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Abstract 20 

Climate change has been projected to significantly affect agricultural productivity and 21 

hence food availability in the coming decades. The uncertainty associated with projecting 22 

climate change impacts is a barrier to agricultural adaptation. Despite uncertainty 23 

quantification becoming more prominent in impact studies, the thorough quantification of 24 

more than one uncertainty source is not commonly exercised. This work focuses on Indian 25 

groundnut and uses the General Large Area Model for annual crops (GLAM) to investigate 26 

the response of groundnut under future climate scenarios, develop a genotypic adaptation 27 

strategy, and quantify the main uncertainty sources. Results suggest that despite large 28 

uncertainty in yield projections (to which crop- and climate-related sources contribute 46 29 

and 54 %, respectively) no-regret strategies are possible for Indian groundnut. Benefits 30 

from genotypic adaptation were robust towards the choice of climate model, crop model 31 

parameters and bias-correction methods. Groundnut breeding for 2030 climates should be 32 

oriented toward increasing maximum photosynthetic rates, total assimilate partitioned to 33 

seeds, and, where enough soil moisture is available, also maximum transpiration rates. No 34 

benefit from enhanced heat stress tolerance was observed, though this trait may become 35 

important as warming intensifies. Managing yield variability remains a challenge for 36 

groundnut, suggesting that an integral approach to crop adaptation that includes year-to-37 

year coping strategies as well as improvements in crop management is needed across all 38 

India.  39 

 40 

1. Introduction 41 

Climate change has been projected to significantly affect agricultural productivity and 42 

hence food availability in the coming decades, with particularly negative effects across the 43 
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global tropics (Challinor et al. 2014). Model-based projections of climate change impacts 44 

on crop productivity are critical for understanding cropping system responses under climate 45 

change scenarios so as to plan adaptation. However, such projections are subjected to 46 

numerous uncertainties which in cases can hinder adaptation planning (Vermeulen et al. 47 

2013). Major knowledge gaps and uncertainties associated to crop responses in future 48 

scenarios remain (e.g. which processes are key to simulate future yields, how predictable 49 

these are, how do biophysical drivers interact with the broader socio-economic and cultural 50 

context in farming systems). A better understanding of impacts and their associated 51 

uncertainties will aid agricultural adaptation to climate change. 52 

 53 

Here, we aim at assessing climate change impacts and genotypic adaptation for the 54 

groundnut crop in India. Originating in South America, groundnut is a grain legume widely 55 

grown across India. Groundnut is produced mainly as a cash crop, with roughly 82 % of 56 

groundnut production used for edible oil, 12 % as seed, and 6 % as feed (Mehrotra 2011). 57 

India is the second largest producer (~8.3 million tonnes in 2010) after China, and has the 58 

largest harvested area globally (~5.86 million hectares in 2010). Average Indian groundnut 59 

crop yields of 1.4 ton ha-1, however, are low (17 % below worldwide average in 2010) 60 

(Mehrotra 2011; FAO 2014). With respect to non-water-limited yields (~5,500 kg ha-1 on 61 

average), actual yields are also low (1,020 kg ha-1 on average) (Bhatia et al. 2009). Low 62 

yields are the consequence of interannual variations in monsoon precipitation and a 63 

cropping system that is highly sensitive to interannual climate variability (Singh et al. 64 

2012). Under climate change scenarios of increased temperatures and changing patterns of 65 

precipitation, Singh et al. (2012) projected decreases in groundnut crop yields from 6 to 44 66 

% across different regions of India by 2050, and Challinor et al. (2007) projected yield 67 
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decreases of up to 70 % for rainfed groundnut areas by 2100. Genotypic modifications, 68 

which involve the incorporation of desirable traits aimed at tolerating stresses to achieve 69 

greater and more stable yields, and more broadly the design of crop “ideotypes” (i.e. 70 

varieties with ideal genetic characteristics), have been suggested as a key strategy for 71 

Indian groundnut systems (Challinor et al. 2009; Singh et al. 2013).  72 

 73 

An assessment of near-term climate change impacts on groundnut productivity, potential 74 

genotypic-level adaptation strategies that thoroughly quantifies uncertainty and robustness 75 

in model projections has not been carried out to date. Characterising the sources of 76 

uncertainties is key in order to improve modelling frameworks and make more informed 77 

decisions (Vermeulen et al. 2013). Additionally, by focusing on the 2030s period the 78 

analyses presented here are also more likely to be of use to the breeding community in early 79 

breeding cycles during the 21st century. The objectives of this paper were to: 80 

(1) Assess the potential benefit from crop improvement by quantifying changes in mean 81 

and interannual variability of crop yields in hypothetical crop improvement 82 

scenarios with respect to no-adaptation scenarios (Sect. 3.1). 83 

(2) Investigate robustness of future yield projections and quantify the relative 84 

importance of crop- and climate-related modelling uncertainties (Sect. 3.2). 85 

 86 

The analyses performed herein contribute to improve understanding of the processes 87 

driving crop responses under future scenarios, to quantify the relative importance of crop 88 

and climate model uncertainties in regional impacts estimates, and to assess the 89 

effectiveness of the potential genotypic adaptation options in addressing climate change.  90 

 91 
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2. Materials and methods 92 

The study areas were all 1 x 1º grid cells (a total of 195) of India where groundnut is 93 

reportedly cultivated (Figure 1) (Challinor et al. 2004). The study region was divided in 94 

five growing zones (Figure 1A), which reflect the variation in the germplasm grown in 95 

India (Mehrotra 2011). An ensemble of simulations based on GLAM (General Large Area 96 

Model for annual crops, Sect. 2.3.1) (Challinor et al. 2004) and the CMIP5 climate model 97 

ensemble (Taylor et al. 2012) was used to simulate growth and development of the 98 

groundnut crop in India under present-day and future (2030s, RCP 4.5) conditions using 99 

region-specific parameter ensembles calibrated against observed crop (Sect. 2.2.1, Figure 100 

1B,C) and weather data. Ensemble simulations were then used to evaluate potential crop 101 

improvement scenarios and quantify potential gains in mean crop yield and yield variability 102 

(Sect. 2.3.4). 103 

 104 

2.1. Input data 105 

2.1.1. Crop and soil data 106 

District-level time series of groundnut area harvested, total production, crop yields and 107 

irrigated area for the period 1966–1993 were obtained from a previous study (Challinor et 108 

al. 2004), and then scaled onto a 1x1º resolution (ca. 100 x 100 km at the Equator) grid [see 109 

Sect. 2.2.2 and Ramirez-Villegas et al. (2015)]. A total of 195 grid cells were included in 110 

the analyses. The planting windows from the global study of Sacks et al (2010) were 111 

downloaded, aggregated onto the analysis grid (1x1º) and checked for inconsistencies to 112 

ensure planting windows reflected monsoon dynamics (Ramirez-Villegas et al. 2015). 113 

Spatially variable soil hydrological parameters, namely, permanent wilting point (șll), field 114 

capacity (șul), and saturation (șsat) were derived from the 30 arc-sec Harmonized World 115 
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Soil Database (HWSD) (Batjes 2009). Crop model simulations in each grid cell were 116 

always associated with their respective soil moisture limits (șll, șul, șsat). 117 

 118 

2.1.2. Climate data 119 

Historical observation-based daily precipitation data were gathered from the Centre for 120 

Climate Change Research (CCCR) of the Indian Institute for Tropical Meteorology (IITM) 121 

(available at http://cccr.tropmet.res.in/home/index.jsp, accessed Sept 2011) at a spatial 122 

resolution of 1x1º and for the period 1961–2008 (Rajeevan et al. 2006). This interpolated 123 

dataset is the only observed precipitation dataset that covers the entire analysis domain at a 124 

daily time step required for GLAM for the period for which yield observations were 125 

available. Daily maximum and minimum temperatures were gathered from a previous 126 

GLAM study in which monthly interpolated data from the Climatic Research Unit (CRU) 127 

dataset (available at https://crudata.uea.ac.uk/cru/data/hrg/, accessed 1st September 2011) 128 

were linearly scaled to daily values (Challinor et al. 2004), whereas daily downwards 129 

shortwave solar radiation data were gathered from the European Centre for Medium-Range 130 

Weather Forecasts (ECMWF) 40+ Reanalysis (ERA-40) (Uppala et al. 2005). ERA-40 was 131 

used as it provided a realistic representation of daily solar radiation and its variability 132 

(Uppala et al. 2005). Historical data were used for (1) bias correcting the climate model 133 

simulations from the CMIP5 ensemble (see below), and (2) calibrating the crop model 134 

(Sect. 2.2.2). 135 

 136 

Daily CMIP5 outputs of historical and RCP4.5 transient simulations were downloaded 137 

from the CMIP5 archive, freely available at http://pcmdi9.llnl.gov/esgf-web-fe/ (Taylor et 138 

al. 2012). Data for a total of 13 GCMs for both historical (“baseline”, 1966–1993) and 139 
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future (2022-2049 “2030s”) periods were gathered (Table S2). Simulated GCM outputs 140 

were first bias corrected before being used into the crop model, so as to reduce the impact 141 

of climate model bias on crop simulation (Ramirez-Villegas et al. 2013). Since the 142 

uncertainty associated with the choice of bias correction (BC) method is usually not 143 

quantified in impact studies, three different methods were used in order to quantify 144 

uncertainty from this process, as follows: 145 

‚  Simple bias correction (SH): The SH method, also referred to as nudging, used the 146 

difference between the observed and GCM simulated climatological means in the 147 

historical period to correct the future daily GCM output (Hawkins et al. 2013). This 148 

process was done for each grid cell, variable, month and GCM simulation (i.e. 149 

correction factors varied spatially, seasonally, and across GCMs and variables). For 150 

temperature (maximum and minimum), arithmetic differences were used, whereas for 151 

precipitation and solar radiation relative differences were used. 152 

‚ Change factor (DEL): The DEL method, also referred to as the delta method (Ver Hoef 153 

2012), consisted of first calculating the difference between the projected and the 154 

historical GCM values (the delta) for each grid cell, month and variable and then adding 155 

such delta to the historical observations to obtain daily climate data for future 156 

conditions (Hawkins et al. 2013). This method is amongst the most frequently methods 157 

for bias-correction in the climate change impacts literature [e.g. Asseng et al. (2013); 158 

Koehler et al. (2013)]. 159 

‚ Local intensity scaling (LOCI): This technique consists in correcting both wet-day 160 

intensity and frequency, while leaving solar radiation and temperatures uncorrected 161 

(Themeßl et al. 2011). On a monthly basis, two parameters were estimated: the model 162 
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wet-day threshold and the scaling factor. The model wet-day threshold was estimated as 163 

the threshold above which the number of wet days predicted by the model equalled the 164 

number of wet days in the observations (of 1 mm day−1). Next, the scaling factor is 165 

estimated as the ratio of climatological mean of wet days in the observations to that of 166 

the GCM subtracted from their respective wet-day thresholds. The monthly correction 167 

factor and the wet-day threshold are then used to correct the intensity and frequency in 168 

both the historical and the future GCM simulations. For more details and underlying 169 

equations the reader is referred to Themeßl et al. (2011). 170 

 171 

All methods were applied for each GCM at a resolution of 1x1º. The resulting datasets were 172 

all at daily scale for the periods 1966-1993 (historical) and 2022-2049 (RCP4.5). For a 173 

more complete description and analysis of these methods and a review of other methods the 174 

reader is referred to Hawkins et al. (2013) and to Themeßl et al. (2011). 175 

 176 

2.2. Modelling approach 177 

2.2.1. Crop model 178 

In this study, the General Large Area Model for annual crops (GLAM) (Challinor et al. 179 

2004) was used to perform all crop simulations. In GLAM, crop development is divided 180 

into five phases: sowing to emergence (R0), emergence to flowering (R1), flowering to 181 

start of grain filling (R2), start of grain filling to maximum leaf area index (R3), and 182 

maximum leaf area index to physiological maturity (R4). Total crop biomass is estimated 183 

on a daily basis using the product of the total plant transpiration and the transpiration 184 

efficiency (ET), whereas grain yield is estimated using the total biomass and the time-185 

integrated rate of change in the harvest index (∂HI/∂t). Leaf area growth in GLAM is 186 
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simulated using a prescribed constant leaf area index (LAI) growth rate (∂L/∂t). 187 

Additionally, the yield gap parameter (CYG) is a model constant that accounts for non-188 

modelled processes that reduce crop yields (such as sub-optimal management and pests and 189 

diseases). Four different parameterisations of CO2 response in order to quantify uncertainty 190 

from this process, consistent with a C3 physiology and described by Challinor and Wheeler 191 

(2008), were used to simulate the response of groundnut to increased CO2 concentrations. 192 

More details on CO2 response are presented in SI Text 1 and Table S1. 193 

 194 

2.2.2. Crop model calibration and baseline simulations 195 

Due to lack of observational constraints to calibrate each of the parameters (i.e. only yield 196 

data was available), a parameter ensemble approach was adopted as described in SI Text 2. 197 

Once the crop model was calibrated, three sets historical of simulations were conducted in 198 

which the only difference was the meteorological inputs: LOCI, SH and DEL. In all cases, 199 

calibration of CYG was done iteratively for each GCM and bias correction method weather 200 

input. Each set of baseline simulations consisted of 195 grid cells, 19 parameter ensemble 201 

members and 13 GCMs for the full 28-year baseline period 1966-1993.  202 

 203 

2.2.3. Future crop simulations 204 

Firstly, three sets of future yield no-adaptation simulations were carried out (LOCI, DEL, 205 

SH) each consisting of 13 GCMs, 19 parameter ensemble members, the 4 CO2 206 

parameterisations, and 195 grid cells (i.e. a total of 988 simulations per grid cell and bias 207 

correction method). These simulations were used to assess the impact of future climates on 208 

groundnut yields by computing the percentage change in yield from the baseline. 209 
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Next, genotypic simulations were performed. The first step in designing genotypic 211 

adaptation simulations was the identification and mapping of traits onto the GLAM 212 

parameter space, i.e. associating the different traits and their observed distributions (or 213 

ranges) to specific parameters and their calibrated values. Supplementary Table S3 shows 214 

the main studies that have investigated genotypic improvement of groundnut using crop 215 

models. The different studies highlight the importance of five genotypic properties, namely, 216 

maximum photosynthetic rate, partitioning to seeds, leaf thickness and size, crop 217 

development rate, and temperature tolerance. These traits are listed and matched to 218 

appropriate GLAM parameters in Table 1. 219 

 220 

[Table 1 here] 221 

 222 

The second step was then the design of hypothetical crop improvement scenarios. Crop 223 

improvement scenarios were designed by perturbing each of the parameters in Table 1 from 224 

their calibrated value up to a global upper value derived from the literature. Maximum 225 

values used were large enough so as to include potential from available germplasm in other 226 

parts of the world. Establishing a new maximum value for as many parameters as possible 227 

was preferred instead of using fixed percentages for all parameters [e.g. Singh et al. 228 

(2012)], since it provides a more realistic estimate of genotypic adaptation limits (Challinor 229 

et al. 2009). Parameter perturbations were in all cases, except for those associated with 230 

thermal durations (tTT0, tTT1, tTT2, tTT3, see footnote in Table 1 for their meaning), done via 231 

increases of 25 %, 50 % and 100 % of the absolute difference between the calibrated 232 

parameter value and the global upper value (Table 1). Each parameter was first perturbed in 233 

isolation (i.e. 14 parameter x 3 perturbations = 42 individual perturbations). Next, two 234 
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combined parameter scenarios were constructed; scenario 1: lowest perturbation of each 235 

parameter and increased tTT0; and scenario 2: lowest perturbation of each parameter and 236 

decreased tTT0. The total number of perturbations was thus 44: 42 (individual), plus 2 237 

(combined). The GLAM model was used to simulate crop yield for the 44 genotypic 238 

adaptations applied to the 19 baseline parameter sets, in each of the 195 grid cells for the 4 239 

CO2 parameterisations, 13 GCMs and the 3 bias-correction methods, i.e. a total of 44 x 19 x 240 

195 x 4 x 13 x 3 simulations. 241 

 242 

2.3. Data analysis 243 

All simulations herein analysed were carried out with the model GLAM. Analyses focus on 244 

two elements of food security: availability through the calculation of mean yield and 245 

stability by computing yield coefficient of variation (CV). 246 

 247 

2.3.1. Quantification of climate change impacts and the benefits of genotypic 248 

adaptation 249 

Model output was first verified for consistency using maximum values reported in the 250 

literature for three key variables: (a) crop yield, (b) crop duration, and (c) end of season 251 

harvest index. Simulations with time-mean yields larger than 6,500 kg ha−1 (Balota et al. 252 

2012), mean duration greater than 150 days (Nigam 2009; Singh et al. 2012), or harvest 253 

index greater than 0.66 (Nigam et al. 2001) were considered unrealistic and hence rejected. 254 

 255 

Changes in crop yield mean and variability under no adaptation were quantified as 256 

percentage deviation from the baseline (see SI Text 3), whereas changes in crop yield mean 257 

and variability for genotypic adaptation simulations were quantified by first calculating the 258 
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percentage deviation from the baseline and then the difference from the no-adaptation runs. 259 

Based on literature review (see Supplementary Table S3), the effects of crop improvement 260 

scenarios were analysed by grouping parameters according to the main abiotic stress being 261 

addressed as follows: 262 

‚ Drought management: drought escape through reduced thermal time requirement 263 

during vegetative phase (tTT0), increased water-use efficiency through increases in 264 

transpiration efficiency (TE, ETN, max), harvest index (∂HI/∂t), maximum transpiration 265 

rate (TTmax) and specific leaf area (SLAmax). 266 

‚ Increased duration: enhance LAI growth, light interception and biomass 267 

accumulation through increases in all thermal time requirements (tTT0, tTT1, tTT2, tTT3, 268 

see footnote in Table 1 for meaning of parameters). 269 

‚ Temperature extremes adaptation: increase tolerance to high temperature during 270 

flowering (Tcrit, Tlim, Tia), and improved photosynthesis response to temperature 271 

(Tter1). 272 

These groups are hereafter used to present and discuss the results. 273 

 274 

2.3.2. Quantification of robustness in model projections and uncertainty 275 

decomposition 276 

We assessed robustness, i.e. how large is the mean signal of change in comparison to the 277 

uncertainty, in model simulations by calculating a robustness index (R) after Knutti and 278 

Sedlacek (2012). This quantity considers the magnitude of the change, the sign, natural 279 

variability and inter-model spread, and is defined as R=1 – A1/A2, where A1 is the 280 

uncertainty: the area between two cumulative density functions (CDFs) characterising the 281 
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individual model projections and the ensemble mean projection; and A2 is the signal: the 282 

area between two CDFs characterising the ensemble mean projection and the historical 283 

simulation. A value of R equal to 1 implies that the cumulative density functions of 284 

ensemble members are equal to that of the ensemble mean –perfect model agreement. 285 

Values of R < 0.5 reflect little agreement between model projections, whereas values above 286 

0.8 reflect significant agreement in model projections (Knutti and Sedláček 2012). 287 

 288 

We define uncertainty as the range (i.e. difference between the maximum and minimum 289 

value) of a model prognostic variable (i.e. yield) among many model configurations for a 290 

given grid cell. Here, the total future uncertainty in mean yield was calculated as the sum of 291 

four sources following Koehler et al (2013): (1) GLAM parameter sets, (2) GCMs, (3) BC 292 

and (4) CO2 parameterisation. For each source, the fractional uncertainty (FU) was 293 

calculated as the ratio of uncertainty of a given source to the total uncertainty. 294 

 295 

3. Results 296 

3.1. Potential benefits from genotypic adaptation 297 

Because the focus of this paper is on genotypic adaptation gains, all results and discussion 298 

below focus primarily on genotypic adaptation simulations (at +50 % increases, unless 299 

otherwise stated) and their difference with respect to no-adaptation simulations. For a 300 

comparison of no-adaptation simulations and baseline simulations the reader is referred to 301 

SI Text 3. 302 

 303 

3.1.1. Gains from drought management 304 
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Figure 2 shows the potential mean yield gains from improving drought-related traits for 305 

DEL simulations (for figures of LOCI and SH simulations see Supplementary Fig. S7). 306 

Improving partitioning to seeds (∂HI/∂t) was overall the most geographically consistent trait 307 

in its impact. Mean yield gains of 20-40 % were observed in southern India, of 40-60 % in 308 

central, eastern and western India, and of up to 80 % in northern India. Improving 309 

photosynthetic rates as implemented in GLAM (i.e. parameters TE, ETN, max) proved to be 310 

less effective than improving partitioning; however, significant gains in southern and 311 

northern areas were achieved from improving this trait. The impact of enhanced maximum 312 

transpiration rate (TTmax) was large in northern and eastern India (generally above 60 %), 313 

but was less significant in the drier areas of the west and the warmer areas of the south. 314 

Improving leaf thickness through changes in SLAmax and reducing the duration of the 315 

vegetative stage (tTT0) produced negligible changes in mean yield. Changes in yield 316 

variability were mostly negative or negligible, indicating that achieving temporal yield 317 

stability is a more challenging task than improving mean yield (Figure 3, Supplementary 318 

Figure S8). Overall, improving photosynthetic rates (ETN, max, TE) produced the greatest 319 

improvements in yield stability. 320 

[Figure 2 here] 321 

 322 

3.1.2. Gains from increased duration 323 

Increased duration of the grain filling to physiological maturity phase (tTT3) was the most 324 

effective phenology trait. In eastern India, mean yield gains from this trait were in the range 325 

12 – 15 % for a 10 % increase in tTT3, whereas changes were lower in southern and western 326 

India (8 – 10 %). The effectiveness of tTT3 was followed by that of the duration from the 327 

start of pod filling to maximum LAI (tTT2), indicating that substantial yield gains would be 328 
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achieved if both were increased simultaneously (i.e. overall increasing the grain filling 329 

period). A longer vegetative period (tTT0) was less effective, with yield gains generally 330 

below 10 % (compared to 8 – 15 % for tTT2 and tTT3). The least effective trait was the 331 

duration of the flowering stage (tTT1), with mean yield changes generally below 6 % (Figure 332 

3, Supplementary Figure S9). Improvements in yield stability were found in most of India 333 

for tTT0 and tTT1. Yield CV decreased by 5-15 % in the east –where monsoon precipitation is 334 

higher (Supplementary Figure S10). 335 

 336 

3.1.3. Gains from temperature extremes adaptation and breeding of multiple traits 337 

GLAM simulates the impact of heat stress by reducing pod-set percentages if high 338 

temperature events of sufficient length occur during the flowering period. Yield mean and 339 

variability changes from improved heat stress were negligible across the whole country 340 

(mean change < 1 % for both mean and CV, Fig. 3). The lack of effect of temperature 341 

extremes on crop productivity may highlight the fact that a first breeding cycle (to target 342 

cultivar release by 2030) should not focus on improved heat tolerance.  343 

 344 

In general, combining traits boosted crop yields across the whole study area (scenarios tTT0_i 345 

and tTT0_d, Figure 3, Supplementary Figure S11). In many areas, crop yield gains exceeded 346 

100 % relative to the future climate scenario projected mean yield. Thus, there is large 347 

potential from breeding the right combinations physiological traits into existing germplasm. 348 

Interannual yield variability, conversely, showed a relatively inconsistent response both 349 

across the geographic space and across these two genotypic adaptation scenarios (tTT0_i and 350 

tTT0_d). Yield stability declined across most of the territory, with increases in CV beyond 15 351 

% in many areas of India (Supplementary Figure S12).  352 
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 353 

3.1.4. Compared trait effectiveness 354 

The relative effectiveness of the different traits and trait groups varied significantly for both 355 

yield means and yield variability (Figure 3). There were greater mean yield gains from 356 

virtually all drought-related traits as compared with longer duration traits (Figure 3A, C). 357 

More specifically, improving the partitioning to seeds had a greater impact than all other 358 

individual traits, as it boosted mean yields above 50 % in ~50 % of the grid cells. This 359 

suggests that partitioning to seeds should be a high priority trait in any breeding effort now 360 

so as to develop resilient germplasm that can be tested sufficiently early so as to be 361 

prepared for 2030 climates. Harvest index breeding has been well-studied and is already a 362 

priority in the breeding of groundnut and other crops (Donald and Hamblin 1976; Nigam 363 

2009). For rainfed yield variability (Figure 3B, D), it is important to note that more stability 364 

was only achieved through: (1) increases in photosynthetic rates (TE, ETN, max), (2) improved 365 

effective LAI (SLAmax, increased tTT0), and (3) increases in the length of the early vegetative 366 

and flowering period (tTT0 and tTT1). This highlights the need to understand and manage 367 

year-to-year yield responses through crop management (e.g. shifts in sowing dates, 368 

supplementary irrigation). 369 

 370 

[Figure 3 here] 371 

 372 

3.2. Robustness and uncertainty sources in genotypic adaptation options 373 

Robustness in adaptation simulations was high in central, western and eastern India (Figure 374 

4A, B). Robustness was lower when all ensemble members were considered individually 375 

(i.e. 2 BC methods x 13 GCMs x 4 CO2 response parameterisations x 19 parameter sets = 376 
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1976 simulations), with mean value of 0.47, and 14.8 % of the area with R>0.8 [see 377 

methods and Knutti and Sedlacek. (2012)]. When results were pooled by uncertainty 378 

source, however, some 70 % of India presented R > 0.8 (Supplementary Figure S13). This 379 

suggested that interactions between individual choices may be a significant source of 380 

uncertainty.  381 

 382 

Uncertainty decomposition indicated that climate was the largest source of uncertainty 383 

(Figure 4C), with a mean contribution of 54 %. Geographic differences were found in the 384 

relative contribution of different sources to total yield uncertainty, with north-western India 385 

more dominated by climate uncertainty and south-eastern India more dominated by crop 386 

uncertainty. The most important climate source of uncertainty was GCM structure with a 387 

mean contribution to total yield uncertainty of 36 % (Supplementary Figure S14). GLAM 388 

parameters were the most important crop model source of uncertainty (mean = 39.4 % from 389 

total yield uncertainty).  390 

 391 

4. Discussion and conclusions 392 

4.1. Importance of traits and underlying processes 393 

Indian groundnut production is highly sensitive to interannual climate variability, sub-394 

seasonal weather variations, and climate change (Bhatia et al. 2009; Challinor et al. 2009; 395 

Mehrotra 2011). This study shows that increasing yield potentials through genotypic 396 

improvement is a very effective climate change adaptation measure. Simulations of 397 

adaptation showed gains (albeit sometimes small) in mean crop yields across virtually all 398 

the different simulated traits across the study area, except for the reduction in the vegetative 399 

stage duration (tTT0). This result seems robust and was in agreement with previous studies 400 
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where yield gains were reported either by enhancing crop duration or by improving crop 401 

growth traits (Challinor et al. 2009; Singh et al. 2012; Singh et al. 2013). In particular, it 402 

must be noted that the mean yield gains reported here were much less spatially variable 403 

than those of Singh et al (2012). Such differences may be attributed to the fact that Singh et 404 

al (2012) assessed only a handful of sites, a different period (2050), and they used a 405 

different crop model (CROPGRO). Here, the most effective set of traits for improving 406 

mean yields were those related to improved drought management (Figure 3), and in 407 

particular a better partitioning to the seeds (Figure 2). In this regard, previous work reported 408 

that increased partitioning to seed presented a more spatially consistent and stronger 409 

response than an increase in the photosynthetic rate –as was found here (Singh et al. 2012; 410 

Singh et al. 2013). Better assimilate allocated to the seeds has been pointed out as one of 411 

the most important traits for achieving greater yields (Nigam and Aruna 2008; Nigam 412 

2009). The harvest index is also a trait that shows large variation within the groundnut 413 

genepool and is easy to select for in agronomic trials (Rao and Nigam 2003), and thus the 414 

opportunities of breeding higher partitioning are substantial. 415 

 416 

The results presented here indicate that, as stressed by other authors [e.g. Nigam (2009)], 417 

gains from improvements in the transpiration rate are limited to areas with limited or no 418 

water stress during the growing season –though this trait negatively impacted yield 419 

stability. This was clearly evidenced since the dry areas of Gujarat (western India, Z1 in 420 

Fig. 1) and of the south (primarily Andhra Pradesh, Z5 in Fig. 1) showed little yield gains 421 

from improving this trait (Figure 2). In these environments, however, yield gains could be 422 

achieved through greater photosynthetic rates [herein parameterised as higher TE or ETN, max, 423 

also see Nigam (2009)].  424 
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 425 

Food security comprises four dimensions: availability, access, utilisation, and stability. The 426 

temporal stability of yield is not often assessed in climate change studies (Challinor et al. 427 

2014). Farming communities require stable harvests so as to be able to maintain and, where 428 

possible, increase the flow of produce to national and international markets. Because 429 

changes in the temporal variability of crop yields can increase vulnerability locally and 430 

regionally, adaptation to climatic extremes is needed. In this study, the most effective traits 431 

in increasing mean yields also caused increased vulnerability to extremes (i.e. larger yield 432 

CV). These included the harvest index (most effective individual trait for mean yields), the 433 

maximum transpiration rate, and the increases in duration of grain filling (tTT2 + tTT3). 434 

Mechanisms for these results can be inferred in some cases. In the case of the harvest index, 435 

for instance, yield decreases were concentrated in dry areas. This suggested that while in 436 

wet years increased harvest index allowed attaining higher yields, in very dry years a higher 437 

∂HI/∂t may trigger terminal drought earlier than normal (Challinor et al. 2009). Similarly, a 438 

longer reproductive period may expose the crops to terminal drought in very dry years. 439 

TTmax caused the greatest yield stability reduction, probably via increased water stress in dry 440 

years. Since there was no single ‘silver-bullet’ trait that increased both mean yield and yield 441 

stability everywhere, results suggested that (1) yield means and yield stability may be 442 

achieved through different traits; and (2) it is critical for farmers in the field to cope with 443 

short-term variations through improved agronomy. We thus argue that an integral approach 444 

to crop adaptation is needed.  445 

 446 

4.2. Crop breeding under uncertainty 447 
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Decisions on how and where to adapt a given cropping system cannot be delayed until 448 

outcomes are predicted with absolute certainty. Work on uncertainty quantification remains 449 

incipient in many aspects of crop modelling. Existing studies limit the quantification of 450 

modelling uncertainty to either using multiple GCMs with a single crop model, to the use 451 

of crop model parameter ensembles with a single bias-corrected set of GCM simulations 452 

(Tao et al. 2009), or to the use of multiple crop models with a single bias-corrected set of 453 

GCM simulations (Asseng et al. 2013). We demonstrated that, contrary to what has been 454 

hypothesised earlier [e.g. Rotter (2014)], despite uncertainty, no-regret strategies are 455 

possible [also see Ramirez-Villegas et al. (2015)]. Uncertainty in actual values of yield was 456 

large, with almost equal contributions from climate and crop uncertainty (54 % and 46 %, 457 

respectively), but in no case these uncertainties precluded a consistent and coherent 458 

simulation of genotypic adaptation. The direction of yield changes between no-adaptation 459 

and adaptation simulations was consistent across simulations, with robust (R > 0.8) results 460 

for the majority (~70 %) of the study area in all modelling choices (BC method, GCM, 461 

GLAM parameters, and CO2 response). 462 

 463 

The findings of this paper thus suggest that a consistent picture of climate change 464 

adaptation for groundnut is possible through ensemble modelling. There was very high 465 

certainty that adaptation to climate change in groundnut cultivation is possible through 466 

increases in maximum photosynthetic rates, total assimilate partitioned to seeds, and, only 467 

in areas with sufficient soil moisture, also through increases in the maximum transpiration 468 

rate. It can also be said with high certainty that heat stress is not a major concern in the next 469 

20-30 years for breeders, though varietal substitutions may be required at local levels as 470 

climate change intensifies (Challinor et al. 2007). Existing studies for other rainy season 471 
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crops (e.g. soybean, rice) support the finding that heat stress is unlikely to be a current or 472 

near-term concern (Gourdji et al. 2013). We thus argue that the current focus of groundnut 473 

breeding is well on target, but that particular attention has to be paid to managing yield 474 

variability under future climate.  475 

 476 

The main challenge here, however, remains to be the careful interpretation of modelling 477 

outcomes so as to provide information that is of use for breeders. Physiological crop 478 

models are limited to providing physiology-level conclusions. This information is often of 479 

limited use for breeders because it does not provide sufficient detail on the genetic 480 

background of the material that could be used for crop improvement, particularly for large-481 

area models whose parameters are difficult to assimilate as real world genotypes. In this 482 

regard, a better mapping of traits on the model parameter space as well as coupling of 483 

physiological information and genomic information are topics that warrant future research.  484 
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Figure captions 495 

Figure 1 Study area divided into growing zones for model optimisation (A), observed 496 

mean 1966-1993 yield (in kg ha-1) (B) and observed percentage coefficient of variation 497 

1966-1993 (in percentage) (C). Zone notation as follows: NO: Northern; WE: Western; CE: 498 

Central; SE: South-Eastern; and PE: Peninsular. White areas are those where yield data was 499 

unavailable or where the proportion of area for peanut cultivation was below 0.2 %. 500 

Figure 2 Projected mean yield changes by 2030s as a result of crop improvement related to 501 

drought escape and water use efficiency. Shown are the ensemble mean results of delta 502 

bias-corrected simulations (DEL-corrected) for each of the genotypic properties. Associated 503 

model parameters are as follows: decrease in vegetative duration (tTT0), increase in 504 

transpiration efficiency (TE), increase in maximum transpiration efficiency (ETNmax), 505 

increase in rate of harvest index (∂HI/∂t), increase in maximum transpiration rate (TTmax), 506 

and increase in specific leaf area (SLAmax). 507 

Figure 3 Comparative mean yield (A, C) and yield variability (as yield coefficient of 508 

variation, CV) (B, D) changes from different traits and trait groups. The spread shows the 509 

spatial variation in the response of each quantity (derived from means across simulations 510 

for each grid cell). Vertical black lines in panels A and B indicate different trait groups: 511 

drought management; increased duration, tolerance to temperature extremes, and all traits 512 

combined. Names of parameters are as follows: transpiration efficiency (TE), maximum 513 

transpiration efficiency (ETN, max), rate of change in harvest index (∂HI/∂t), maximum 514 

transpiration rate (TTmax), maximum specific leaf area (SLAmax), thermal requirement for 515 

vegetative development (tTT0), thermal requirement for flowering phase duration (tTT1), 516 

thermal requirement for start of pod-filling to maximum canopy development (tTT2), 517 

thermal requirement for maximum canopy development to physiological maturity (tTT3), 518 

tolerance to heat stress at anthesis (Tcrit, Tlim, Tia), temperature at which transpiration 519 

efficiency starts to be reduced by heat stress (Tter1), combined traits with decrease in tTT0 520 

(tTT0_d), combined traits with increase in tTT0 (tTT0_i). In all panels, thick red horizontal line is 521 

the median, blue boxes mark the 25 and 75 % of the data and black whiskers extend to 5 522 

and 95 % of the data. 523 

Figure 4 Robustness and uncertainties in model projections of adaptation. (A) robustness 524 

(dimensionless) calculated using the entire ensemble of model simulations (i.e. 1,976 525 

ensemble members per grid cell); (B) robustness across ensemble member per modelling 526 

choice (2 members for BC method, 13 for GCM, 4 for CO2 response, and 19 for GLAM 527 

parameters); (C) fractional contribution of climate and crop sources of uncertainty to total 528 

yield uncertainty. Thick horizontal red line is the median, blue boxes mark the 25 and 75 % 529 

of the data and black whiskers extend to 5 and 95 % of the data. See Figure S13 for 530 

mapping of individual sources of variation and Figure S14 for mapping of individual 531 

uncertainty sources. 532 
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 534 

 535 

Table 1 List of genotypic properties and associated GLAM parameters 536 

Genotypic property Parameter1 Max. value Reference(s) 

Max. growth rate 

TE 5.9 Pa 

Brown and Byrd (1996) 

 
Rao and Nigam (2003) 

 
Jyostna Devi et al. (2009; 2010) 

 
ETN, max 7 g kg-1 

Brown and Byrd (1996) 

 
Bhatnagar-Mathur et al. (2007) 

 
Jyostna Devi et al. (2009) 

 TTmax 0.7 cm day-1 
Hammer et al. (1995) 

 
Rao and Nigam (2003) 

Partitioning to seeds ∂HI/∂t 0.015 day-1 Hammer et al. (1995) 

Leaf thickness and size SLAmax 315 g cm-2 Phakamas et al. (2008) 

   
Banterng et al. (2003) 

   
Sheshshayee et al. (2006) 

Crop development rate tTT0 -20 % N/A 

 
tTT0 + 20 % N/A 

 
tTT1 + 20 % N/A 

 
tTT2 + 20 % N/A 

 
tTT3 + 20 % N/A 

Temperature tolerance Tcrit 38 ºC Vara-Prasad et al. (2003) 

   
Challinor et al. (2005) 

 
Tlim 38 ºC Challinor et al. (2005) 

 
Tia 44 ºC Challinor et al. (2005) 

 
Tter1 40 ºC Challinor et al. (2005) 

1TE: transpiration efficiency (Pa) 537 

ETN, max: maximum transpiration efficiency (g kg-1) 538 

TTmax: maximum rate of transpiration (cm day-1) 539 

∂HI/∂t: rate of change in the harvest index (day-1) 540 

SLAmax: maximum possible value of specific leaf area (g cm-2) 541 

tTT0: thermal requirement from planting to flowering (ºC day-1) 542 

tTT1: thermal requirement from flowering to start of pod filling (ºC day-1) 543 

tTT2: thermal requirement from start of pod filling to maximum LAI (ºC day-1) 544 

tTT3: thermal requirement from maximum LAI to physiological maturity (ºC day-1) 545 

Tcrit: maximum possible temperature at which grain-set starts to be affected by high temperature (ºC) 546 
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