and > 10s 

No No No 

Cavanaugh et 
al. (2012), 33 

PD, 7 

StepWatch 3 Step 
Activity Monitor 

(SAM) █ 

Walking 
(average every 

60s) 

Yes, for stride count 
in PD against 

instrumented walkway 
in the lab, previous 

work  104 

Total number of steps, 
maximum output for steps, 

number of minutes with > 100 
steps, number and duration of 
walking bouts, peak activity 

index, % of day spent inactive 

No No 

Yes, not 
formal testing, 

reasons for 
data loss and 
attrition in 

sensor 
acceptability 
after 1 year 

with decrease 
in participant 
use reported 

Rochester et al. 
(2012), 17 PD, 

7 
activPAL █ Walking 

Yes, but not formal in 
PD. Previous work in 

OA against other 
accelerometer 95 and 
video recordings in 

Volume of walking bouts, 
pattern of accumulation of 

bouts (GINI index) and 
diversity of bouts, distribution 
and variability of bouts (S2)  

Yes No No 
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:�413), 89 
PD/97 OA, 7 

activPAL █ Walking 

Yes, but not formal in 
PD. Previous work in 

OA against other 
accelerometer 95 and 
video recordings in 

people with 
rheumatoid arthritis 
during simulation of 

ADL in the laboratory 
96 

Volume of walking bouts, 
pattern (α), time spent 

walking in short?medium or 
long bouts, frequency and 
variability of bouts (S2) 

Yes Yes No 

Cavanaugh et 
al. (2015), 17 

PD, 7 

StepWatch 3 Step 
Activity Monitor 

(SAM) █ 

Walking 
(average every 

60s) 

Yes, for stride count 
in PD against 

instrumented walkway 
in the lab, previous 

work (see Cavanaugh 
2012) 

Mean daily steps, maximum 
output for steps, Moderate 

intensity minutes  (number of 
minutes with > 100 steps) 

Yes No 

Yes, not 
formal testing,  

reasons for 
data loss and 
attrition in 

sensor 
acceptability 
after 2 years 

with decrease 
in participant 
use reported 

ADL = Activities of Daily Living; Alpha = α; Lab = Laboratory; Length of recording= number of weeks/days/minutes of recording; MBRS = Modified Bradykinesia Rating Scale; min = 
miutes; N = number of participants; OA = Older Adults; PD = Parkinson’s disease; RMS = Root Mean Square; UPDRS = Unified Parkinson's Disease Rating Scale; % = Percentage; *Night 
excluded; ǂ = scripted protocol/supervised conditions used. 
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D�'��
�1: 
Use of wearable technology and connected devices (WTCD) (adapted with permission from previous 
work) 47 A)  �
�	� level quantification of activities over an extended period of time (volume, patterns 
and variability); (B) bouts of activities (e.g. lying (sleeping), walking, sitting); (C?H) ���	� level 
quantification from specific events: C) and D) postural transitions, E) shuffling, F) gait, G) turning, H) 
freezing of gait (FOG) and fall. 
 
Figure 2: 
Examples of linear and non?linear approaches to activity data analysis: volume and pattern metrics for 
two subjects (Subject 1 and 2) (published with permission) 68. 
A1 and A2 ? Patterns of activity indicating bouts of sedentary, standing and walking at different 
stepping rates (cadences). 
B1 and B2 ? Volume Metrics: total walking time for the two subjects is equal but made up of walking 
bouts at different cadences. 
C ? Pattern Metrics: (i) and (ii) distribution of walking bouts for these two subjects with equal mean 
(M) and different dispersion (S2). C (iii) Accumulation pattern of walking time for subject 1 and 2; 
subject 2 tends to accumulate walking time with predominantly longer periods. 
 
Figure 3:  
Challenges/limitations of free?living measurement using examples from gait in free?living collected 
with a single accelerometer?based WTCD. Data (unpublished) from the Incidence of Cognitive 
Impairment in Cohorts with Longitudinal Evaluation?GAIT (ICICLE?GAIT) study 105. 
 
Panel (1) – Definition of feature of interest (e.g. walking):   

A)� Impact of “selected” definition of walking on data processing: different threshold of walking 
bout length and (ghost) maximum resting period (MRP) between consecutive walking bouts 
can be utilised.  
Examples: (i): use of walking bout threshold of 60s and no MRP (MRP = 0s) (only bouts 
longer than 60 s will be considered); (ii): use of walking bout threshold of 3 steps and no 
MRP (MRP = 0s); (iii) use of walking bout threshold of 3 steps and MRP = 5s. 

B)� Impact of choice in A) on �
�	� outcomes (e.g. number of bouts considered, total number of 
steps reported for people with Parkinson’s disease (PD) and controls (CL)). For example 
using definition (i) only a small percentage of all the walking bouts will be considered (bouts 
> 60s only) and therefore fewer steps will be reported if compared to results of using 
definition (ii). 

C)� Impact of choice in A) on ���	�� gait characteristics (e.g. reported step velocity may vary 
across studies due to choice of definition ((i), (ii) or (iii)). 
 

Panel (2) – Influence of free?living protocol on data: 
Walking speed changes with respect to the environment, task, and disease severity which 
influences the accelerometer raw signal (D) impacting on algorithm performance and 
evaluation of outcomes (E). 
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