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Abstract

The human ear seems an unlikely candidate for therapies aimed at improving

cardiac function, but the ear and the heart share a common connection: the vagus

nerve. In recent years there has been increasing interest in the auricular branch of

the vagus nerve (ABVN), a unique cutaneous subdivision of the vagus distributed to

the external ear. Non-invasive electrical stimulation of this nerve through the skin

may offer a simple, cost-effective alternative to the established method of vagus

nerve stimulation (VNS), which requires a surgical procedure and has generated

mixed results in a number of clinical trials for heart failure. This review discusses the

available evidence in support of modulating cardiac activity using this strange

auricular nerve.
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The ear has been a site of therapeutic interest for millennia, including reports of

women in ancient Egypt using a heated needle to cauterise the skin of the ear as a

method of contraception (Gori et al., 2007). In ancient Greece, the physician

Hippocrates reported that blood-letting from veins on the posterior surface of the ear

could be used as a treatment for sexual dysfunction in men (Round et al., 2013).

Chinese traditional medicine, first developed over 3000 years ago, has also placed

an emphasis on using manual acupuncture of the ear or auricular acupuncture to

influence bodily functions through the concept of ‘Qi’ and meridians – energy

pathways associated with an intrinsic ‘life force’ which are believed to converge at

the level of the ear (He et al., 2012).

The ear is the site of a number of unusual reflexes including the pulmonoauricular

reflex, described in three tuberculosis patients with referred pain to the ear (Engel,

1979); the auriculogenital reflex in both male and female cats where mechanical or

electrical stimulation of the external ear elicited contraction of muscles around the

genitalia (Bradford, 1938); and the auriculouterine reflex, reported in a female patient

who felt severe pain in her left ear which coincided with menstruation (Engel, 1979).

An auriculocardiac reflex has been identified in a patient who experienced

bradycardia following stimulation of the posterior wall of the left external acoustic

meatus with a cotton-tipped ear probe (Thakar et al., 2008). Referred pain to the ear

as a result of angina and myocardial infarction has also been described, highlighting

the potential connectivity between the ear and the heart (Amirhaeri et al., 2010;

Rothwell, 1993).

The basis of these reflexes may be due to variation in the sensitivity of the auricular

branch of the vagus nerve (ABVN), which innervates the skin of parts of the ear and

the outer ear canal (external acoustic meatus). This branch of the vagus nerve is
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known as Arnold’s nerve after the German anatomist Friedrich Arnold (1803-1890),

who first observed that irritation of the posterior wall of the external acoustic meatus

elicited coughing in a small number of people (Arnold’s Reflex). Subsequent studies

have shown that such a response occurs in between 1.7%- 4.2% of individuals

(Bloustine et al., 1976; Gupta et al., 1986; Tekdemir et al., 1998) and arises due to

hypersensitivity of the ABVN (Ryan et al., 2014). This nerve is sometimes known too

as the Alderman’s nerve, a centuries-old reference to the Aldermen of the City of

London and their practice of using rosewater bowls at ceremonial banquets. The

banquet attendees were encouraged to place a table napkin moistened with

rosewater behind their ears with the belief that this promoted gastric emptying and

aided digestion (Treves, 1883).

Anatomy of the Auricular Branch of the Vagus Nerve

The ABVN is a remnant of the embryonic nerve supplying the first branchial arch

(Gupta et al., 1986) and is thought to be derived from nerves supplying the lateral

line organ in lower vertebrates such as fish, which use these cutaneous nerves to

sense vibrations and movement in the surrounding water (Engel, 1979; Hoagland,

1933). In mammals, the ABVN is distributed to the skin of the ear and external

acoustic meatus and consists of somatosensory afferent fibres, with their cell bodies

located in the jugular ganglion (DuBois et al., 1937). In humans, cadaveric

dissection has indicated that the ABVN is the only source of innervation to the cymba

concha and further innervates the antihelix, tragus and cavity of the concha (Peuker

et al., 2002). However, the skin of the ear receives additional sensory innervation

from trigeminal afferents (auriculotemporal nerve) and cervical spinal afferents (great
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auricular nerve and lesser occipital nerve; see figure 1), with a variable degree of

overlap in the respective dermatomes (Peuker et al., 2002).

How can stimulation of a small nerve in the ear elicit such a wide range of

physiological responses? The answer becomes clearer when the vagus nerve is

considered in its entirety. Regarded as the main parasympathetic output of the

autonomic nervous system, the vagus nerve has an extensive distribution throughout

the thorax and abdomen. In its role as the “great wandering protector” of the body, it

relays sensory information about the state of the body’s internal organs to the central

nervous system via afferent fibres which make up 80% of the nerve (Foley et al.,

1937). Upon exiting the cranium via the jugular foramen, the vagus provides

innervation to the soft palate, pharynx and muscles of the larynx prior to entering the

thorax (Berthoud et al., 2000). At this point, the ‘wandering’ nature of the vagus

becomes apparent through its complex distribution to the heart, lungs, liver, adrenal

medulla and the gastrointestinal tract up to the splenic flexure of the colon (Clancy et

al., 2013). The remaining 20% of vagus nerve fibres are efferent fibres originating

from the brainstem which provide parasympathetic control of the viscera and heart

(Foley et al., 1937).

The large number of afferent fibres in the vagus has led to it being investigated as a

therapeutic pathway for influencing brain activity by means of electrical stimulation.

In humans, vagus nerve stimulation (VNS) can be achieved by implanting an

electrical stimulator under the skin of the chest which stimulates the cervical vagus

nerve via a bipolar lead wrapped around the nerve. VNS was developed in the

1980s in patients with intractable epilepsy, is approved for the treatment of refractory

epilepsy and depression and has a well-established safety profile in these patients

(Groves et al., 2005; Morris et al., 1999; O'Reardon et al., 2006).
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Given the critical role of the vagus nerve in providing parasympathetic innervation to

the heart, there has been interest in using VNS to modulate cardiac function. In

animals, electrical stimulation of the cervical vagus nerve has been shown to evoke

cardiovascular effects, for example by lowering the ventricular fibrillation threshold

(Brack et al., 2013). Moreover, VNS is known to reduce incidence of ventricular

arrhythmias and mortality during ischemia (Brack et al., 2013) and prevent sudden

cardiac death in dogs with myocardial infarction (Vanoli et al., 1991). VNS has also

been investigated in animal models of chronic heart failure, a condition characterised

by a sustained increase in sympathetic drive and a concurrent withdrawal of

parasympathetic activity (Triposkiadis et al., 2009). A sustained improvement in

cardiac function and heart failure symptoms has been demonstrated as a result of

VNS (Hamann et al., 2013; Kusunose et al., 2014; Li et al., 2004; Sabbah et al.,

2011; Zhang et al., 2009).

The results of these animal studies combined with the well-established safety profile

of VNS has encouraged investigation into the feasibility and tolerability of VNS in

heart failure patients. Preliminary results using VNS showed promise and

stimulation of the right cervical vagus nerve with pulses synchronised to the cardiac

cycle improved NYHA class, quality of life scores and left ventricular end-systolic

volume (Schwartz et al., 2008). Larger studies subsequently showed VNS was

associated with a significant improvement in cardiac function, quality of life scores

and exercise performance (De Ferrari et al., 2011; Premchand et al., 2014).

However, a recent larger clinical trial concluded that 6 months of VNS failed to have

a significant effect on cardiac remodelling and cardiac function in heart failure

patients. Nevertheless, the study did show an improvement in quality of life

measures and NYHA classification (Zannad et al., 2015). A subsequent international
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multi-centre clinical trial using VNS on heart failure patients to assess whether VNS

increases the time to first event defined by all-cause mortality or unplanned heart

failure hospitalization was discontinued due to a statistical futility in this primary

efficacy endpoint (Gold et al., 2016). Although the safety profile of VNS is

recognised, the technique requires surgical implantation of the electrodes and a

subcutaneous battery pack, with an increased risk of post-operative complications

such as infection (Elliott et al., 2011). Other acute side-effects of VNS can include

neck pain, coughing, difficulty swallowing and voice alteration alongside nausea and

indigestion. In the longer term, hardware failure may necessitate revision surgery,

leaving patients at risk of experiencing a relapse in their symptoms until VNS can be

restored (Dlouhy et al., 2012). Since the ABVN of the ear can be electrically

stimulated through the skin without the need for an expensive surgical procedure,

targeting this site may provide an attractive therapeutic alternative with a greater

potential for widespread clinical use.

Cardiac effects of tVNS

Non-invasive or transcutaneous vagus nerve stimulation (tVNS) involves the use of

either electroacupuncture or specialised contact electrodes to pass a current through

the skin, with a high degree of heterogeneity in the literature in terms of stimulus

parameters and sites of application on the ear. In recent years the major sites of

interest for delivering electrical stimulation to the ABVN have been the inner surface

of the tragus (Busch et al., 2013; Clancy et al., 2014; Kraus et al., 2013; Stavrakis et

al., 2015; Weise et al., 2015; Zhou et al., 2016), the concha (Ay et al., 2015b; Fang

et al., 2015; He et al., 2013b; Liu et al., 2013), and the cymba concha (Frangos et

al., 2015; Kreuzer et al., 2014). In parallel with these ear studies, a method said to
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allow non-invasive cervical vagus nerve stimulation through the skin of the neck has

also been developed and is under investigation in patients with cluster headache

(Nesbitt et al., 2015) and migraine (Barbanti et al., 2015). Regardless of the exact

nature of the stimulation technique, the majority of the tVNS studies have followed

on from invasive VNS in their focus on neurological and psychiatric disorders, but

there has been increasing interest in whether or not tVNS could have beneficial

cardiac effects.

In anaesthetized dogs, chronic low-level stimulation of the tragus of the right ear

reversed atrial remodelling and inhibited the induction of atrial fibrillation elicited by 3

hours of prior rapid atrial pacing (Yu et al., 2013). Subsequent studies stimulating

the right or left tragus suppressed atrial fibrillation when performed alongside 9 hours

of atrial pacing by preventing the loss of the connexin proteins Cx40 and Cx43 in the

atrial tissue (Chen et al., 2015a; Chen et al., 2015b). When the same stimulation

protocol was applied to the left and right tragus of conscious dogs with healed

myocardial infarction, tVNS was improved cardiac function, alleviated cardiac fibrosis

and attenuated left ventricular remodelling (Wang et al., 2014; Wang et al., 2015).

This low-level tVNS reduced the plasma concentration of non-specific inflammatory

markers such as C-reactive protein and decreased the expression of various factors

which regulate cellular remodelling such as transforming growth factor beta 1 and

matrix metalloproteinase 9 (Wang et al., 2014; Wang et al., 2015). A decrease in the

concentration of plasma noradrenaline was further observed, suggesting that low-

level tVNS may decrease sympathetic nerve activity.

A number of human studies have also observed cardiac effects following tVNS.

Early pioneering studies in this area were performed on patients with coronary artery

disease and angina pectoris who were due to undergo surgery for coronary artery
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bypass grafting. Acupuncture needles with electrodes attached were placed into the

inferior concha of both ears and electrostimulation was applied for 15 minutes a day

for 10 days. This caused a reduction in the incidence of angina pectoris (a reduction

which lasted 2-3 weeks), improved the clinical course before and after surgery and

decreased the use of vasodilator treatment (Zamotrinsky et al., 1997; Zamotrinsky et

al., 2001). During surgery, atrial tissue was removed, and patients who had

undergone tVNS were found to have reduced levels of heat shock protein (HSP) 70i

and the ATP content of the tissue (Zamotrinsky et al., 1997). Following the surgery,

patients who had received tVNS had a significantly reduced incidence of acute heart

failure compared to patients who did not receive tVNS (Zamotrinsky et al., 2001). In

another study with coronary artery disease patients, Popov et al. (2013) stimulated

the auricular branch of the vagus by passing a low frequency electrical current

through electrodes on the internal surface of the auricle for 10 days. These

stimulation sessions caused nearly two-thirds of patients (62.5%) to report a

significant decrease in the intensity of angina attacks with an improvement in general

well-being (Popov et al., 2013). When the patient group was considered as a

complete cohort, tVNS did not alter any clinical results. However, when patients who

responded favourably to tVNS were studied as a separate group, their LF/HF ratio –

a non-invasive index of autonomic activity at the sinoatrial node - was significantly

lower following tVNS than before treatment, indicating a possible increase in vagus

nerve activity to the heart (Popov et al., 2013).

In patients with paroxysmal atrial fibrillation, 1 hour of low level tVNS under general

anaesthesia significantly decreased atrial fibrillation duration (induced by burst atrial

pacing), significantly increased atrial fibrillation cycle length and significantly

decreased systemic levels of the inflammatory factors tumour necrosis factor alpha
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(TNF-alpha) and C-reactive protein (Stavrakis et al., 2015). Meanwhile, in patients

with chronic heart failure and severe left ventricular dysfunction, a 15 day course of

daily tVNS sessions (increasing duration per session, up to 30 minutes) on the

internal surface of the auricle significantly increased distance of a 6 minute walk test

and improved the clinical condition in the majority of patients. In addition tVNS was

shown to have a bradycardiac effect in these patients along with increased levels of

heat shock proteins HSP60 and HSP70 in patients who had an initial heart rate of

less than 80 bpm. Patients with a heart rate greater than 80 bpm exhibited

increased the levels of HSP70 alone (Afanasiev et al., 2016). Cardiovascular

disorders therefore appear to be a suitable target for treatment with tVNS (see also

supplementary Table 1).

Mechanism of action of tVNS on cardiac function

The central projections of the ABVN have been investigated in the cat and rat.

Application of the transganglionic neuronal tracer horseradish peroxidase (HRP) to

the central cut end of the ABVN of the cat results in labelled fibres in the principal

sensory trigeminal nucleus, spinal trigeminal nucleus, nucleus tractus solitarius and

cuneate nucleus in the brainstem (Nomura et al., 1984). In rats, microinjection of

cholera toxin subunit B into the junction of the auricular concha and postero-inferior

wall of the external acoustic meatus produced labelled fibres in the lateral NTS and

the spinal trigeminal nucleus (He et al., 2013a).

In humans, fMRI scans have shown electrical stimulation of the left cymba concha

produces significant activation of “classical” central vagal projections including

widespread activity in the ipsilateral nucleus of the solitary tract (NTS), bilateral
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spinal trigeminal nucleus, dorsal raphe, locus coeruleus, contralateral parabrachial

area, amygdala and nucleus accumbens (Frangos et al., 2015). The connections of

the ABVN to the NTS may be of particular relevance to the cardiovascular effects

observed after tVNS. As mentioned, anatomical tracing studies in the cat (Nomura

et al., 1984) and rat (He et al., 2013a) have shown that the ABVN projects to the

NTS. Evidence that NTS neurones are activated following ABVN stimulation is

derived from studies in which electrical stimulation of the concha in rats with

transient focal ischemia elicits c-fos staining in the bilateral NTS and locus coeruleus

(Ay et al., 2015a).

In rats, a decrease in arterial pressure and heart rate can be elicited through

acupuncture-like stimulation of the inferior concha. Increased activity was observed

in NTS neurones with discharges synchronised to cardiac rhythm (Gao et al., 2011),

suggesting these neurones also received baroreceptor input. Some NTS neurones

receiving baroreceptor information are indeed known to project to the dorsal vagal

motor nucleus (DVN) and nucleus ambiguus (Deuchars et al., 2000), where

cardioinhibitory vagal efferent neurones are located (Izzo et al., 1993). The

observation by Yu et al (2013) that cardiovascular effects (reversal of atrial

remodelling and inhibition of atrial fibrillation elicited by atrial pacing) following

stimulation of the right tragus in anaesthetized dogs are eliminated by transection of

both vagus nerves indicates that vagal efferent fibres play a role in such

cardiovascular effects (Yu et al., 2013). It is therefore possible to propose that

auricular afferents can increase vagal efferent outputs by connections via the NTS

(see Figure 2).

In addition to vagal activation, a number of recent studies have shown that auricular

stimulation may also influence the activity of the sympathetic nervous system. In
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healthy human volunteers with no history of cardiovascular disease, tVNS on the

inner and outer surface of the tragus significantly improved heart rate variability

(through a shift in cardiac autonomic activity towards relative parasympathetic/vagal

dominance) and caused a significant decrease in muscle sympathetic nerve activity

as recorded by microneurography (Clancy et al., 2014). Further evidence that

electrical stimulation of the ABVN can elicit a decrease in sympathetic activity comes

from a study by Wang et al (2014), where a reduction in plasma noradrenaline

concentration was observed following bilateral tragus stimulation in conscious dogs

with healed myocardial infarction (Wang et al., 2014). Zhou et al (2016) also showed

that in anesthetized dogs, 3 hours of right tragus stimulation significantly attenuated

the sinus rate acceleration in response to right stellate ganglion stimulation and

decreased activity in the right stellate ganglion. In addition, tVNS has been found to

decrease expression of c-Fos, nerve growth factor and increase expression of SK2

at both the mRNA and protein level in the right stellate ganglion (Zhou et al., 2016).

The circuitry underlying this pathway is unknown, but may be via afferent excitation

of NTS neurones that send excitatory inputs to the caudal ventrolateral medulla

which in turn sends inhibitory inputs to the rostral ventrolateral medulla, the source of

excitatory drive to sympathetic efferents (Guyenet, 2006). Inhibition of the RVLM

therefore decreases sympathetic activity (see Figure 2).

tVNS, and not VNS?

Could the principal advantage of tVNS be its lack of a surgical procedure, or could

tVNS provide a more effective therapeutic alternative to VNS? The failure of the

VNS trials for the treatment of heart failure could be partly explained by recent

observations that the human cervical vagus nerve contains abundant tyrosine
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hydroxylase-positive sympathetic nerve fibres distributed throughout the nerve

fascicles (Seki et al., 2014; Verlinden et al., 2016). Moreover, Verlinden and

colleagues found that the human right cervical vagus contains around twice as many

sympathetic fibres as the left cervical vagus (Verlinden et al., 2016). Similar

sympathetic structures have previously been observed in the canine cervical vagus

nerve, although the fibres were distributed to the periphery of the nerve (Onkka et

al., 2013). This apparent evolutionary vestige is in line with other species where

sympathetic and vagus fibres may be transmitted to the thorax via a common trunk

(Muryobayashi et al., 1968; Onkka et al., 2013). In addition, anatomical studies have

documented rich interactions between the right thoracic vagal nerve and the right

stellate ganglion at all levels(Ellison et al., 1969; Mizeres, 1955) and the rat superior

cervical ganglia have been found to contain bundles of nerve fibres derived from the

vagus nerve that are immunoreactive for calcitonin gene-related peptide and

substance P (Zaidi et al., 2013). Such anatomical studies suggest that stimulation of

the cervical vagus nerve may influence sympathetic activity through these interacting

nerve fibres. Indeed, when the cervical vagus was stimulated with intermittent

moderate stimulation in dogs, stellate ganglion neuron activity increased (Rhee et

al., 2015). This is likely an undesirable effect as enhanced sympathetic nerve activity

is associated with cardiovascular disease onset and progression (Triposkiadis et al.,

2009).

The question remains why, therefore, could tVNS be effective for treatment of

cardiovascular disease? A key consideration is that tVNS increases heart rate

variability and, critically, decreases muscle sympathetic nerve activity in healthy

humans (Clancy et al., 2014). Further, such cardiovascular diseases are associated

with increased inflammation and tVNS reduced plasma levels of non-specific
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inflammatory markers in conscious dogs with healed myocardial infarction (Wang et

al., 2014; Wang et al., 2015), as well as in patients with paroxysmal atrial fibrillation

(Stavrakis et al., 2015). Finally, the pathways through which tVNS functions are not

yet known (see Figure 2) – it is conceivable that they provide a more selective route

of action than those activated through cervical vagus stimulation. Further

investigations into such pathways and the effects of tVNS on the cardiovascular

system therefore seem warranted: the strange case of the ear and the heart remains

unsolved!
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Figures

Figure 1: Anatomical landmarks and cutaneous innervation of the external ear.

Three nerves contribute to the cutaneous innervation of the lateral aspect of the ear:

the auricular branch of the vagus nerve (ABVN), the auriculotemporal nerve (ATN)

and the great auricular nerve (GAN). There is a variable degree of overlap in the

distribution of these cutaneous nerves.
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Figure 2: Schematic of potential pathways though which stimulation of the auricular

branch of the vagus nerve (ABVN) could influence the heart. Stimulation of the

ABVN increases input to the nucleus of the solitary tract (NTS) in the medulla and

influences the activity of NTS neurones projecting to the cardioinhibitory vagal

efferent neurones of the DVN and NA. These vagal efferent neurones propagate the

vagal tone to the sinoatrial node (SA). Stimulation of the ABVN may also excite NTS

neurones sending excitatory projections to the caudal ventrolateral medulla (CVLM).

The CVLM inhibits the rostroventrolateral medulla (RVLM) which is the primary

source of excitatory drive to sympathetic preganglionic neurones in the

intermediolateral cell column (IML) of the spinal cord. This inhibition would decrease

sympathetic activity
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