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Distributed Binary Event Detection Under

Data-Falsification and Energy-Bandwidth Limitation
Edmond Nurellari, Des McLernon, Member, IEEE, Mounir Ghogho, Senior Member, IEEE, and Sami Aldalahmeh

Abstract—We address the problem of centralized detection
of a binary event in the presence of falsifiable sensor nodes
(SNs) (i.e., controlled by an attacker) for a bandwidth-constrained
under−attack spatially uncorrelated distributed wireless sensor
network (WSN). The SNs send their quantized test statistics over
orthogonal channels to the fusion center (FC), which linearly
combines them to reach a final decision. First (considering that
the FC and the attacker do not act strategically), we derive (i) the
FC optimal weight combining; (ii) the optimal SN to FC transmit
power, and (iii) the test statistic quantization bits that maximize
the probability of detection (Pd). We also derive an expression
for the attacker strategy that causes the maximum possible FC
degradation. But in these expressions, both the optimum FC
strategy and the attacker strategy require a−priori knowledge
that cannot be obtained in practice. The performance analysis
of sub-optimum FC strategies is then characterized, and based
on the (compromised) SNs willingness to collaborate, we also
derive analytically the sub-optimum attacker strategies. Then,
considering that the FC and the attacker now act strategically,
we re-cast the problem as a minimax game between the FC and
the attacker and prove that the Nash Equilibrium (NE) exists.
Finally, we find this NE numerically in the simulation results and
this gives insight into the detection performance of the proposed
strategies.

Index Terms—Distributed detection, distributed processing,
falsified sensor nodes, wireless sensor networks (WSN).

I. INTRODUCTION

C
ENTRALIZED detection of a binary event is one of the

most important applications of wireless sensor networks

(WSNs) [1], [2]. Multiple low-cost sensor nodes (SNs) are

often spatially deployed over a specific field to observe such

binary events. The SNs process the observed data and report

back to a fusion center (FC) that optimally combines to reach

a global decision. Being geographically dispersed to cover

large areas, the SNs are constrained in both bandwidth and

power. Moreover, SNs are usually unattended and this makes

them vulnerable to different types of attacks. The overall

detection performance strongly depends on the reliability of

these SNs in the network. While fusing the data received by

the spatially deployed SNs allows the FC to make a reliable

decision, it is possible that one or more SNs (compromised

by an attacker) deliberately falsify their local observations
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to degrade the overall FC detection performance. However,

there are a number of different approaches as to how the test

statistics received from each SN can be efficiently used in

order to achieve a reliable FC decision. Before introducing

our proposed strategies, we will first give a brief review of

related work.

The framework of distributed detection under attack−free
WSNs has been extensively studied in [3]–[13], to name but

just a few references. While [3]–[7] consider centralized detec-

tion by assuming WSNs with unlimited bandwidth/resources,

the latter assumption was relaxed in [8]–[13] by consider-

ing centralized detection over bandwidth-constrained/energy-

constrained WSNs. But these approaches are vulnerable to

some security attacks as some of the SNs reporting to the FC

may be compromised. As a result, the FC is not robust against

such attacks and its detection performance may be degraded.

However, security issues in centralized detection using

WSNs remain an open issue, see [14]–[19] and references

therein. While there are many types of security threats, in this

paper we focus on a single type of attack, which is the test

statistic falsification (TSF) attack part of the Byzantine attacks

family originally proposed by [20] and later widely used in

the context of distributed detection (e.g., [19], [21], [22]).

Reference [22] characterizes the power of the attack analyt-

ically and a closed-form expression for the worst “detection

error” is provided. Also, the minimum fraction of the compro-

mised SNs that makes the FC incapable is derived. Reference

[23] presents a technique to identify such compromised SNs

and then to exclude them from contributing to the FC fusion

process. In [24], a probabilistic TSF attack is proposed and the

theoretical performance evaluation (in terms of destructiveness

and stealthiness) is obtained. The authors of [25], in the

context of smart grids, propose heuristic centralized algorithms

to derive various strategies (attacker versus defender (i.e.,

FC) dynamics). Then, a distributed algorithm is proposed that

guarantees convergence to the centralized solution taken at the

FC.

Detection in the presence of binary falsification1 (Byzan-

tine) attacks is considered in [26]. Here, a reputation-based

scheme is proposed for identifying the compromised SNs by

accumulating the deviations between each SN and the FC

decision over a time window duration. The authors in [27]

also consider binary Byzantine attacks, in the context of target

localization, where the SNs transmit their binary decisions to

the FC. These authors also propose two techniques to mitigate

1The compromised SNs falsify their hard decisions instead of their actual
test statistics prior to transmission to the FC.
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the negative input of the compromised SNs on the FC decision.

However, identifying and then excluding the contributions of

the compromised SNs from the FC decision process may not

be the best strategy. For instance, we might end up removing

(from contributing towards the global decision) compromised

SNs that hold useful information (e.g., those SNs with high

local SNRs). Furthermore, performing detection by means of

one-bit SNs report combining at the FC is also not optimum.

Now, the publication closest to the work presented in this

paper is [19], where an under − attack WSN framework

over unlimited bandwidth is considered (i.e., infinite channel

capacity) and the detection performance is investigated. But as

the SNs are battery operated devices (i.e., limited power) and

the bandwidth is finite, the assumption of infinite capacity is

unrealistic. Furthermore, practical WSN scenarios suffer from

fading and attenuation. The authors of [19] also do not propose

any technique to mitigate the degradation caused by these

compromised SNs.

So, the work in this paper investigates the detection perfor-

mance of the under − attack energy-constrained/bandwidth-

constrained WSNs. The compromised SNs (controlled by the

attacker), are assumed to know the true hypothesis2 (e.g., [19],

[22]) and they use this a−priori knowledge to construct the

most effective strategy to make the FC’s decision unreliable.

For the FC, we assume that it is not compromised and receives

the test statistic from both types of SNs (i.e., compromised and

honest). The transmission (SNs to FC) links are modeled as

flat fading, additive white Gaussian noise (AWGN) channels.

The assumption of flat fading is reasonable as most of the

WSNs operate at both short distances and low bit-rate due to

resource limitations.

A. Contributions & Organization

While previous publications (as outlined above) have also

examined sensor networks in the presence of falsified SNs, this

paper deals with more realistic scenarios that include limited

bandwidth fading channels, quantization of test statistics, etc.

So our main contributions are as follows:

(i) We develop an efficient FC linear weight combining

framework for an under− attack WSN that operates over

limited bandwidth fading channels. The probability of detec-

tion (Pd) and the probability of false alarm (Pfa) based on this

framework are derived in a closed-form. To maximize Pd for

a fixed Pfa and to further reduce the optimisation complexity,

we adopt the modified deflection coefficient (MDC) as an al-

ternative function to be optimized and provide an optimisation

problem to be solved from both the FC’s and the attacker’s

perspective. Based on this optimisation problem (from the

FC’s perspective), we derive analytically the optimal weight

combining, the optimal SN to FC transmit power and the

number of quantization bits for each SN. Unfortunately, these

expressions require a− priori knowledge about the attacker

parameters which cannot be attained in practice. Then (from

the attacker’s perspective), we derive analytically (for a fixed

number of compromised SNs) the optimum attacker strategy

2This leads to a conservative assessment but allows analytical tractability
of the security risk.

which also depends upon the FC weight combining and the

SNs transmit power.

(ii) So, motivated by the above, we next analyze the problem

under different attacking and defending scenarios and charac-

terize analytically the performance of sub-optimum strategies

(from both the FC’s and the attacker’s perspective) that do

not require knowledge of the FC mechanism and the attacker

parameters. Also, based on the willingness of collaboration

among the SNs (from the attacker’s perspective), we distin-

guish between two setups: a) all the SNs (compromised and

honest) share their data with their neighbors, and b) just the

compromised SNs are willing to collaborate among themselves

to improve their attack strength.

(iii) Finally, we re-cast the problem as a minimax game

between the FC and attacker and show that the NE (Nash

Equilibrium) exists. Having defined the game, we use numer-

ical simulations to find this NE point, thus identifying the

optimum behavior of both the FC and the attacker in a game-

theoretical sense.

Now, the summary of the paper is as follows. In Section II

we describe the system model and provide a data transmission

scheme. Section III describes the optimisation problem from

both the FC’s and the attacker’s perspective. In Section IV we

present our proposed attacker and FC strategies and in Section

V we re-cast the problem and analyze the equilibrium. Finally,

in Section VI we present simulation results and in Section VII

we give some conclusions.

II. SYSTEM MODEL AND DATA TRANSMISSION

Consider the problem of detecting the presence of an

unknown but deterministic signal s(n) by an under− attack
WSN consisting of M geographically distributed SNs and a

FC (see Fig. 1). The honest SNs are represented with a black

color and the compromised SNs (i.e., the ones controlled by

the attacker) with a red color. The attacker’s aim is to suc-

cessfully manipulate the FC global decision making process

while the FC would like to detect reliably (i.e., with very high

probability). Each SN collects N samples of the observed

signal and performs energy estimation. Consistent with the

underlying hypotheses, the measured signal (si(n)) at the ith

SN will be further corrupted by AWGN wi(n) ∼ N (0, σi
2):

H0 : xi (n) = wi (n) (1)

H1 : xi (n) = si (n) + wi (n) . (2)

The ith SN evaluates:

Ti =

N
∑

n=1

(xi(n))
2
, i = 1, 2, . . . ,M (3)

which for large N can be approximated by a Gaussian distri-

bution [28]. It is not difficult to derive appropriate statistics

in (4), where ξi =
N
∑

n=1
s2i (n) /Nσ2

i . While the honest SNs

transmit the actual test statistic (i.e., the true energies) to the

FC, the compromised SNs falsify them before transmitting to

the FC. Next we introduce the attacker model.
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E {Ti|H0} = Nσ
2

i , Var {Ti|H0} = 2Nσ
4

i , E {Ti|H1} = Nσ
2

i (1 + ξi) , Var {Ti|H1} = 2Nσ
4

i (1 + 2ξi) . (4)
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Fig. 1. Under attack schematic communication architecture between periph-
eral SNs and the fusion center (FC). Each SN generates a test statistic (Ti) by
observing the target and can communicate with the FC only over an energy-
constrained/bandwidth-constrained link. While the honest SNs (represented
by black color) test statistics remain unchanged, the compromised SNs

(represented by red color) falsify their test statistics to T
fal
j with j = {3, 5}

(where j is the compromised SN index) before transmitting to the FC.

A. Compromised SNs attack

In this work, the same attack model used in [19] is consid-

ered. The attacker (which has under its control a fraction (β) of

the SNs) is assumed to know the true hypothesis2 in (5) (e.g.,

[19], [22]). The remaining SNs are honest and completely

unaware of the presence of falsified SNs. The ith compromised

SN falsifies its test statistic (Ti) before transmitting to the FC

as follows:

T fal
i =

{

Ti + Ci, under H0

Ti − Ci, under H1

(5)

where Ci > 0 is the parameter under the attacker’s control. As

we show later, there is an optimum Ci such that the detection

performance back at the FC will be degraded the most. So,

the test statistic (assuming compromised SNs) at the ith SN

can be represented as

T̂i =

{

T fal
i , with probability β

Ti, with probability (1− β)
(6)

where β is the fraction of the compromised SNs controlled by

the attacker.

B. Data transmission

Now, because the SNs are battery operated devices (i.e.,

with limited on-board energy) then each SN i (i =
1, 2, · · · ,M ) has to quantize its test statistic (T̂i) to Li

bits prior to transmission to the FC. We assume that the

FC is able to collect data from all the SNs via bandwidth

constrained communication channels and furthermore, it is not

itself compromised. As in [9], [13], we restrict the number of

quantization bits at the ith SN to satisfy the channel capacity

constraint:

Li ≤
1

2
log2

(

1 +
pih

2
i

ζi

)

bits (7)

where pi denotes the transmit power of sensor i, hi is the

flat fading coefficient between SN i and the FC, and ζi is the

variance of the AWGN at the FC. The quantized test statistic

(T q
i ) at the ith SN can be modeled (with Li bits ) as

T q
i = T̂i + vi (8)

where vi is quantization noise independent of wi (n) in (1)
and (2). Assuming Ti ∈ [0, 2U ], then











T̂i ∈ [Ci, 2U + Ci], under H0 with probability β

T̂i ∈ [−Ci, 2U − Ci], under H1 with probability β

T̂i ∈ [0, 2U ], under {Hp}p={0,1} with probability 1− β.

(9)

Now, assuming a uniform quantizer with Li bits (i.e., with

a total of 2Li quantization levels), the quantizer step-size is

always ǫ = 2U
2Li

and now vi (see (8)) can be modeled as a

r.v. uniformly distributed3 with vi ∈ [− ǫ
2 ,

ǫ
2 ], where it is well-

known that

σ2
vi

=
U2

3× 22Li

. (10)

Note that the above analysis shows that the attacker (i.e.,

through the compromised SNs), does not introduce a larger

quantization error noise (i.e., σ2
vi

in (10) remains the same as

in the case of attack−free [9]). Now, linearly combining
{

T q
i

}M

i=1
at the FC gives

Tf =

M
∑

i=1

αiT
q
i (11)

where the weights
{

αi

}M

i=1
will be optimized in Section

III-A. For large M , the probability of detection (Pd) and

the probability of false alarm (Pfa) can be approximated and

3This model that leads to (10) is only accurate for a relatively high number
of bits (e.g., Li ≥ 3 in practice). For a smaller number of bits, the expression
in (10) may not be very accurate but it is the only statistical measure available
for such errors.
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E
{

T
fal
i |H0

}

= Nσ
2

i +Ci,Var
{

T
fal
i |H0

}

= 2Nσ
4

i ,E
{

T
fal
i |H1

}

=Nσ
2

i (1 + ξi)−Ci,Var
{

T
fal
i |H1

}

=2Nσ
4

i (1+2ξi) . (13)

shown to be respectively [19]:

Pd = Pr (Tf ≥ Λf |H1)

= 1
T

(

DQ













Λf − µ̄|H1
√

M
∑

i=1

α2
i

(

Var {Ti|H1}+ σ2
vi

)













)

Pfa = Pr (Tf ≥ Λf |H0)

= 1
T

(

DQ













Λf − µ̄|H0
√

M
∑

i=1

α2
i

(

Var {Ti|H0}+ σ2
vi

)













)

(12)

with Λf = Λf [1, 1, · · · , 12M ]T (Λf is the FC detection

threshold); 12M is a column vector of all ones;

D = diag ([b1

⊙

b2

⊙ · · ·⊙bM ]) (bi is the ith column

vector of B (where B =
(

1 − β
)

P + βPc) and
⊙

represents element-wise multiplication); the matrix P is

a binary matrix holding the 2M possible combinations

of M (compromised and honest) SNs on its rows with

(P)ij = {0, 1} representing the compromised and

honest SNs respectively (note that (P)ij represents the

(i, j) element of P); and P
c is the element-wise (i.e.,

bitwise) logical complement of P. Now, {µ̄|Hp}p={0,1} =

P {µ|Hp}p={0,1} + P
c
{

µfal|Hp

}

p={0,1}
with {µ|Hp} =

[α1E {T1|Hp} , · · · , αME {TM |Hp}]T and
{

µfal|Hp

}

=

[α1E
{

T fal
1 |Hp

}

, α2E
{

T fal
2 |Hp

}

, · · · , αME
{

T fal
M |Hp

}

]T

where E {Ti|Hp} and E
{

T fal
i |Hp

}

are given in (4) and (13)

respectively.

Finally, Q(.) represents the element-wise Q function op-

eration. Next, we describe the optimisation problem under a

power-constrained WSN.

III. FC AND ATTACKER PERFORMANCE OPTIMISATION

UNDER A POWER-CONSTRAINED WSN

Now, if the attacker (which has under its control a fraction

(β) of the M SNs) can successfully manipulate the FC

global decision making process, the detection rate will be

significantly low, the error rate in decision making will be

high and the FC performance will be degraded. From the

attacker’s point of view, the more error it causes in the FC

decision making, the more successful it is. The attacker has

two available strategies: a) direct the compromised SNs to

actually report their observation to the FC truthfully or b)

direct the compromised SNs to falsify their observations prior

to transmission to the FC. In the cases where the attacker

decides to direct the compromised SNs to falsify their test

statistics, what should be their optimum attacking parameter

(Ci)? We will answer this question in Section III-B.

From the FC’s point of view, its data fusion mechanism

should be robust and capable of defending against any attack-

ing strategy adopted by any compromised SNs and directed by

the attacker. The FC is aware that the attacker has an objective

in conflict with its own (i.e., the FC tries to maximize the

detection probability while the attacker tries to minimize it).

However, the FC does not have any exact information about

the attacking strategies. The only information available to the

FC is: a) the quantized test statistics
{

T q
i

}M

i=1
reported by M

spatially distributed SNs, and b) the fraction4 (β) of these test

statistics that are falsified. But it cannot recognize where these

SNs are and estimate their “falsification parameter”, Ci. So,

the fusion data mechanism (based on this limited a − priori
information) should be able to neutralize (or at least reduce)

the impact of these compromised SNs.

So, in this Section, we would like to analyze the perfor-

mance optimisation from the perspective of the FC and the

attacker under a constraint of a maximum transmit power

budget (Pt). Since the FC has under its control only the weight

combiners (αi, ∀i) in (11) and the SN to FC transmit power

(pi, ∀i) in (7), its strategy is to maximize Pd with respect to

the respective vectors containing these parameters (i.e., α and

p). However, this is difficult and no closed-form solution can

be obtained. Here, we introduce the MDC (which we will use

later as an alternative function to be optimized). The MDC

provides a good measure of the detection performance since

it characterizes the variance-normalized distance between the

centers of two conditional PDFs. This is given as:

d̃2 (α,p)=

(

E {Tf |H1}−E {Tf |H0}
√

Var {Tf |H1}

)2

=

(

bTα
)2

αTRα
(14)

with the appropriate quantities given in (15) and (16) and

where

b = [Nσ2
1ξ1 − 2βC1, . . . , Nσ2

MξM − 2βCM ]T

α = [α1, α2, . . . , αM ]T ,p = [p1, p2, . . . , pM ]T

R = diag











2Nσ4
1(1 + 2ξ1) + β(1− β)C2

1 + σ2
v1

2Nσ4
2(1 + 2ξ2) + β(1− β)C2

2 + σ2
v2

...

2Nσ4
M (1 + 2ξM ) + β(1− β)C2

M + σ2
vM











.

(17)

A. FC performance optimisation

Now, the FC task (which knows that the WSN is under−
attack) is to maximize the Pd (i.e., to detect with very high

probability). We would like to make it clear that the FC knows4

β (i.e., knows the average percentage of compromised SNs

4In practice, the fraction representing the (on average) compromised SNs
can be learned by observing the data sent by the SNs to the FC over a time
window. But such an approach is beyond the scope of this work.
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E {Tf |H0} =

M
∑

i=1

αi

(

Nσ
2

i

)

+

M
∑

i=1

αi (βCi) , E {Tf |H1} =

M
∑

i=1

αi

(

Nσ
2

i (1 + ξi)
)

−
M
∑

i=1

αi (βCi) . (15)

Var {Tf |H0} =

M
∑

i=1

α
2

i

(

2Nσ
4

i + β(1− β)C2

i + σ
2

vi

)

,Var {Tf |H1} =

M
∑

i=1

α
2

i

(

2Nσ
4

i (1 + 2ξi) + β(1− β)C2

i + σ
2

vi

)

. (16)

(e.g., [19], [22])) but it cannot identify exactly who they are.

Given the data fusion (11), the FC performs the following test:

if Tf < Λf , decide H0

if Tf ≥ Λf , decide H1

}

(18)

where Λf is the FC detection threshold. As we said earlier,

the optimum weighting vector (αo) and the optimum power

allocation vector (po) that maximize Pd under the constraint

of a maximum transmit power budget (Pt) are desired. More

specifically (adopting the MDC), we require:

(αo,po) = arg max
α,p

(

d̃2 (α,p)
)

subject to

M
∑

i=1

pi ≤ Pt, pi ≥ 0, i = 1, 2, . . . ,M.

(19)

It is easily shown [9] that αo = R
−1b with

αo
i =

(σ2
i ξi − 2βCi

N
)

2σ4
i (1 + 2ξi) +

β(1−β)C2

i

N
+

σ2
vi

N

, ∀i = 1, 2, · · · ,M.

(20)

Note that the optimum weights
{

αo
i

}M

i=1
are a function of the

SN transmit power (pi) through the σ2
vi

terms (see (7) and

(10)) and pi is still to be optimized. We now substitute αo

back into (14) and solve the following optimisation problem

po = arg max
p

(

d̃2 (αo,p)
)

subject to

M
∑

i=1

pi ≤ Pt for pi ≥ 0, i = 1, 2, . . . ,M.

It can also be shown [9], that the above optimisation problem

can be solved analytically by using the Lagrangian function

and solving the appropriate K.K.T. conditions. The optimum

SN to FC transmit power in this case (i.e., where the WSN is

under−attack) can be shown to be

poi =

[

U√
λ0

√

ζi
12h2

i

(

σ2
i ξi − 2βCi

N

σ4
i (1 + 2ξi) + β(1− β)

C2

i

2N )

)

−
U2ζi
h2

i

6Nσ4
i (1 + 2ξi) + 3β(1− β)C2

i

− ζi
h2
i

]+

(21)

where [y]
+

equals 0 if y < 0, otherwise it equals y, and

λ0 is the Lagrangian multiplier that can be evaluated in a

similar way as in [9] by imposing the equality constraint

(i.e.,
M
∑

i=1

pi = Pt) in (19). Now, (21) assumes that the FC

knows the channel coefficients (hi) for all SNs (honest and

compromised). While the FC can obtain this information via

a feedback from the honest SNs, the compromised SNs may

transmit to the FC wrong information regarding the channel.

Nevertheless, here we assume that the compromised SNs only

falsify their test statistics as in (5) and report true channel5

information to the FC. However, the channel information, for

the compromised SNs, could be obtained by blind channel

estimation techniques, etc., [29], [30]. Next, we analyze the

performance optimisation from the attacker perspective.

B. Attacker performance optimisation

Now, the attacker would like to degrade as much as possible

the FC detection performance. For a constant β (i.e., fraction

of compromised SNs) the attacker plans the optimum Ci

in (5) such that the FC becomes inefficient (i.e., useless).

Adopting again the MDC (14), the optimisation problem can

be expressed as:

Co
i = arg min

Ci

(

d̃2 (αi, pi, Ci)
)

. (22)

Note that (14) reaches its minimum value (i.e., zero) when

bTα =
M
∑

i=1

αi

(

Nσ2
i ξi − 2βCi

)

= 0. Assuming that Ci =

C, ∀i (i.e., the same attack strength for all the compromised

SNs) for simplicity, clearly the minimum of (14) can be

achieved with

Co =

M
∑

i=1

αiNσ2
i ξi

2β
M
∑

i=1

αi

. (23)

Now, this yields the maximum possible degradation that the

attacker can cause to the FC. As can be seen, the optimum

attacker strategy (Co) is a function of the FC strategy (i.e., αi

in (11) which itself is a function of pi through the σ2
vi

quantity

(see (7), (10) and (20)). So, in order to adopt this strategy,

the attacker needs to know αi and pi, ∀i. Since the FC is

not compromised (i.e., still acts accordingly), these quantities

cannot normally be obtained by the attacker.

As can be seen from the optimum FC weight protection

strategy (20) and the attacker optimum strategy (23), there

does not exist a dominant6 approach. Clearly the FC weights

(αi in (11)) depend on the attacker parameter Ci and vice

versa. Next, we discuss in more detail the attacker versus the

FC strategies and provide performance analysis in cases where

limited a− priori knowledge about the attacker is available

(i.e., without the need of exact knowledge of Ci).

5The channel estimation error (for both the honest and compromised SNs)

can be modeled as a Gaussian random variable (i.e., ĥij = hij + eh) where

eh ∼ N (0, σ2
eh

) and ĥij is the estimated flat fading channel coefficient.
6A dominant FC (attacker) strategy is said to be strictly dominant if it is the

best strategy for the FC (attacker), no matter how the attacker (FC) decides
to act.
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IV. PERFORMANCE ANALYSIS

In this Section, starting with the optimum attacker strategy

(23) and depending on the collaboration willingness among

SNs and the available a−priori information that the attacker

has about the FC combining strategy, we distinguish between

two simulation setups in Section IV-A. Next, in Section IV-B

we distinguish again between two different simulation setups

but now from the perspective of the FC mechanisms.

SN3

SN2

SN5

SN1

SN4

SN6

Attacker

FC

Tf =

M
∑

i=1

αiT
q
i

T
fal
5

T
fal
3

T1

T
fal
4

T6

T2

T
q
3

T
q
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T
q
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T
q
4

T
q
1

T
q
6

Fig. 2. Under attack schematic communication architecture among peripheral
SNs and the FC. Similarly to Fig. 1, each SN generates a test statistic (Ti)
by observing the target (not shown here for clearance purposes)). While the
honest SNs (black color) keep their test statistics unchanged, the compromised

SNs (red color) directed by the attacker, will falsify their test statistics to T
fal
j

with j = {3, 4, 5} (where j is the compromised SN index). The SNs have
partial connectivity among themselves (i.e., not a complete graph) (thin lines)
and can communicate with the FC (thick lines) but only over an energy-
constrained/bandwidth-constrained links.

A. Sub-optimum attacker’s strategies

Here, we assume that the attacker knows that the FC uses a

linear combining strategy but it is not aware of the combining

weights used in (11). We also assume that the FC does not

act strategically and uses weight combining, without trying to

optimize against the behavior of compromised SNs. We now

distinguish between the two following setups A-1 and A-2.

1) Honest and compromised SNs collaborate (HCSC):
Now, the optimum strategy (23) to be adopted by each

compromised SN requires knowledge that cannot be obtained

in practice as previously discussed. As a result, the attacker

(not aware of αi and pi, ∀i) reasonably assumes equal

combining at the FC (i.e., αi = 1
M
, ∀i) and directs the

compromised SNs to attack with

CHCSC =
N

M

M
∑

i=1

σ2
i ξi
2β

(24)

where the superscript “HCSC” refers to “Honest and
Compromised SNs Collaborate”. However, the compro-

mised SNs still require knowledge of σ2
i and ξi, ∀i (to evaluate

M
∑

i=1

σ2
i ξi) in order to implement the attacking strategy (24).

When all the M SNs (honest and compromised) form a

connected network7 and are willing to collaborate with each

other (see Fig. 2), the quantity
M
∑

i=1

σ2
i ξi in (24) can be

7A connected network is any network where there is a path (i.e., over one
or more links) between every pair of SNs in the network.

estimated using the average consensus algorithm [31]. Because

of the communication topology for the M SNs (i.e., not

fully connected), the average consensus algorithm ensures the

availability of this term at each SN. The compromised SNs

will still be camouflaged (i.e., unidentified) as they share with

their neighbors just the true quantity σ2
i ξi and the SNs cannot

identify if their neighbors are honest or compromised.

2) Compromised SNs (only) collaborate (CSC): Now,

in the cases where not all of the M SNs (compromised and

honest) are willing to collaborate with each other, the quantity
M
∑

i=1

σ2
i ξi in (23) cannot be obtained in practice. Note that the

attacker has under its control just a fraction (β) (β = F
M

≤ 1,

where F is the number of falsified SNs) of M SNs (see Fig.

2) and the other remaining honest SNs (M −F ) do not share

their observations with their neighbors. In this situation, the

F compromised SNs collaborate with each other in order to

estimate in a distributed fashion the
∑

i∈J

σ2
i ξi quantity, where

J represents the compromised SNs set with cardinality F .

Assuming that the F falsified SNs form a connected7 network,

the average consensus algorithm [31] (like before) ensures the

availability of this term at each falsified SN. After this stage,

the compromised SNs attack (i.e., falsify their test statistics

(3) as in (5)) with Ci = CCSC , ∀i with

CCSC =
N(M − F )

M

∑

i∈J

σ2
i ξi
2β

(25)

where the superscript “CSC” refers to “Compromised
SNs (only) Collaborate”.

B. Sub-optimum FC’s strategies

Now, the optimum weights (αo
i , ∀i) in (20) are a function

of the attacker parameter Ci which is difficult in practice

(if not impossible) to obtain by the FC. In such a case, the

FC adopts a sub-optimum but simple solution to minimize

the degradation caused by the attacker. Assuming that the

attacker does not act strategically (i.e., does not try to optimize

against the FC approach) we now distinguish between the two

following simulation setups B-1 and B-2.

1) Weak attack FC based belief (WAFBB): Now,

when the number of observed samples (N ) is large and the FC

believes that the attacker is directing the ith compromised SN

to attack with relatively small Ci, the FC weight combining

can be approximated with

αWAFBB
i =

σ2
i ξi

2σ4
i (1 + 2ξi) +

σ2
vi

N

, ∀i = 1, 2, · · · ,M (26)

where the superscript “WAFBB” refers to “Weak
Attack FC Based Belief” and the optimum SN to FC

transmit power can be also approximated with

pWAFBB
i

=

[

U√
λ0

√

ζi
12h2

i

(

σ2
i ξi

σ4
i (1 + 2ξi)

)

−
U2ζi
h2

i

6Nσ4
i (1 + 2ξi)

− ζi
h2
i

]+

.

(27)
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Now, (26) and (27) coincide with the optimum weights and

with the optimal SN transmit power allocation scheme respec-

tively derived for the case of attack−free WSN in [9].

2) Optimum attack FC based belief (OAFBB): Here,

we consider the case when the FC believes that the attacker,

with a fraction (β) of SNs under its control, attacks with the

optimum parameter Co (see (23)) (i.e., with Ci = Co in (5)

but with αi =
1
M
, ∀i).

First of all, note that the FC knows that the compromised
SNs (i.e., the attacker) have an alternative objective (i.e., the
attacker would like to minimize, while the FC would like
to maximize, the MDC in (14)) (i.e., the FC can work out
the optimisation problem from the attacker perspective and
evaluate (23)). Secondly, the FC concludes that the attacker
cannot adopt this strategy in practice (since this optimum
strategy requires αi, ∀i and this parameter is controlled by
the FC itself). In such a situation, it is reasonable that the
FC believes that the attacker guides the compromised SNs to
attack with Co (see (23) but with αi = 1

M
, ∀i). Now, the

FC protection weights (αOAFBB
i ) can be shown to be (by

substituting Ci = N
2βM

M
∑

i=1

σ2
i ξi in (20) and rearranging the

terms):

α
OAFBB
i =

σ2

i ξi −
1

M

M
∑

i=1

σ2

i ξi

2σ4

i (1 + 2ξi) +N(1− β)
(

1

2
√
βM

M
∑

i=1

σ2

i ξi

)

2

+
σ2
vi

N

.

(28)

The SN to FC transmit power (pOAFBB
i ) can be obtained

in a similar way (by substituting Ci = N
2βM

M
∑

i=1

σ2
i ξi

into (21)). Lastly, the superscript “OAFBB” refers to

“Optimum Attack FC Based Belief”.

V. EQUILIBRIUM ANALYSIS

In this section, we consider the case where both the attacker

and the FC act strategically and formulate the problem as a

minimax game between two players, i.e., the attacker and the

FC. The attacker has under its control one parameter (i.e.,

Ci ∀i ∈ J , with J defined in Section IV-A2) while the

FC has control of the weight combining vector (i.e., α). As

before, assuming C = Ci (i.e., the same attack strength for

each compromised SN) for simplicity, we first of all prove

the existence of the Nash Equilibrium (NE)8 by showing

that there exists a unique saddle-point in the minimax game

between the attacker and the FC. Then, we find the optimum

solution numerically by maximizing the deflection coefficient

with respect to the FC weight combining parameter and then

by minimizing it with respect to the attacker parameter (i.e.,

w.r.t. C). Next, we present a theorem, by help of which in

Section V-A and Section V-B we prove the existence of NE.

Theorem 1 (Nikaido, [34]). Let K(x, y) be a pay-off func-

tion defined on the product space of X by Y , where X and Y
are convex compact sets and continuous in each variable for

8A Nash equilibrium, is a set of strategies, one for each player, such that
no player has the incentive to unilaterally change its action. Players are in
equilibrium if a change in strategies by any one of them would lead that
player to earn less than if it remained with its current strategy.

any fixed value of the other. If K(x, y) is quasi-concave in x
and quasi-convex in y, then:

max
x∈X

min
y∈Y

K(x, y) = min
x∈X

max
y∈Y

K(x, y). (29)

Next, we present the behavior of the MDC w.r.t. attacker

strength C.

A. Modified deflection coefficient behavior with respect to C

In the next Lemma we prove the quasi-convexity behavior

of the MDC w.r.t. C.

Lemma 1 : For a given α and p, d̃2 in (14) is a quasi-convex

function of C.

Proof : The MDC can be written as:

d̃2 =
(x− 2βCb)

2

y + dC2
(30)

where x =
M
∑

i=1

αi

(

Nσ2
i ξi
)

, b =
M
∑

i=1

αi, d =
M
∑

i=1

α2
i

(

β(1−β)
)

,

y =
M
∑

i=1

α2
i

(

2Nσ4
i (1 + 2ξi) + σ2

vi

)

.

Now considering α as a constant, differentiate d̃2 w.r.t. C and

by further simplification, we obtain:

∂d̃2

∂C
=

(

2βbC − x
)(

4βby + 2xdC
)

(

y + dC2
)2 = 0. (31)

So solving the above yields two critical points:

C∗
1 =

x

2βb
, C∗

2 = −2βby

xd
. (32)

Now, for a feasible attacker strength (i.e., for C > 0), the

critical point C∗
1 is feasible if x, b > 0 or x, b < 0. So, we

have the following:

if x, b > 0 and for C > C∗
1 , f ′(C) > 0

if x, b < 0 and for C > C∗
1 , f ′(C) > 0

if x, b > 0 and for C < C∗
1 , f ′(C) < 0

if x, b < 0 and for C < C∗
1 , f ′(C) < 0



















=⇒

C∗
1 is a global minimum. (33)

We also conclude that the other critical point C∗
2 is not even

a feasible point (i.e., C∗
2 < 0) for x, b > 0 and x, b < 0.

Hence, there is only one value of C = C∗
1 at which d̃2 = 0.

As a result, C∗
1 being the unique global minimum =⇒ d̃2 is

a quasi-convex function of C.

B. Modified deflection coefficient behavior with respect to α

and p

Now, in Lemma 2, we show the behavior of d̃2 in (14) from

the perspective of the FC.

Lemma 2 : For a given C and p, d̃2 is a concave function

of α.
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Proof : Consider (14), then the Hessian of d̃2 w.r.t. α (i.e.,

H
d̃2 ) can easily shown to be:

H
d̃2 = 2

bbT

αRα
− 4

bTα
(

αRα
)2

(

bαT
R+RαbT

)

+ 8

(

αT b
)2

(

αRα
)3

(

RααT
R

)

− 2

(

αT b
)2

(

αRα
)2

(

R

)

. (34)

Now, to prove that d̃2 is a concave function of α, we need to

show [33]: αT
H

d̃2α ≤ 0, ∀α. This is given in Section VIII.

From (36), αT
H

d̃2α = 0, ∀α =⇒ d̃2 is a concave function

of α where the αo
i , ∀i in (20) is the optimum solution. This

concludes the proof.

Similarly, treating C (i.e., the attacker strength) fixed and

for a given α (i.e., the weight combiner vector) it can be easily

shown that d̃2 is also a concave function of p and poi in (21)

is the optimum solution. The proof is straightforward and we

omit it here due to lack of space.

Now, since any concave function is quasi-concave, then by

Theorem 1, a unique saddle-point exists in the minimax game

which is the NE. We numerically evaluate this NE in the

simulation results section.

VI. SIMULATION RESULTS

In this Section, the performances of the proposed strategies

are evaluated numerically and compared to the attack−free
scheme [9]. A WSN with a total of M = 12 SNs is

considered (where a fraction of these SNs are compro-

mised by the attacker with the same attacking strength (i.e.,

Ci = C, ∀i) for simplicity). We let σ2
i = 0.1, such that

ξa = 10 log10

(

1
M

M
∑

i=1

ξi

)

=−10.5 dB with arbitrarily chosen

s(n) = [s1(n), s2(n), · · · , sM (n)] = [0.022, 0.0011, 0.18,
0.02, 0.0143, 0.0011, 0.0024, 0.2, 0.06, 0.09, 0.0143, 0.15]
unless otherwise stated. The corresponding SN to FC channel

gains are assumed to be ideally estimated (i.e., σ2
eh

= 0) for

simplicity and are shown in Fig. 3. In addition we let ζi = 0.1,
∀i. Finally, we choose Li with equality in (7).

A. SN to FC optimal transmit power allocation and FC weight

combining strategy

Now, we investigate the SN to FC transmit power for

the optimum allocation scheme9 and the FC optimal weight

combining strategy derived in Section III-A.

Fig. 3 (the middle plot) shows the optimal SN transmit

power poi for the ith SN to the FC channel versus the attacker

strength C and the lower plot shows the corresponding quanti-

zation bits. The actual channel coefficients (randomly chosen)

are in the upper plot. Clearly, for the case of C = 0 (i.e., the

attack− free scheme in [9]), more power is allocated to the

SNs (i.e., SN3, SN8, SN9, SN10, and SN12) having both the

9The optimum SN power allocation scheme requires knowledge of the
attacker strength Ci (see (21)). This is a strong assumption in practice and
the exact knowledge of Ci cannot be attained in general. Nevertheless, here
we consider this situation for performance comparison purposes and to create
an idea about how the SN to FC transmit power allocation is affected.
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Fig. 3. SN optimal transmit power (poi ) and channel bit allocation (Li) with

Pt = 60, U = 3, ξa = −10.5 dB, N = 20, β = 0.1 and σ2
eh

= 0.
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best channels and high enough SNRs (ξi). Interestingly, those

remaining SNs having very low SNRs (i.e., having useless

local information) but having good (or bad) corresponding

channels, are censored (i.e., do not transmit even a single bit).

In this way, the SNs that have very bad channels (i.e., SNs

that require very high power to transmit) or the SNs that have

low SNRs (i.e., SNs that do not contain useful information)

will be censored (i.e., will not transmit even one bit). This is

not the case when C = 0.5 or C = 5 (we give an explanation

later).

In Fig. 4 we investigate the FC combining response (with

weight in (20)) versus attacker strength C. Clearly, when C =
0, the weights for the SNs permitted to transmit to the FC

(i.e., SN3, SN8, SN9, SN10, and SN12) are greater than 0. As

expected, the weights for the other remaining SNs are set to 0

(as these SNs are censored). Now, when C starts to increase,

the FC response is decreasing the weights for all the SNs up to

around C = 5 and allowing all the SNs to transmit to the FC

(see Fig. 3 (middle plot)). However, for around C > 5, the FC

response is by first increasing the weights for the SNs having

low SNRs and as C gets larger, the FC combining strategy

tends towards equal combining.
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Similar to Fig. 4, in Fig. 5 (for C = 0.1) and in Fig.

6 (for C = 0.6) we plot the FC combining response (with

weights in (20)) but now versus the fraction of compromised

SNs (β). Interestingly, the optimal FC weight response for the

less informative SNs (i.e., SN1, SN2, SN4, SN5, SN6, SN7,

and SN11 classified by the power allocation scheme in the

case of attack − free (i.e., C = 0)) remains almost constant

with respect to β both in Fig. 5 and Fig. 6. However, that

is not the case for the more informative SNs (i.e., SN3,

SN8, SN9, SN10, and SN12). In Fig. 5, we observe that

for the SNs 3, 8, and 12 (corresponding to the best SNRs)

this relationship is convex while for the SNs 9 and 10 it is

monotonically decreasing. Interestingly, in Fig. 6 (for a larger

C) this relationship becomes monotonically decreasing for all

the more informative SNs mentioned above.

The results provided in this Section cannot be attained in

practice as the exact knowledge of C is required. However,

they provide an insight as to how the FC power allocation

and the weight combining strategy is influenced by both the

attacker strength (C) and the compromised SNs fraction (β).

B. Detection performance for the proposed strategies

1) Detection performance for fixed β: Now, we in-

vestigate the detection performance of the proposed strategies

described in Section IV-B for a fixed β.
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In Fig. 7, we show the receiver operating characteristic

(ROC) parametrized on the attacker strength (C) for the

proposed WAFBB and OAFBB strategies compared to the

attack free (AF ) case [9] (i.e., when there is no attack). We

can observe that for C = 0.3 (as expected), the WAFBB
strategy performs similar to the optimum strategy in (20) and

better than OAFBB (up to C = 0.6) whereas after that, the

OAFBB strategy dramatically outperforms the latter. We also

note that for relatively very large C, it is possible to totally

blind the FC when the WAFBB is used (i.e., to make it

incapable of detecting) but only when the WSN operates at

low probability of false alarm (Pfa).

Now, we would like to emphasize that the WAFBB
strategy has particular importance when the FC does not have

any a−priori knowledge about the β and C parameters. But

the OAFBB strategy requires just knowledge of the compro-

mised SNs fraction4 (β) which is possible to be obtained by

the FC in practice.

2) Detection performance for fixed C: Now, we in-

vestigate the detection performance of the proposed strategies

described in Section IV-B for a fixed C.
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In Fig. 8, we show the ROC performance for the two

different proposed strategies (parametrized on β) compared to

the optimum strategy in (20) and AF in [9]. We can observe
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that for small β (more specifically β = 0.1), both the optimum

and OAFBB strategies outperform the WAFBB strategy

and their performances are worst than the AF performance.

Interesting, when β increases (more specifically, β = 0.5 and

β = 1), both the optimum and OAFBB strategies outperform

the AF detection performance for all the values of Pfa and

their detection performances improve proportionally with β.

This is as expected, since from the attacker’s perspective

there does exists an optimum β that most degrades the FC’s

detection capability (Fig. 10 later on captures and demonstrates

this behavior better) (see also (23)). We would also like to

make it clear that the FC’s ROC performance behavior depends

not only on the compromised SNs fraction (β) but also on

the attacker strength (Ci). Furthermore, the optimum β that

causes the maximum FC’s detection degradation depends itself

in Ci (see (23)). Deviating from this optimum strategy (i.e.,

(β, Ci)), the attacker might help the FC to further utilize its

detection performance rather than causing degradation. While

from β = 0.5 to β = 1 the performance of the optimum

strategy in (20) and the OAFBB strategy improves, that is not

the case when WAFBB is used (its performance degrades)

and when β = 1 it is sufficient to blind the FC even when the

WSN operates at a relatively high Pfa. Now, this is as expected

because the WAFBB requires no a − priori knowledge

regarding the attacker’s parameters.

In Fig. 9, we investigate the same situation as for Fig. 8 but

now for C = 0.6. In this case (when β = 0.1), the optimum

strategy slightly outperforms the OAFBB and WAFBB
strategies. However, similar to Fig. 8, when more than 50%

of SNs are compromised, the OAFBB strategy significantly

outperforms the WAFBB strategy. Furthermore, its detection

performance improves (for β ≥ 0.5) proportionally as β
increases.

In Fig. 10, we again show the ROC as a function of β
but now for a lower C (more specifically for C = 0.2).

As expected, the WAFBB performs similar to the optimum

strategy and outperforms the OAFBB at low β and C, as

the WAFBB is derived under these assumptions. Also, we

can observe that the ROC performance of the optimum and

OAFBB strategies (when β = 0.1 is used) outperforms those

when β = 0.5. This is an intuitive result as the smaller the
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fraction of compromised SNs participating in the network,

the better is the FC’s detection performance. However, for

β ≥ 0.5, the detection performance is shown to be improving

with β whereas for the WAFBB strategy its performance

degrades as β increases. Interestingly, when 50% of the SNs

are compromised, both the optimum and OAFBB strategies

perform in a similar manner.

It is now clear that (from the attacker perspective) there is an

optimum number of compromised SNs (fraction β) that causes

the maximum FC’s detection performance degradation when

using the OAFBB and the optimum FC strategy in (20). On

the contrary, when the WAFBB strategy is considered, we

conclude that the FC’s detection performance degrades as β
increases. However, it has particular importance in practice as

no a−priori knowledge for the attacker parameters is required.

C. Equilibrium analysis of minimax game

In this section we analyze the equilibrium point of the

minimax game and find the Nash Equilibrium (NE). The NE

is the maximum probability of detection considering the FC’s

best linear weight combining strategy (joint optimization of

α,p) against attacker’s strategy (i.e., C for a given fraction

of compromised SNs β).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of false alarm, Pfa

P
ro

ba
bi

lit
y

of
de

te
ct

io
n,

P
d

C=0
C=0.2
C=0.4
C=0.45
C=0.6
C=0.9
C=1.1
C=1.4

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.86

0.88

0.9

0.92

0.94

0.96

0.98

C=1.4 C=1.1

C=0.9

C=0.2

C=0.45

C=0

C=0.6

Nash Equilibrium, C=0.4

Fig. 11. Probability of detection (Pd) versus probability of false alarm (Pfa),
with U = 3, ξa = −10.5 dB, Pt = 60, M = 12, N = 20, β = 0.2,
σ2
eh

= 0 and with optimum weights in (20).
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In Fig. 11 the ROC behavior against the attacker’s strength

and the FC’s combining weights is shown. As expected (see

Section V on equilibrium analysis) there does exist a NE and

it is shown to occur for the pair C = 0.4 and αo (with αo
i

in (20)). Clearly, from the attacker’s perspective, this strategy

causes the maximum detection performance degradation ∀Pfa

and deviating from this strategy will not benefit the attacker.

Now, in Fig. 12, the modified deflection coefficient (MDC)

against the attacker strength (C) is shown for two examples

(i.e., with the optimum FC weights combining in (20) and

the non-optimum weight combining drawn from the uniform

distribution (i.e., αi ∼ U(0, 1) in (11)). We can observe that

the NE is shown to occur at C = 1 and deviating from this

point (i.e., this strategy) the attacker will not benefit (i.e., it will

not gain in terms of the FC’s performance degradation). It is

also clear that if the FC deviates from the optimum combining

strategy (i.e., from the weights αo
i in (20)), its detection

performance will be worst or at least will not improve ∀C.

VII. CONCLUSION

In this paper, we have addressed the problem of distributed

detection by an under − attack WSN that operates over

limited bandwidth communication fading channels. Based on

a simple linear weight combining rule at the FC and adopting

the modified deflection coefficient (as an alternative function

to be optimized), we give closed-form expressions for the

optimal FC combining weights, the SN to FC transmit power

allocation, and the test statistics quantization bits. The attacker

optimal strategy is also derived and shown to be dependent

on the FC combining weights. Furthermore, sub-optimum FC

strategies (based on weight combining and the SN transmit

power) that do not require the exact knowledge of the attacker

strength C are also derived and analyzed.

We have also analyzed the equilibrium to the minimax

problem and have proved that the Nash Equilibrium (NE)

exists and found this optimal solution numerically in the

simulation results. We compare our proposed FC strategies

with the one derived under an attack − free scenario and

show significant detection performance improvement.

Future work will consider a general (non-linear) optimal

combining strategy at the FC and study attackers that (unlike

in this paper) do not know the true state of the target (i.e.,

they are less dangerous attackers).

VIII. PROOF OF αT
H

d̃2α ≤ 0, ∀α IN (34)

Consider the H
d̃2 in (34), and show that αT

H
d̃2α = 0, ∀α.

Proof : Multiplying (34) from the left by αT and from the

right by α, we get:

αT
H

d̃2α = 2
αT bbTα

αTRα
−4

αT bTα
(

αTRα
)2

(

bαT
R+RαbT

)

α

+ 8
αT
(

αT b
)2

(

αTRα
)3

(

RααT
R

)

α− 2

(

αTαT b
)2

(

αTRα
)2

(

R

)

α. (35)

Rearranging the terms and by further simplification, we obtain:

αT
H

d̃2α = 2
αT bbTα

αTRα
− 8

bTααT b

αTRα

+ 8
bTααT b

αTRα
− 2

αT bbTα

αTRα
= 0. (36)

This concludes the proof.
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