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Abstract 

The precipitates formed in a new series of Fe-Mn maraging steels when aged at 500 °C were 

identified as the L21-ordered Ni2TiAl phase. The precipitate formed a coherent-coplanar 

microstructure analogously to ߛȀߛᇱ  Ni-based superalloys and maintained a high number 

density and homogeneous dispersion within ߙ ǡ-martensite matrix even after aging for 10,080 

min. An increase in the Mn content of the alloy led to faster precipitation kinetics and thus 

rapid hardening kinetics. 

Keywords: maraging steels, Ni2TiAl, precipitation hardening, coarsening behaviour, 

transmission electron microscopy 

1 Introduction 

In response to automotive requirements for reducing production costs and lightweight 

strategies, the current trend in the steel industry is to develop leaner compositions with 

improved strength-elongation balances [1][2][3]. Recently, a group of newly-developed 9-12 

wt.% Mn lean maraging TRIP (transformation induced plasticity) steels with minor additions 

of Ni, Ti and Mo was reported to possess an excellent combination of strength and ductility 

(e.g. 12 wt.% Mn alloy: ultimate tensile strength (UTS): ~1.3 GPa, total elongation (TE): 

~21%) [4][5]. The authors attributed the simultaneous increase of strength and ductility upon 

aging to the joint effect of precipitation strengthening mechanism and TRIP mechanism of 

retained austenite. However, the characterisation of precipitates in these Fe-Mn maraging 

steels is a matter of debate. Initially, both atom probe tomography (APT) and local energy-

dispersive X-ray spectroscopy (EDS) analyses revealed the precipitates were enriched in Ni, 

Al and Ti and it was speculated that the precipitates might be ߛᇱ-Ni3(Ti,Al) phase which is 

the most common precipitates in conventional 18Ni maraging steels [4][5]. However, later 

Millán et al. reported that the average chemical composition was closer to Ni50(Al,Ti,Mn)50 
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[6]. A more recent APT study proposed the formation of NiMn or/and Ni2MnAl precipitates 

was dependent on the Al contents in Mn maraging steels [7]. The current work reports a 

detailed analysis of the precipitates correlated with the ageing kinetics. 

2 Materials and Experimental methods 

Based on the previous research, a further study on the precipitation behaviour in Fe-Mn 

maraging steels was carried out at 500 °C. This temperature was chosen as it is the 

conventional aging temperature for maraging steels, and our preparative work indicated that 

this temperature offered the best combination of time, temperature and peak hardness value. 

In view of the active role of Al in precipitation-strengthened steels (e.g. NiAl-strengthened 

steels), ~1 wt.% Al was added to the Mn maraging TRIP steels in Ref. [4]. The chemical 

compositions of the studied alloys are given in Table 1. The characterisation of precipitates 

was made based on the chemical composition and crystal structure analyses. According to the 

investigation on the precipitation evolution, the coarsening kinetics of precipitates was 

studied. 

 

The ingots were homogenized under argon gas atmosphere at 1150 °C for 1 hour followed by 

hot rolling with a reduction ratio of 85% between 1140 °C and 850 °C. The subsequent 

solution heat treatment was performed with argon protection at 1050 °C for 0.5 h. The alloys 

were then aged at 500 °C for a range of times from 10 min to 10080 min. Vickers hardness 

measurements were conducted on aged samples with a load of 294 N (30 kg) and a dwell 

time of 15 s. Each result was averaged from at least eight measurements. Thin foils for 

transmission electron microscopy (TEM) study were prepared by a solution of 5% perchloric 

acid, 35% butoxyethanol and 60% methanol solution (maintained at approximately -40 °C by 

a liquid nitrogen cooling system) running through a twin-jet electropolisher operated at ~40 
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mA. In order to exclude the interference from surrounding phases, carbon extraction replicas 

were prepared for the TEM investigation on nano-size precipitates. Microstructural 

observation and elemental analyses were carried out using an FEI Tecnai at 200 kV and high 

resolution imaging was taken on a JEOL 2010F at 200 kV. All the crystallographic 

information is from International Centre for Diffraction Data (ICDD) database (card number 

04-004-2487 and 00-019-0034). 

3 Results and discussion 

3.1 Hardness evolution 

Figure 1 displays the hardness-time curves of 7%, 10% and 12% Mn alloys aged at 500 °C, 

which exhibit the typical hardness evolution of precipitate-strengthened alloys. Rapid 

hardening reaction was observed in the early aging stage of 10% and 12% Mn alloys, over 90% 

of the total increase in hardness was achieved within the first 30 minutes. While an 

incubation time for hardness increase was evident in the 7% Mn alloy, hardening then 

occurred rapidly to the peak hardness after around 240 minutes. Nevertheless, the maximum 

hardness of the three alloys was close (i.e. 7% Mn alloy: 418 HV at 240 min; 10% Mn alloy: 

421 HV at 240 min; 12% Mn alloy: 432 HV at 120 min). It is worth noting that in the over-

aged region, what appears to be secondary hardening is visible in both 10% and 12% Mn 

alloys which is associated with the formation of reverted austenite (which will be reported in 

detail elsewhere). 

3.2 Chemical composition of precipitates 

Figure 2 presents TEM micrographs of precipitates formed in 7% and 12% Mn alloys when 

aged at 500 °C. The 10% Mn alloy exhibited behaviour similar behaviour to the higher and 

lower Mn alloys. The 500 °C / 480 min state in Figure 2(a) for the 7% Mn alloy, which 
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corresponds to the peak hardness condition, exhibits well dispersed fine precipitates (ݎҧ = 2.52 

± 0.72 nm). Further aging for 2880 min led to a moderate increase in the size of precipitates 

ҧݎ)  = 5.20 ± 1.79 nm), as shown in Figure 2(c). Continuous precipitate coarsening was 

observed with a decrease in the number density (measured from extraction replicas) evident 

in the 10,080 min aged samples (Figure 2(e)). Similarly in the 10% Mn (not shown here 

because the tendency was the same as in other two alloys) and 12% Mn alloy, further aging 

up to 10080 min resulted in a significant increase in the precipitate size and a decrease in the 

number density (Figure 2(d) and (f)).  

Local TEM-EDS analysis was performed on thin foil samples and representative spectra of 

both the matrix and precipitates (7 % Mn, 500 °C / 10080 min) are presented in Figure 3(a). 

The spectrum of precipitate indicates that the precipitate contained Ni, Ti and Al when 

compared to the surrounding matrix. The major elements of the martensite matrix, Fe and Mn, 

were also detected in precipitates. Some researchers suggested that the Fe and Mn 

concentrations were due to the residual matrix above or below precipitates [8], but in this 

study the Mn/Fe atomic ratio of precipitate (72.4%) is much higher than that of the matrix 

(7.4%).  

 

In order to minimize the interference from the matrix, carbon extraction replicas were studied 

by TEM. TEM-EDS analyses on replica samples (Figure 3(b)) confirms that the precipitates 

mainly comprised Ni, Ti and Al with a small amount of Fe and Mn substitution (Fe: ~12 at.%; 

Mn: ~5 at.%). APT analysis by Millán et al. [6] also confirmed the existence of Fe and Mn in 

precipitates and 20 at.% Fe and 24 at.% Mn were detected in precipitates in a 9% Mn alloy 

aged at 450 °C for 192 h. Similar phenomenon has been reported in several NiAl-

strengthened steels [9][10][11][12][13] and it is suggested that NiAl precipitates which are 
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formed out of the solute-rich clusters have a high solubility of Fe. On the other hand, the 

well-known Ni3Ti precipitates in conventional 18Ni maraging steels are generally Fe-free 

[12][14][15]. Therefore, the presence of Fe atoms indicates that the precipitate in this study is 

more likely to be NiAl phase or similar phases with high Fe solubility. Our study suggests 

that the chemical composition of precipitates is more likely to be non-stoichiometric Ni2TiAl 

or Ni(Ti,Al), which is in contrast to the work by Raabe and his colleagues [5][7] who 

speculated the precipitates might be Ni3(Ti,Al) phase or NiMn/Ni2MnAl phase. 

3.3 Crystal structure of precipitates 

NiAl phase with a B2 structure is a common type of precipitate in Fe-Al -Ni alloys and has 

been extensively studied [9][13][16]. While L21-type Ni2TiAl phase is often reported in TiNi 

alloys but rarely observed as precipitates in Fe-based alloys. Recently, Liebscher et al. [8] 

and Sun et al. [17] proposed a new design approach of precipitation-hardened ferritic alloys 

where L21-Ni2TiAl or L21-Ni2TiAl/B2-NiAl phase was generated as the dominant 

strengthening precipitates. Figure 4(a) and (c) display the simulated crystal structure of B2-

NiAl phase and electron diffraction pattern along [011] zone axis, respectively. The B2 phase 

has a CsCl-type crystal structure which can be described as a body centred cubic (bcc) lattice 

of Ni with the centre positions being replaced by Al atoms. The lattice parameter of the 

stoichiometric composition is 0.2887 nm which is very close to that of ߙ ǡ -martensite 

(Fe83.5Mn16.5, 0.2884 nm). The L21-Ni2TiAl phase simply involves a further ordering of Al 

and Ti atoms on the Al sublattice in B2-NiAl phase. The unit cell is built up by eight small 

bcc lattices. The vertices of each small cubic lattice are occupied by Ni atoms with the centre 

positions being orderly occupied by Al and Ti atoms. Thus, two different types of B2 

structure are arranged successively in each direction. The average lattice parameter of the 

small bcc lattice (half that of the entire unit cell) is 0.295 nm which is close to that of B2-

NiAl phase and ߙ ǡ-martensite. When the Al and Ti atoms are randomly arranged, the phase is 
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degraded to B2-ordered Ni(Al,Ti) phase; when the centre positions are fully occupied by one 

type of atoms, e.g. Al, the phase is transformed to B2-ordered NiAl phase. 

High resolution electron microscopy (HREM) study was carried out to identify the crystal 

structure of precipitate. Figure 5 shows HREM micrographs of precipitate along the [011] 

and [ͳതͳͳ ] zone axis with fast Fourer transform (FFT) analyses displayed as inset. The 

characteristic {111} reflections along the [011] zone axis of L21-ordered structure are 

indexed (see inset in Figure 5(a)). As shown in Figure 5(b) and (d), the atomic arrangement 

of precipitate is perfectly coincident with that of Ni2TiAl phase. The indexed d-spacing of 

0.3335 nm for the {111} planes and 0.206 nm for the {220} planes are very close to the 

standard d-spacing of Ni2TiAl phase (0.3377 nm for {111} planes and 0.2068 nm for {220} 

planes) given by ICCD database.  

 

3.4 Orientation relationship between the martensite matrix and precipitates 

More information about the crystal structure and the orientation relationship of precipitates 

was obtained by selected area election diffraction (SAED) as shown in Figure 6. The 

presence of the ሼͳͳͳതሽ superlattice spots unique to the L21 structure (see inset of Figure 6(a)) 

further confirms the precipitate is L21-ordered Ni2TiAl phase. The SADPs reveal that the 

orientation of the L21-ordered Ni2TiAl precipitates is consistent with that of the ߙ ǡ-martensite 

matrix (see Figure 6). Moreover, in the [011] and [001] zone axis (inset of Figure 6(a) and 

Figure 6(b)), the {040} and {220} reflections of L21-Ni2TiAl phase are overlapping with the 

{020} and {110} reflections of the martensite matrix, respectively; in the [ͳതͳͳ] zone axis, the 

diffraction pattern of Ni2TiAl exactly matches that of the matrix, therefore no extra 

diffraction spot originating from the precipitates is observed (Figure 6(c)). This cubic-on-

cubic (CoC) orientation relationship between precipitates and matrix has been reported in 
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several other alloys. The classical group is ߛȀߛᇱ Ni-based superalloys in which the fcc Ni 

matrix is strengthened by the coherent L12-ordered precipitates [18]. Analogously in Fe-

based alloys, B2-ordered NiAl phase is known to have a similar crystal structure to Į-Fe 

matrix [17]. 

 

The lattice parameter of L21-ordered Ni2TiAl phase was determined according to the SAED. 

The camera length was calibrated using the lattice parameter of ߙ ǡ -martensite matrix 

measured from XRD analysis. Based on the calibration, the lattice parameter of L21-ordered 

Ni2TiAl phase was calculated as 0.5819 nm (based on the precipitates in the 12% Mn alloy 

aged at 500 °C for 2880 min). Half of the lattice parameter of L21-ordered Ni2TiAl, which is 

the dimension of the small bcc lattice in Figure 4(b), is close to the lattice parameter of ߙ ǡ-
martensite matrix (a = 0.2874 nm). The misfit between them is calculated as: 

 Ɂ ൌ ʹ ൈ ȁ ͳʹ  ୧మ୧୪  െ  ୠୡୡȁͳʹ  ୧మ୧୪   ୠୡୡ ൈ ͳͲͲΨ ൌ ͳǤʹͶΨ (1) 

Based on the small lattice misfit and the special orientation relationship between the two 

phases, it is proposed that the L21-ordered Ni2TiAl precipitate is not only coherent but also 

coplanar with ߙ ǡ-martensite matrix. Figure 7 presents the uniformly dispersed precipitates 

within the matrix in 7% and 10% Mn alloys. According to Ashby-Brown contrast theory [19], 

the classic dumb-bell dynamical diffraction contrast from the precipitates under two-beam 

conditions indicates that they remained coherent with the matrix even after aging for 10080  

min.  
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3.5 Coarsening behaviour of precipitates 

Precipitate coarsening behaviour in 7%, 10% and 12% Mn alloys when aged at 500 °C are 

shown by plotting cube of mean precipitate radius ݎҧଷ as a function of aging time ݐ in Figure 8. 

Except the 500 °C / 10080 min state of 12% Mn alloy, the linear slopes in Figure 8 reveal 

that the relationship between the mean precipitate radius and aging time follows the Equation: 

ҧଷݎ  െ ଷݎ ൌ ݐሺܭ െ  ሻ (2)ݐ

where ܭ is the coarsening rate constant, ݐ is any time at or after the initiation of coarsening, ݎ is the precipitate radius at ݐ. It suggests that the coarsening kinetics of precipitates in the 

three alloys is consistent with the diffusion-controlled coarsening kinetics predicted by 

Lifshitz-Slyozov-Wagner (LSW) theory [20][21]. The ݎҧଷ of 12% Mn alloy at the 500 °C / 

10,080 min state which shows a deviation from the value predicted by LSW model indicates 

a change in coarsening mechanism or possibly a change in precipitate structure. Further work 

would be required to understand this change.  

As shown in Figure 8, the coarsening rate constant ܭ increased with increased Mn content 

(i.e. 7% Mn alloy: 0.76 ൈ 10-30 m3s-1; 10% Mn alloy: 1.48 ൈ 10-30 m3s-1; 12% Mn alloy: 2.83 ൈ 10-30 m3s-1). The hardness curves in Figure 1 and microstructural evolution in Figure 

2Figure 2 also indicate that Mn addition effectively increased the number density and size of 

Ni2TiAl precipitates, leading to an increase in precipitation hardening kinetics.  This resulted 

in an increase in peak hardness with increase in Mn content. The full effect of the precipitate 

size and number density is considered in a separate paper which considers the correlation of 

microstructure with mechanical properties [22].  
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4 Conclusions 

In summary, the elemental and crystal structure analyses demonstrated that the precipitates 

formed in 7-12% Mn maraging steels when aging at 500 °C were L21-ordered Ni2TiAl phase. 

One-eighth of the unit cell of Ni2TiAl precipitates coincides with the unit cell of ߙ ǡ -
martensite matrix and the misfit between them is about 1.24%. This small misfit along with 

the special orientation relationship indicated that the Ni2TiAl precipitates were not only 

coherent, but also coplanar with the matrix. The investigation on the coarsening behaviour 

and hardening effect of precipitates revealed that higher Mn content of alloy led to a faster 

precipitation reaction and thus a faster hardening kinetics. This study on the nature of 

precipitates helps to understand the precipitation strengthening behaviour of Fe-Mn maraging 

steels. 
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Figure 1 Vickers hardness evolution of 7%, 10% and 12% Mn alloys aged at 500 °C. 
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Figure 2 TEM micrographs of precipitates formed at 500 °C taken. The images of 480 min 

state were taken on replicas owing to the ultrafine size of precipitates. 
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Figure 3 (a) TEM micrograph of 7% Mn alloy aged at 500 °C for 10080 min and corresponding 

TEM-EDS spectra of precipitate and martensite matrix; (b) TEM replica micrograph of precipitates 

(12% Mn, 500 °C / 2880 min) and TEM-EDS spectrum.  

 

 

Figure 4 (a) Eight unit cells of B2-ordered NiAl for a better comparison with (b) the unit cell 

of L21-ordered Ni2TiAl; diffraction patterns along the [011] zone axis of (c) B2-ordered NiAl 

and (d) L21-Ni2TiAl simulated using ICDD PDF-4+ software. 
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Figure 5 HREM micrographs of precipitates in 12% Mn alloy aged at 500 °C for 10080 min, 

(a) [011] zone axis; (b) the inversed fast Fourier transform (IFFT) images of (a) by removing 

the background noise; (c) [ͳതͳͳ] zone axis and (d) IFFT of (c). 
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Figure 6 (a) Bright-field micrograph of precipitates and corresponding SAED patterns taken 

on thin foil sample (500 °C / 10080 min, 10% Mn alloy). SAED patterns obtained along (b) 

[001] and (c) [ͳതͳͳ] zone axis. 

 

  

Figure 7 Two-beam bright field TEM micrographs of (a) 7% and (b) 10% Mn alloys after 

aging at 500 °C for 10080 min. g = <011> 
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Figure 8 Evolution of the mean precipitate radius ݎҧଷ as a function of aging time ݐ in 7%, 10% 

and 12% Mn alloys when aging at 500 °C. 
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Table 1 Chemical compositions (wt.%) of the studied Fe-Mn maraging steels 

Alloy C Mn Ni Mo Al  Ti Fe 

7% Mn 0.033 7.07 2.03 1.03 1.04 1.05 bal. 

10% Mn 0.015 9.97 2.03 1.19 1.00 0.84 bal. 

12% Mn 0.022 11.77 1.97 1.17 1.00 0.82 bal. 
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Characterisation of L21-ordered Ni2TiAl precipitates in 

Fe-Mn maraging steels 

 

Highlights 

 Precipitates were identified as L21-ordered Ni2TiAl for the first time. 

 The L21-ordered Ni2TiAl phase is coherent and coplanar with the martensite matrix. 

 The precipitates remained coherent with the matrix after long-term aging. 

 An increase in the Mn content of the alloy led to faster precipitation hardening. 


