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Abstract: The inherent alkaline metals in biomass material are known to be volatile 

during biomass pyrolysis. However, there are very limited works about the 

investigation of the influence of alkaline metal on hydrogen production from 

downstream catalytic reforming of pyrolysis vapors. In this study, the influence of 

volatile K inside the cellulose sample was investigated in terms of hydrogen production 

and catalyst stability using a two-stage fixed-bed reaction system in the presence of a 

Ni/Al 2O3 catalyst. When the content of K in the cellulose sample was increased from 0 

to 15%, the deposition of K on the surface of the reacted catalyst was kept constant at 

around 0.5 wt.% in terms of the weight of the catalyst. The life time test shows that 

hydrogen production was around 28 (mmol g-1 cellulose) for each experiment, when 

the catalyst was reused 5 times using the pure cellulose sample. However, the hydrogen 

production was significantly reduced to 22 (mmol g-1 cellulose) after the catalyst was 

reused 5 times with the 2.5%K/cellulose sample. X-Ray Fluorescence analysis shows 

that the reduce hydrogen production might be ascribed to the increase of the K 

deposition on the surface of the reused catalyst.   

 

Key words: Volatile potassium; Ni/Al2O3 catalyst; Steam gasification; Cellulose; 

Hydrogen. 
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1. Introduction 

Biomass is an important energy resource and is largely available in the world [1]. With 

the increasing concern of using fossil fuels resulting in greenhouse gases emission and 

energy security issues, more attentions have been focused on using biomass, which is a 

renewable and sustainable resource. In addition the utilisation of biomass is a CO2 

neutral process [2]. There are several routes to converting biomass into energy and fuels 

[3-11]. Thermochemical process is a promising technology, and has attracted many 

attentions [12-17]. Furthermore, hydrogen is an ideal energy carrier in the future energy 

system, since the combustion of hydrogen only generates water, and hydrogen powered 

fuel cells has very high energy efficiency [18]. Therefore, hydrogen production from 

biomass gasification has been extensively investigated [16, 17]. The introduction of 

catalyst has been reported as a key factor to enhance the process efficiency and 

hydrogen production [16, 19, 20]. 

However, there are many challenges for hydrogen production from catalytic 

biomass gasification. For example, biomass has high alkali metal content, which could 

evolve out at high temperature and causes corrosion and agglomeration issues [21]. 

Many studies have been carried out on the release of alkali metals during biomass 

thermal conversion. Patwardhan et al. [22] studied the biomass ash and discovered that 

the major constituents in biomass ash are silica, potassium, calcium, magnesium and 

sodium, and potassium occupies a large proportion in addition to silica. The alkali 

metals including potassium have been reported to largely affect biomass gasification 

process in terms of product yield [23, 24]. In general, the presence and release of alkali 
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metals have impacts on both primary biomass pyrolysis and the secondary reforming 

reactions [25-27]. For example, Shimada’s team [28] researched the effect of alkali 

metal chlorides and alkaline earth metal chlorides on pyrolysis via thermal analysis and 

isothermal pyrolysis, and found that even a small amount of inorganic salts could 

change the surface molecules reactivity in crystalline cellulose and significantly 

influence the product yield. Among of the alkali metal and alkaline earth metal, it is 

well known that potassium salts have considerable effects on the pyrolysis behavior of 

cellulose[29, 30]. However, it is reported that when the KCl concentration in organic 

salts-impregnated cellulose sample was higher than 0.08 mmole g-1 cellulose (i.e. 0.3 

wt.%), no clear effect of salts was obtained on the production of low molecular weight 

compounds [22]. 

At present, introducing catalyst into the process of thermal-chemical conversion 

of biomass has been largely studied for enhancing hydrogen [16, 31, 32]. In particular, 

there are many investigations about producing hydrogen from two-stage pyrolysis-

catalytic steam reforming of biomass [16, 32]. The two-stage biomass thermo-chemical 

conversion process has advantages of easily controlling of the catalytic reforming stage, 

where direct contacts between catalyst and pollutants from biomass char and ashes are 

avoided and the used catalyst is easier to be separated and regenerated, compared with 

single-stage gasification by mixing catalyst and raw biomass.  

However, most of the current works about the effect of alkali metals on biomass 

thermo-chemical conversion are focused on biomass pyrolysis, or on catalytic 

reforming of model compounds of biomass fuel gas. For example, Eom et al. [33] 
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examined the catalytic effects of essential minerals on biomass pyrolysis and reported 

that K showed great promoting effect of low molecular compounds. It is noted that K 

had been investigated as catalyst promoter to enhance hydrogen production from 

biomass gasification or catalytic reforming of hydrocarbons. For example, Guan et al. 

[34] impregnated various concentrations of K on calcined scallop shell catalyst and 

revealed that potassium promoted the catalytic activity of catalyst in terns of H2 

generation in the steam reforming of tar. Addition of potassium to a Ni-based catalyst 

resulted in the increase of hydrogen production from biomass thermo-chemical 

conversion [34, 35]. The negative effect of the presence of alkali metal on hydrogen 

production from biomass thermo-chemical conversion has been reported by Wu et al. 

[36] who found that H2 content decreased from 35.1 to 26.7% when alkali metal vapors 

exposed over catalyst for 17 hours during the catalytic reforming of biomass fuel gas.  

Since there are very limited studies about the influence of release of alkali metals 

from biomass pyrolysis on the catalytic reforming of pyrolysis vapors for hydrogen 

production, this work aims to understand the effect of K resulted from biomass 

pyrolysis on hydrogen production. Different amounts of K were loaded in the biomass 

sample, which was pyrolyzed in a first-stage reactor. The produced pyrolysis vapors 

were catalytic reformed in the presence of a Ni/Al2O3 catalyst in a second-stage reactor. 

In particular, the stability of catalyst in terms of hydrogen production from K-

impregnated biomass was studied by reusing the catalyst several times.  

2. Experiment materials and methods 

2.1. Materials and catalyst preparation 
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Cellulose (Sigma-Aldrich Co., Ltd., microcrystalline powders of 20 ȝm particle 

size) was used as a reprehensive material for biomass sample. Results of the proximate 

analysis (TGA2000: Las Navas, Spanish) and ultimate analysis (elemental analyser: 

EL-2, Vario Germany) of the cellulose are listed in Table 1. It shows that the volatile 

content in cellulose is very high (up to 95.68 wt.%) while the ash content can be 

neglected (0.02 wt.%). Biomass samples used in this work containing different amounts 

of K were prepared by impregnation method. A certain amount of KCl (analytically 

pure, Sinopharm Chemical Reagent Co., Ltd.) and cellulose were added to deionized 

water, kept stirring at 80oC for 3h, then dried at 105 oC overnight. The concentration of 

K in cellulose sample is 0, 2.5, 5, 10 and 15 wt.%, respectively. 

Ni/Al 2O3 catalysts with a Ni content of 15 wt.% were prepared by a wetness 

impregnation method as mentioned in previous work [19]. ȖAl2O3 (analytically pure, 

Sinopharm Chemical Reagent Co., Ltd.) was impregnated with aqueous solution of 

Ni(NO3)2·6H2O. The catalyst precusors were dried at 105oC for 12 h, and subsequently 

calcined at 800 oC for 3h in a muffle furnace under air atmosphere. The catalysts were 

crushed and sieved to granules with the size ranging from 0.245 to 0.350 mm prior to 

experimental work.  

 

2.2. Experimental apparatus and procedure 

The experiment was carried out with a two-stage pyrolysis catalytic reforming 

fixed-bed system. A schematic diagram of the reaction system is shown in Fig. 1. In the 

first stage, biomass sample was pyrolyzed in a stainless tube reactor with internal 
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diameter was 45 mm. The derived pyrolysis vapors were catalytic steam reformed under 

a second reactor tube with an internal diameter of 26 mm in the presence of the Ni/Al2O3 

catalyst.  

At the beginning of each experiment, 0.5 g Ni/Al2O3 catalyst, supported by quartz 

wool, was placed on the porous plate in the second reactor. When the second reactor 

was heated and stabilized at 800 oC, 1.5 g biomass sample was put into the first reactor. 

Fast pyrolysis of biomass sample happened in the first stage, and the volatiles including 

K metal (if K was impregnated into the biomass sample) were derived entering the 

second reactor. At the same time, water was introduced using a syringe pump into the 

second reactor where it became steam for catalytic reforming. When the steam content 

was investigated in this work, the feeding rate of water was set to 0, 0.01, 0.02, 0.1, 0.2 

g min-1, respectively, while the carrier gas nitrogen was kept at 150 ml min-1. 

The outlet products passed through two condensers where the liquid products were 

collected. Finally, the noncondensable gases were cleaned, dried and collected with a 

gas bag. Each experiment was conducted for about 40 min to ensure the reaction 

completed and all the products were collected. Experiments were repeated to ensure the 

reproducibility of the results. 

2.3. Products analysis and characterization 

The non-condensed gases were analyzed by dual-channel gas chromatography 

(microGC 3000A, Agilent Technologies, America) with thermal conductivity detectors: 

(a) Column A was molecular sieve 5A (MS-5A, Ar as carrier gas) for the separation of 

H2, N2, CO, CH4; (b) Column B (PorapakQ-PPQ, He as carrier gas) for the detection of 
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CO2, C2H6, C2H4, C2H2. Each sample was measured for three times at least to get the 

average value. In this work, all the gas yields were reported on the base of 1g of pure 

cellulose. 

The reacted catalysts were analyzed by temperature-programmed oxidation (TPO) 

using a thermogravimetric analyzer (STA409, Netzsch, German) to detect the 

properties of the cokes deposited on the surface of the reacted catalysts. The fresh and 

reacted catalysts were characterized by X-Ray Diffraction (XRD, X’Pert PRO, 

PANalytical B.V, Netherlands) and X-Ray Fluorescence (XRF, EAGLE III, EDAX Inc, 

America) to determine the presence and the state of metals. A high resolution scanning 

electron microscope (SEM, Quanta 200, FEI, America) was used to investigate the 

surface morphology of the catalysts. 

 

3. Results and discussions 

3.1. Influence of water addition 

3.1.1. Mass balance of experiments with different water injection rates 

Fig. 2 shows the yields of gases produced using 2.5%K-cellulose under different 

water feeding rates. When the Ni/Al2O3 catalyst was added into the gasification process 

with the water feeding rate of 0.01 g min-1, the yield of hydrogen increased sharply 

from 14.2 to 20.9 (mmol g-1 cellulose) compared with 2.5%K-cellulose gasification 

without catalyst; in addition the gas yield also significantly increased from 0.47 to 0.77 

(g g-1 cellulose), indicating that the Ni/Al2O3 was efficient for promoting hydrogen and 

gas productions.  
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With the increase of steam injection rate, more gases were produced since the 

reaction between steam and derived pyrolysis compounds were enhanced, in addition 

the yields of CO2 and H2 increased while the yield of CH4 reduced. It is suggested that 

Ni/Al 2O3 may promote the steam reforming of tar (Reaction 1), water gas shift reaction 

(Reaction 2) and methane steam reforming (Reaction 3), when the water injection rate 

was increased. 

CHxOy + (2 - y) H2O ļ CO2 + (2 + x/2 - y)H2        (Reaction 1) 

CO + H2O ļ CO2 + H2                          (Reaction 2) 

CH4 + H2O ļ CO + 3H2                         (Reaction 3) 

 

The yield of hydrogen reached a maximum number of 29.5 (mmol g-1 cellulose) 

when the water feeding rate was 0.05 g min-1. Then the H2 yield decreased slightly as 

the water feeding rate was further increased. It seems that an optimal water feeding rate 

between 0.05 and 0.1 g min-1 was required for the production of hydrogen in this work. 

Garcia’s co-workers [37] reported that steam promoted the stability of catalyst by 

prohibiting catalyst deactivation. However, Wu and Williams [38] indicated that extra 

water weaken the decomposition of large molecular compounds and resulted in a lower 

hydrogen production. And in their work about tyres gasification [39], the water feeding 

rate had significant effect on hydrogen production, excessive water feeding rate 

decreased both the concentration and potential production of hydrogen. 

 

3.1.2. XRD analysis of fresh and reacted catalysts under different water feeding 
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rates 

The XRD analysis to the fresh un-reduced Ni/Al2O3 catalyst shows that Ni-Al 

spinel phase (NiAl2O4) is the main crystal compound in the catalyst (Fig. 3). NiO phase 

is difficult to be identified might be due to the NiO particles are too small to be detected. 

Regarding the reacted catalysts resulted from experiments with different water feeding 

rates, Ni crystal phase was obtained. The presence of Ni is ascribed to the reduction of 

catalyst under the reducing environment (CO and H2) during the thermo-chemical 

conversion of biomass. Meshari et al. [40] proposed that the reduction of NiO-catalyst 

could be conducted during propane steam reforming. It is suggested that the catalyst 

without pre-reduction could be used in the gasification process for hydrogen production 

from biomass, in order to simplify the procedure and decrease the cost of catalyst 

pretreatment. 

From Fig. 3, it is interesting to note that a sharp peak related to the diffraction of 

NiO was obtained at 43.3 ° for the reacted Ni/Al2O3 catalyst used in the experiment 

with a water injection rate of 0.2 g min-1. It is suggested that higher steam partial 

pressure made it easier to oxidize Ni particles. The promotion of NiO formation has 

been reported by Li et al. [41], who investigated the influence of steam on the phase 

change of Ni nanoparticles with TiO2 as catalyst support using in-situ environmental 

TEM. They found that the Ni particles were oxidized at 600 oC under an atmosphere 

containing 5% water, 9% H2 and 86% N2.  

Fig.3 shows a low crystallinity of potassium in the catalyst, which is consistent 

with other studies where K was loaded on the surface of catalyst before experiments 



10 

 

[42-45]. Millar et al. [46] have reported that in the presence of water, alkali ions can 

form hydroxylic species. Therefore, it is unlikely that K could exist in a form of oxide 

state under the reducing conditions and in the presence of water [44]. The sharp 

diffraction peak of the reacted Ni/Al2O3 catalyst with the water injection rate of 0.2 g 

min-1 demonstrated that the crystallinity of NiO was largely increased more water 

injection. And the formation of NiO would respond for the decreasing of the activity of 

catalyst at higher steam flow, and lead to the lower hydrogen yield (as shown Fig.2). 

3.1.3. Temperature programme oxidation of catalysts related to different water 

injection rates 

After each experiment with a different water injection rate, the reacted catalyst was 

analysed by temperature programmed oxidation (TPO) (Fig.4). The weight increase 

from 300oC may be due to the oxidation of metallic Ni, since Ni crystal was observed 

from the XRD analysis (Fig. 3). When the water feeding rate was 0.02 or 0.05 g min-1, 

higher mass increase was observed in the TPO analysis. This is consistent with that 

larger amount of Ni was observed on the reacted catalyst related to water feeding rate 

of 0.02 or 0.05 g min-1 (Fig.3(c), Fig. 3(d)). 

The mass decrease at about 500 oC was due to the combustion of deposited coke 

on the surface of the reacted catalyst. Since XRD results show that the diffraction of 

graphite carbons is not observed, amorphous carbon might be deposited on the reacted 

catalyst. Overall, the coke deposition on the reacted catalyst after catalytic thermo-

chemical conversion of biomass was very small (less than 1 wt.% of the mass of 

catalyst). In relation to the hydrogen production and the availability of active Ni sites, 
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0.1 g min-1 water feeding rate was selected for the studies about the influence of K 

addition on hydrogen production and catalyst stability in this work.  

 

3.2. Influence of K content on hydrogen production from pyrolysis catalytic 

reforming of biomass 

3.2.1. Mass balance using biomass containing different amounts of K 

As shown in Fig. 5, when 2.5% K was added into the cellulose sample, the yields 

of H2 increased slightly from 27.7 to 28.5 (mmol g-1 cellulose), and CO yield increased 

from 10.6 to 12.4 (mmol g-1 cellulose), while the yield of CH4 decreased from 5.2 to 

3.2 (mmol g-1 cellulose). It seems that compared with untreated cellulose, adding a 

small amount of K promoted the production of hydrogen, carbon monoxide and the 

total gas. It has been reported that a small addition of alkali chlorides accelerated the 

release of small-molecule gases during biomass pyrolysis [28]. In addition, the addition 

of K might promote the reforming of hydrocarbons [24], which can contribute to the 

production of H2 through reforming reactions. And similar phenomenon was found by 

Wang et al.[47, 48], they studied the effect of alkali metal on the catalytic reforming of 

bio-oil. 

With the increasing of K addition, the yield of hydrogen reduced. A minimum of 

total gas yield (~1.0 g g-1 cellulose) was obtained with the K addition of 5%. With the 

further increase of K addition to 15%, the total gas yield was slightly increased to 1.05 

(g g-1 cellulose). Patwardhan et al. [22] studied the pyrolysis of cellulose with different 

amounts of K addition. It is reported that the increase of KCl addition to the cellulose 
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sample showed a small influence on the production of low molecular hydrocarbons. 

Therefore, the addition of K to the cellulose sample may mainly affect the catalytic 

reforming reactions in the second stage, it not only affect the reforming of volatile, but 

the activity of catalysts. 

As shown in Fig.5, it is demonstrated that excessive amount of K suppressed the 

activity of Ni/Al2O3 for hydrogen production. It is suggested that the catalytic sites 

responsible for hydrogen production reactions such as water gas shift reaction were 

deactivated in the presence of excessive K. Further discussion can be seen in Section 

3.2.2. 

3.2.2. Analysis of the reacted catalysts from thermo-chemical conversion of 

cellulose with different amounts of K addition 

The distribution of K deposited on the reacted catalyst had been determined by X-

ray fluorescence. It is expected that more K vapor entered into the second reforming 

stage, when more K was loaded on the biomass sample. However, as shown in Table 2, 

it can be found that the potassium concentration attached on the surface of the reacted 

catalyst keeps constant at about 0.5 wt. % in relation to the weight of the reacted catalyst. 

It seems that the deposition of K on the surface of the reacted catalyst is corresponded 

to the available surface areas of the catalyst, instead of the amounts of K loaded in the 

cellulose sample. In addition, the XRD analysis to the reacted catalysts used with 

biomass samples containing different amount of K addition was carried out. The results 

(Fig. S1) show that the diffraction patterns are similar for the reacted catalysts used for 

different biomass samples, and that indicates the deposited K has the same effect on 
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catalysts under different potassium introducing. Although the deposition of the K on 

catalyst surface was kept constant at about 0.5 wt.% of catalyst amount when the 

addition of K to cellulose were added in cellulose sample are variant. The ratio of 

residual K to the whole amount of feeding in system varies from 1.1 wt.% to 6.9 wt.%. 

That means the concentration of exhausted K changed from 10.9 wt.% to 5.1 wt.%, it 

is supposed that the spared K salts formed aerosol and weaken the contacted between 

volatile and catalysts when combined the data with and without Ni/Al2O3 catalyst. So 

it is the varied concentrations of exhausted K that caused the different resulting gas 

yields. 

3.3. The influence of K addition on stability of catalyst  

3.3.1 Mass balance of experiment with pure cellulose or 2.5 wt. % K/cellulose 

In order to further understand the influence of K addition on catalytic performance 

during the thermo-chemical of biomass, the stability of catalyst was investigated by 

using the same catalyst for 5 times (during each cycle, fresh raw biomass material was 

used). Two raw samples include pure cellulose and 2.5% KCl/cellulose were used for 

catalyst stability test in terms of coke formation on the surface of reacted catalyst and 

hydrogen production.  

As shown in Fig. 6(a), when the reacted catalyst was reused, the yields of H2 and 

CO clearly decreased from 28.55 to 22.25 (mmol g-1 cellulose) and from 12.36 to 8.78 

(mmol g-1 cellulose), respectively. While the production of CO2 increased from 13.7 to 

17.9 (mmol g-1 cellulose), and the yields of light hydrocarbons such as CH4 increased 

from 3.19 to 3.89 (mmol g-1 cellulose) and C2 yield increased from 0.18 to 0.31 (mmol 
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g-1 cellulose) after the Ni/Al2O3 was used for thermo-chemical of K/cellulose sample 

for 5 times. In contrast, gas productions from thermo-chemical conversion of pure 

cellulose increased slightly when the catalyst was used for 5 times. For example, the 

total gas yield increased from 1.05 to 1.44 (mmol g-1 cellulose) after 5 times recycle of 

catalyst (Fig.6(b)). This was due to that more Ni could be generated by the reduction of 

NiO after the catalyst was reused under the reducing experimental environment. The 

comparison between Fig.6(a) and 6(b) showed clear differences in terms of gas 

productions, indicating that the presence of K in biomass sample has obvious negative 

effect on hydrogen production. Catalyst deactivation is resulted from coke deposition, 

metal sintering [49, 50] might be responsible for the lower hydrogen and gas production 

when K was introduced in the biomass sample.   

3.3.2 Analysis of the reacted catalysts used for 5 times for catalytic thermo-

chemical conversion of biomass 

In this section, further analysis to the reacted catalysts was carried out to explain 

the effect of K on catalyst deactivation during the pyrolysis catalytic steam reforming 

of cellulose. XRD analysis of the reused catalysts was shown in Fig.7. It is suggested 

that with the increase of the reuse of the Ni/Al2O3, more Ni species were produced. In 

addition, the diffraction peak of Ni phase becomes sharper with the increase of the 

reusing cycle of the catalyst, indicating that metal sintering happened after each cycle 

of experiment. Therefore, metal sintering might be responsible for the reduction of 

hydrogen production when the catalyst was reused for 5 time for the K-added cellulose 

sample. However, similar diffraction pattern was observed for the reacted catalyst used 
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for 5 times using the pure cellulose sample (Fig. 7 (a)), compared with the reacted 

catalyst using the2.5%K/cellulose sample (Fig. 7(f)). Since the hydrogen production 

was not reduced when the Ni/Al2O3 was reused 5 times for the pure cellulose sample, 

there might be other factors other than metal sintering contributing to the catalyst 

deactivation during the stability tests of thermo-chemical conversion of biomass.  

TPO-FTIR analysis were carried out to the reacted catalysts resulted from the 

stability tests, and the results were shown in Fig.8. There were two stages of carbon 

oxidation including a lower temperature region (~400 °C) for the oxidation of 

amorphous carbon and a higher temperature region (~700 °C) for the oxidation of 

graphite carbons (e.g. filamentous carbons).  

From Fig. 8 (b), it seems that the release of CO2 at higher temperature (~700 °C) 

was enhanced for the reacted catalyst used 5 times with the pure cellulose sample, 

compared with the 2.5%K/cellulose sample. The fraction of amorphous carbons 

deposited on the surface of the reacted catalyst seems slightly higher for the 

2.5%K/cellulose sample compared with the pure cellulose sample. Amorphous carbons 

are known to encapsulate catalytic sites, and thus to reduce hydrogen production [51]. 

Zheng et, al. [50] reported that the carbon morphology influenced the Ni/ZrO2 catalyst 

stability significantly. In addition, from Fig. 8 (a), it seems that slightly higher coke 

deposition is observed for the reacted catalyst using 2.5%K/cellulose sample compared 

with the pure cellulose sample; this might result in the deactivation of catalyst in 

relation to a lower hydrogen production when the catalyst was reused 5 times using 

2.5%K/cellulose sample.  
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In this work, in addition to the investigations of metal sintering and coke deposition 

on the surface of the reacted catalysts, the effect of K poisoning was also investigated 

by determining the K deposition on the reacted catalyst after each cycle of experiment. 

As shown in Table.3, the deposition of K was increased from 0.515 to 2.725 wt.% when 

the catalyst was reused for five times. The increased K deposition is suggested to result 

in the reduction of hydrogen production (Fig. 6(a)) from the thermo-chemical 

conversion of 2.5%K/cellulose during the life time test. The relation between the K 

deposition on the surface of the reacted catalyst and the production of hydrogen was 

plotted and shown in Fig. S2 (supporting information). Almost linear negative 

relationship is observed between the increase of the amount of K deposition on the 

reacted catalyst and the reduce of hydrogen production. Therefore, the poisoning effect 

of K on the catalyst was suggested to influence the catalyst performance significantly. 

However, future works about the analysis of chemical and physical properties (e.g. X-

ray photoelectron spectroscopy and pore volume analysis) are required to 

fundamentally understand the K poisoning effect. 

SEM analysis to the reused catalysts was carried out, and the results are shown in 

Fig. 9. It seems that agglomeration was happened on the surface of the reused catalysts, 

by comparing the catalyst used 5 times (Fig. 9 (c)) with the fresh catalyst (Fig. 9 (a)). 

The SEM results for the catalysts used five times are similar using two biomass samples 

with or without the addition of K.  

 

4. Conclusions 
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In this work, the influence of volatile potassium derived from the pyrolysis of 

cellulose biomass sample was investigated in terms of hydrogen production from 

catalytic thermo-chemical conversion in the presence of a Ni/Al2O3 catalyst. The 

following conclusions are obtained: 

1) Lower water injection (<0.05 ml min-1) rates may cause more carbon deposition, 

but too much more steam (>0.1 ml min-1) might oxidized active Ni to NiO, and weaken 

the catalytic performance of catalysts, water feeding rate between 0.05 and 0.1 ml min-

1 was optimal to maximize the hydrogen production. 

2) Higher K amount is not good for biomass gasification for H2 forming, but the 

deposition amount of potassium on catalyst has no relationship with the amounts of K 

loaded in the cellulose sample. 

3) K addition influences the catalytic activity of Ni/Al2O3 during the lifetime test.  

H2 yield kept stable for cellulose catalytic steam gasification with Ni/Al2O3 reused for 

5 times, but it decreased gradually with K added.  

4) The deposition of K on catalyst was increased significantly with cycle number 

increasing, and more filamentous carbon formed on the surface of 5 times used catalyst 

with K adding.  
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Table 1 Proximate and ultimate analysis of the cellulose (dry basis, wt.%). 

 Proximate analysis (wt.%, db.)  Ultimate analysis (wt.%, db.) 

 Volatiles 
Fixed 

carbon 
Ash 

 
C H N S O* 

Cellulose 95.68 4.30 0.02  42.76 5.94 0.05 0.03 51.2 

*The oxygen content was calculated by difference. 
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Table 2 Mass balance of K and K deposition on the surface of the reacted catalyst: 

Influence of the amount of K addition  

K 

concentration 

in cellulose 

(wt. %) 

 K in 

solid char 

(%) 

K 

released 

out (%) 

K 

deposited 

on 

catalyst 

(%) 

K concentration 

on used Ni/Al2O3 

(wt. %) 

15% 81.573 17.345 1.082 0.487 

10% 82.169 16.098 1.733 0.520 

5% 82.893 13.820 3.287 0.493 

2.5% 82.324 10.809 6.867 0.515 
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Table.3 K deposition on the reacted catalyst: Influence of life time of catalyst 

Life time of 

catalyst 

K concentration on used 

Ni/Al 2O3 (wt. %) 

5 times 2.725 

4 times 1.655 

3 times 1.225 

2 times 1.045 

1 time 0.515 
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Figure 1 Schematic diagram of a two stage pyrolysis catalytic reforming system 
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Figure 2 Gas productions under different water feeding rates (biomass sample is 

cellulose containing 2.5%K) 
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Figure 3 XRD spectra of the fresh and reacted catalysts: the influence of steam 

addition 
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Figure 4 TGA results of the reacted catalysts with different water injection rates 
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Figure 5 Influence of K concentration on gas productions  
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Figure 6(a) Gas productions from 2.5% K/cellulose sample for the life time tests 
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Figure 6(b) Gas productions from pure cellulose for the life time tests 
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Figure 7 XRD spectra of the reacted catalysts from life time tests 
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(a)                                      (b) 

Figure 8 TPO-FTIR analysis of the reacted catalysts from life time tests and 

cellulose only sample: (a) TGA-TPO result; (b) CO2 signals from the FTIR analysis 
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(a)                        (b)  

  

(c)                          (d)  

Figure 9 SEM results of the catalysts: (a) fresh Ni/Al2O3; (b) reacted Ni/Al2O3 for two 

times with 2.5% K/cellulose; (c) reacted Ni/Al2O3 for five times with 2.5% 

K/cellulose; (d) reacted Ni/Al2O3 for five times with pure cellulose 

 

 


