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Key Points

• There is evidence that as we age the sensory signals that are generated from the bowel become attenuated and

while this is borne out by electrophysiological studies in rodents there is a paucity of mechanistic information

from humans.

• By recording directly the afferent impulse traffic in resected human colonic we have demonstrated attenuated

nerve activity with age that is associated with concurrent changes in nerve density, enterochromaffin cell

number and mucosal mast cells.

• These changes in key components of the gastrointestinal surveillance mechanisms has implications for our

understanding of the mechanisms underlying the increased prevalence of GI disorders in the elderly.

Abstract

Background Advanced age is associated with a reduc-

tion in clinical visceral pain perception. However, the

underlying mechanisms remain largely unknown. Pre-

vious studies have suggested that an abnormal inter-

play between mast cells, enterochromaffin (EC) cells,

and afferent nerves contribute to nociception in gas-

trointestinal disorders. The aim of this study was to

investigate how aging affects afferent sensitivity and

neuro-immune association in the human bowel.

Methods Mechanical and chemical sensitivity of

human bowel afferents were examined by ex vivo

afferent nerve recordings. Age-related changes in the

density ofmast cells, EC cells, sensory nerve terminals,

and mast cell-nerve micro-anatomical association

were investigatedbyhistological and immune staining.

Key Results Human afferents could be broadly classi-

fied into subpopulations displaying mechanical and

chemical sensitivity, adaptation, chemo-sensitization,

and recruitment. Interestingly human bowel afferent

nerve sensitivity was attenuated with age. The density

of substance P-immunoreactive (SP-IR) nerve varicosi-

ties was also reduced with age. In contrast, the density

of ileal and colonic mucosal mast cells was increased

with age, as was ileal EC cell number. An increased

proportion ofmast cellswas found in close apposition to

SP-IR nerves. Conclusions & Inferences Afferent sen-

sitivity in human bowel was reduced with advancing

age. Augmentation of mast cells and EC cell numbers

and the mast cell-nerve association suggest a compen-

satory mechanism for sensory neurodegeneration.

Keywords aging, EC cells, human bowel afferent,

mast cells.
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subfamily; TRPM, transient receptor potential melas-

tatin-related receptor subfamily; TRPV1, transient

receptor potential vanilloid 1 receptor.

The incidence and prevalence of a number of

gastrointestinal (GI) tract disorders profoundly

increase with age.1,2 However, relatively little is

known about how aging alters sensory signaling from

the gut. Previous studies have shown that in

humans, visceral pain perception from the GI tract

in response to distension was significantly reduced

with age.3,4 Moreover, abdominal pain and nausea in

response to a standard nutrient challenge test (a test

in which volunteers are asked to ingest increasing

amounts of a liquid nutrient) is also diminished in

the elderly.5 Experimental studies with rodents have

shown that the numbers of myenteric and submu-

cosal neurones decline with age,6–9 and that sympa-

thetic innervation and vagal nerves deteriorate.10 A

recent study from our laboratory found that

mechanosensation and serotonergic chemosensitvity

in the mouse intestine was significantly inhibited

with age.11 However, there are currently no equiva-

lent human data showing how aging affects sensory

signaling from the bowel. The interplay between

mast cells, enterochromaffin (EC) cells, and the

sensory innervation of the gut wall is a key to

normal neuro-immune signaling. Aberrant signaling

between these elements may play a significant role

in the etiology of functional GI conditions such as

irritable bowel syndrome (IBS). For example, in IBS

patients, we already know that mast cell and EC cell

numbers are elevated in the colon,12 the severity of

abdominal pain correlates with increased serotonin

release from the EC cell,13 and the distance between

the mast cells and nerve terminals is reduced and

correlates to increased abdominal pain.14 Moreover,

clinical data show that the mast cell stabilizer,

disodium cromoglycate improves IBS symptoms.15

While neuro-immune signaling in the bowel has been

well studied, the effect that aging has on the normal

interaction between mast cells, EC cells, and sensory

nerves has yet to be established.

Our understanding of GI sensory function has

depended greatly on rodent studies. However, how

this translates to humans remains uncertain. There are

many examples of therapeutic agents developed using

animal models that have failed in the clinic. For

example, alosetron, a 5-HT3 receptor antagonist, was

approved for marketing to relieve symptoms of IBS but

was withdrawn 9 months later owing to serious life-

threatening adverse effects (U.S. Food and Drug

Administration, 2002). A number of other drugs have

also failed to show efficacy in clinical trials, such as

talnetant (NK3 receptor antagonist), GW876008 (corti-

cotropin-releasing factor-1 receptor antagonist), and

AZD7371 (5-HT1A receptor antagonist),16,17 despite

promising data from animal studies.18–20 These failures

highlight a demand for translational research on

human tissue. Although ex vivo afferent recordings of

the rodent GI tract have been well established, very

few studies have looked at afferent signaling in man.

To address this, our group recently developed an

ex vivo gut preparation to record afferent activity from

isolated segments of the human bowel. These studies

were one of the first to report sensory nerve activity

from human tissue.21 The aim of this study was to

examine patterns of innervation, afferent nerve sensi-

tivity, and mast cells, EC cell localization in the aged

human bowel.

MATERIAL AND METHODS

Ethical approval and donors

Specimens were obtained from 59 patients (35 male) aged between
24 and 88 with a median age of 67, who had undergone right or left
hemicolectomy at the Northern General Hospital NHS Founda-
tion Trust in Sheffield. Specimens were collected from patients
with a range of disease phenotypes (summarized in Table S1).
Tissues were always taken from the healthy tissue bordering the
disease area rather from the area of active disease. This was
confirmed by a pathologist at the time of collection. Informed
written consent was obtained from each participant. Studies were
performed according to the declaration of Helsinki and the BMJ
guideline on patient consent to publication. Experimental proce-
dures were approved by the South Humber Research Ethics
Committee (REC ref: 07/Q1105/4) and the Research Department
in Sheffield Teaching Hospitals (ref: STH14755).

Extracellular afferent nerve recording

Extracellular afferent recording were conducted using an ex vivo

preparation as previously described.21 Forty-five human bowel
specimens primarily from ileum and sigmoid colon were used.
Segments were opened longitudinally along the mesentery border
and pinned flat with mucosa uppermost in a tissue bath (volume
~100 mL) constantly perfused with gassed (5% CO2 and 95% O2)
Krebs buffer (composition, in mM: NaCl 120, KCl 5.9, MgSO4 1.2,
NaH2PO4 1.2, NaHCO3 15.4, glucose 11.5, and CaCl2 1.2) at
34 °C. Nerve bundles were identified in the mesentery and drawn
into a glass suction electrode attached to a Neurolog headstage
(NL100; Digitimer Ltd, Hertfordshire, UK). Afferent signals were
amplified (NL104), filtered (NL125 band pass filter), and recorded
on a computer via a power 1401 analog-to-digital interface and
Spike 2 software (Version 7; Cambridge Electronic Design,
Cambridge, UK).

After an equilibration period, the receptive field of each
afferent was identified by systematically probing the tissue using
a glass probe. Mechanosensitivity was examined by applying three
stimuli: probing (with calibrated von Frey hair 4, 10, and 60 g;
each probing was applied for 2 s and repeated at least 5 times with
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a 3-s interval), fine mucosal stroking (1 or 4 g force), and stretch
(using forceps). Chemosensitivity was then examined by applying
selective agonists directly onto the receptive fields using a pipette.
Single unit analysis was performed offline using the spike sorting
function of Spike 2 to discriminate the afferent nerve activity of
individual units. Afferent activity is expressed as frequency per
second (impulse/s).

Histology and immunohistochemistry

Human bowel specimens were fixed in 4% PFA overnight at 4 °C.
For histological staining, fixed specimens were dehydrated in
graded ethanol (70%, 90%, 100%, and dried 100%) prior to
infiltration in freshly made catalyzed JB4 resin solution. Speci-
mens were then embedded in JB4 resin with accelerator, mounted
on aluminum stubs and sectioned at 2 lm using a microtome
(LKB 2218; LKB-Produkter, Bromma, Sweden). For immunohisto-
chemistry, fixed tissue was cryo-protected with 30% sucrose
overnight at 4 °C, embedded in OCT (53581; Bright Instrument
Company, Huntingdon, UK), and sectioned at 10 lm using a
cryostat (Bright Instrument Company).

Toluidine blue staining

Sections were stained with 0.1% toluidine blue for 3 min and
mounted with coverslips using DPX mounting medium. Three
populations of mast cells (mucosa, submucosa, and serosa) were
blindly quantified under a 209 objective with an Olympus BX51
(Tokyo, Japan) light microscope using an eyepiece graticule (area:
0.35 mm 9 0.35 mm = 0.1225 mm2). Ten random microscope
fields of mucosa and serosa and 20 random fields of submucosa
were quantified for each section. Data were expressed as number
of mast cells/mm2.

Immunohistochemical staining

Sectionswere incubatedwith a primary antibody forECcells (rabbit
antiserotonin, 1 : 50, [AHP522], AbD Serotec, Oxford, UK) or a
mixture of primary antibodies for mast cells (mouse antimast cell
tryptase, 1 : 1000, [Sc271095] Santa Cruz, Heidelberg, Germany)
and substance P (SP; rabbit anti-SP, 1 : 50, Abcam, ab24126)
overnight at 4 °C. After rinsing with PBS, slides were stained with
corresponding secondary antibodies, goat anti-rabbit conjugated to
Cy3 (1 : 400, [111-165-144], Jackson ImmunoResearch, West
Baltimore Pike, PA, USA) or a mixture of goat anti-mouse Cy3
(1 : 400, [115-166-003] Jackson ImmunoResearch, Baltimore West
Pike, PA, USA) and goat anti-rabbit FITC (1 : 400, [FI-1000] Vector
laboratories, Peterborough,UK), for 2 h at roomtemperature. Slides
were mounted with coverslips using mounting medium (Vector
H1200). Negative controls were performed by omitting the primary
antibody. Staining was observed under an Olympus BX51 micro-
scope. Imageswere captured using anOlympusColorView II digital
camera for offline quantification. Images were analyzed using
ImageJ software (1.43u; National Institutes of Health, Bethesda,
MD, USA) where applicable.

Substance P density was quantified as the area occupied by SP
as a percentage of the total area of mucosa. Enterochromaffin cell
number was counted and normalized to the area of mucosa. The
distance between a mast cell and its nearest SP-IR varicosity was
measured using ImageJ.

As a negative control for mast cell-SP association, image
flipping was performed. Prior to superimposing images for mast
cell staining and SP staining, one of the channels was flipped

horizontally. Measurement of mast cells-SP distances and distri-
bution analysis was performed to ensure that proximity was not
due to a random occurrence (Fig. S3).

H&E staining and electron microscopy

See supplementary methods (Data S1).

PCR

See supplementary methods (Table S2).

Drugs and compounds

All drugs, chemical compounds, and reagents were purchased
from Sigma-Aldrich (Dorset, UK) unless stated specifically.

Data analysis and statistics

All data are expressed as mean � SEM. Statistical significance
was confirmed using either a Student’s t-test or one-way ANOVA as
appropriate. p < 0.05 was considered as significant. To evaluate
the influence of aging, a linear regression test was performed. All
quantification was performed in a blinded manner. All statistical
analysis was performed using GraphPad Prism 5 (GraphPad
Software Inc., La Jolla, CA, USA).

RESULTS

Human bowel afferent recordings and
ultrastructure of recorded nerves

Afferent nerve firing was recorded in 20 of 45 speci-

mens, giving an overall success rate of 45%, of these

only 8 specimens were responsive to mechanical or

chemical stimulation. Success rate was not dependent

on the age of donor or the region of specimens (Fig. S1).

Structural integrity of the bowel wall was preserved

with normal morphology revealed by H&E staining

(Fig. S2A). Electron microscopy showed the mesenteric

nerve bundles to vary between 40 and 90 lm in

diameter, containing 1–3 fasciculi enveloped by a thin

perineurium. The majority of nerve fibers were

unmyelinated, although there were also a few myeli-

nated nerve fibers easily identified by their character-

istic dark sheath on the electron micrograph (Fig. S2C).

Characterization of mechanosensitive human
bowel afferents

A total of 34 afferent units from 20 specimens were

discriminated by Spike2 single unit analysis. Ten of

these units (29%) were mechanosensitive, differen-

tially responding to probing, mucosal stroking, and

stretch, and thus classified into mesenteric, serosal,

© 2016 The Authors.
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muscular, and mucosal afferents (Table 1 and Fig. 1).

Twenty-four units did not respond to probing, stroking,

or stretch and were termed unclassified.

One serosal unit responded to repeated probing with

a gradually reduced firing rate, indicating the nature of

mechano-adaptation. The unit also showed a dramatic

increase in firing rate to the incremental probing force

at 4, 10, and 60 g applied with a calibrated von Frey

hair (Fig. 1G). The mechanosensitivity to probing was

enhanced after treatment with 10 lM bradykinin (BK)

and 300 lM allyl isothiocyanate (AITC; Fig. 1H and I).

Chemosensitivity of human bowel afferents and
silent afferents

Once the receptive field had been identified, the

chemosensitivity was investigated by applying BK

(10 lM), capsaicin (CAP; 1 lM), AITC (300 lM) or 5-

HT (10 lM) directly onto the receptive field. Forty

percent (4/10) of mechanosensitive units responded to

either one or two chemical stimuli (Table 2 and Fig. 2).

Interestingly two colonic afferent units (one from a 49,

the other from a 67-year-old donor) that did not show

any firing activity before chemical stimuli were

recruited and started to fire after BK treatment

(Fig. 2E). These units were classified as ‘silent’ affer-

ents. However, they did not acquire mechanosensitiv-

ity after becoming active. Four units (2 serosal and 2

silent) showed a significant response to BK (basal vs

peak firing rate: 0.2 � 0.1 vs 1.9 � 0.5 impulses/s,

p < 0.05, paired t-test). The two BK-sensitive serosal

units also responded to AITC (basal vs peak firing rate:

0.3 � 0.2 vs 1.4 � 0.1 impulses/s). Two units (one

serosal, the other muscular) responded to CAP (basal vs

peak firing: 0.7 � 0.7 vs 4.2 � 2.7 impulses/s). The

muscular unit also responded to 5-HT (basal vs peak:

0.4 vs 1.6 impulses/s).

Age-related changes in human bowel afferent
sensitivity

Resting nerve activity was present in all preparations,

although a small proportion of units did not show basal

activity. With increasing age, average baseline firing

frequency was significantly decreased (Fig. 3B,

p < 0.05, linear regression, r2 = 0.304, N = 19). In

35% (12/34) of units, baseline firing exhibited a

bursting pattern (spontaneous burst firing). This was

also correlated with age such that the preparations

showing burst firing were from significantly younger

donors (mean age 47.2 � 4.1,N = 13) than preparations

without burst firing (mean age 63.9 � 2.2, N = 23,

Fig. 3C, p < 0.001, unpaired t-test). However, the

number of recorded units per bundle was not signifi-

cantly altered by age (Fig. 3D, p = 0.489, linear regres-

sion, r2 = 0.029, N = 19). The afferent response to

10 lM bradykinin was examined in preparations from

the sigmoid colon of a 42-, 55-, and 67-year-old donor.

In each case, bradykinin induced a robust increase in

nerve activity, however, the response profile was

blunted with increased age (Fig. 3E–H).

Afferent nerve density decreased in the aged
human colonic mucosa

Afferent nerve fibers were labeled with the sensory

neuronal marker SP. Positive staining was detected in

the mucosa, submucosa, myenteric plexus, and in

close vicinity to blood vessels. Substance P-immunor-

eactive nerve fibers were extensively distributed in the

lamina propria of mucosa, but not in the submucosa

and muscle layers. The density of mucosal SP was

significantly reduced with age (Fig. 4C, p < 0.01, linear

regression, r2 = 0.614, N = 10).

Closer association between mast cells and
afferent nerves with age

The micro-anatomical relationship between mast cells

and afferent nerve terminals in the human colonic

mucosa was investigated by double immunostaining

with mast cell tryptase and SP antibodies (Fig. 4D and

E). Analysis of proximity showed that more than 50%

of mast cells were located within 1 lm from a SP-IR

varicosity (Fig. 4F). Comparison of distribution pat-

terns between young and aged donors suggested that an

increased proportion of mast cells were in close

apposition to SP-IR varicosities in aged samples

(Fig. 4G–I).

Table 1 Characteristics of human bowel afferent mechanosensitivity

Classification Number of units (age) Spontaneous burst firing Probing Mucosal stroking Stretch

Mesenteric afferent 2 (24, same donor) Yes Yes No No

Serosal afferent 5 (42, 53, 55, 67, 72) 1: yes 4: no Yes No No

Muscular afferent 2 (49, 77) 1: yes 1: no Yes No Yes

Mucosal afferent 1 (42) Yes Yes Yes No

Unclassified 24 (median 66, range: 24–77) 7: yes 17: no No No No

© 2016 The Authors.
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Mast cell density increased in the aged mucosa

Mast cells stained with toluidine blue were identified

by their red-purple cytoplasmic metachromatic granu-

lar content and blue nuclei (Fig. 5A–F). Mast cells were

detected throughout the human bowel wall with a

greater density close to the muscularis mucosa. Occa-

sionally some positive cells were also identified in the

connective tissue and blood vessels running through

muscle layer. The density of mucosal mast cells was

significantly higher than in the submucosa and serosa

in both small intestine (p < 0.001, one-way ANOVA,

N = 9) and colon (p < 0.0001, N = 15, Fig. 5G). Muco-

sal but not submucosal or serosal mast cell density was

positively correlated with increased age in both the

ilium (Fig. 5H, p < 0.05, r2 = 0.606, linear regression,

N = 8) and large intestine (colon and rectum; Fig. 5I,

p < 0.05, r2 = 0.413, N = 14).

EC cell density increased in aged human ileal
mucosa

Serotonin immunoreactivity was used as a marker for

EC cells. Positive cells had a classical conical shape

and were relatively concentrated in the small and large

intestinal crypts (Fig. 6A–F). Density in the ileum

(p < 0.05, r2 = 0.528, linear regression, N = 10), but not

colon (p = 0.848, r2 = 0.003, N = 16) was positively

correlated with advancing age. Consistently, serotonin

immunoreactivity was also correlated with mast cell

density in the ileum (Fig. 6I, p < 0.05, r2 = 0.818,

N = 6) but not colon (Fig. 6J, p = 0.226, r2 = 0.201,

N = 9).

Gene expression in the aged human bowel

Gene expression for 7 transient receptor potential (TRP)

channels (TRPA1, TRPC4, TRPC6, TRPM2, TRPM4,

TRPM8, TRPV1) and 2 EC cell markers (Chromogranin

A, CgA and tryptophanhydroxylase1, TPH1) was exam-

ined using PCR. The highest expression was found for

TRPA1, TRPM4, and CgA. The expression of TRPA1

and TRPV1 in the ileum was significantly greater than

in the colon suggesting regional variation, however,

when expression in young tissues (<65 years old) was

compared to expression in older tissues (>65 years old)

no significant difference was seen (Fig S4).

DISCUSSION

This study provides the first evidence that sensory firing

from the human bowel is attenuated with age. Attenu-

ation was concurrent with a decrease in the sensory

nervemarker SP, but an increase inmast cell and ECcell

numbers. Interestingly, the anatomical proximity of

mast cells and SP expressing afferent nerves was

increased. Together these data suggest that aging alters

sensory and neuro-immune signaling in the human gut.

Characterization of human bowel afferent nerves
and changes associated with aging

To date very few studies have attempted to record from

human afferents. In the first part of this study, we

conducted a series of afferent nerve recordings using

human tissues. Our first task was to characterize the

afferent nerve phenotype in man and investigate how

this changes as a result of age.

Many previous studies have investigated afferent

signaling using in vivo and in vitro animal models, this

has led to a classification of afferents depending on their

sensitivity to mechanical stimuli and the location of

the receptive fields. Previously, mechanosensitive

nerves have been classified into five subpopulations:

mesenteric, serosal, muscular, mucosal, and muscular/

mucosal afferents using colonic tissues from the rat22 or

mouse.23,24 In this study using mechanical stimulus as

a method of classification (probing, stretch, and muco-

sal stroking), the same subpopulations were identified.

Interestingly, we also identified a high proportion of

mechanically insensitive afferents (71%). This propor-

tion was much higher than what has previously been

reported for pelvic (23%) and lumbar splanchnic (33%)

afferents innervating mouse colorectum24 suggesting

that while some functional characteristics of gut affer-

ents might be species independent, there might still be

some species-related differences between human and

mouse that remain to be identified.

In our characterization, we also identified two

mechanically insensitive units which were recruited

following application of bradykinin. This type of

afferent has previously been identified as a silent

nociceptor, a fiber, which only fires following

Table 2 Characteristics of human bowel afferent chemosensitivity

Classification

Responsive

unit (age)

Drugs

BK

(10 lM)

CAP

(1 lM)

AITC

(300 lM)

5-HT

(10 lM)

Serosal

afferent

1 (55) Yes No Yes No

1 (42) Yes No Yes NT

1 (53) No Yes No NT

Silent

afferent

1 (67) Yes No No NT

1 (49) Yes No No NT

Muscular

afferent

1 (77) NT Yes NT Yes

NT, not tested.
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sensitization after exposure to an inflammatory medi-

ator.24,25 A previous systematic study revealed that

about 30% of afferents innervating the mouse colorec-

tum are normally mechanically insensitive, but a

proportion of them acquire mechanosensitivity after

application of an inflammatory soup.24 Silent afferents

may be important contributors to the development and

maintenance of hypersensitive states; therefore, iden-

tifying them and characterizing them in the human

might have significance to understanding the patho-

genesis of many GI disorders.

We also observed other functional characteristics

that have only previously been demonstrated in ani-

mals.23,26,27 These included graded responses to prob-

ing, fast adaptation to repeated stimulation and

mechanical sensitization induced by bradykinin, and
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the TRPA1 agonist AITC. A proportion of the afferent

units that we recorded exhibited chemosensitivity,

responding to CAP, bradykinin, AITC, or 5-HT. Inter-

estingly, four of these chemosensitive afferent units

also responded to mechanical stimuli, something

characteristic of a polymodal nociceptor. Unfortu-

nately due to tissue availability, extensive characteri-

zation of human bowel afferents was not feasible.

However, it is clear that many of the functional

characteristics previously identified in animals were

also present in our human bowel recordings.

In a recent study from our laboratory the effect of

aging on mouse afferent nerve sensitivity was mea-

sured. We found that aging correlated with a reduction

CBA

FED

LP

LP

Mucosa Submucosa Serosa
0

20

40

60

80

100

M
as

t c
ell

 d
en

sit
y 

(/m
m

–2
) ****

Colon mucosa

30 40 50 60 70 80 90
0

50

100

150

Age (years)

M
as

t c
ell

 d
en

sit
y 

(/m
m

–2
)

Ileum mucosa

30 40 50 60 70 80 90
0

50

100

150

Age (years)

M
as

t c
ell

 d
en

sit
y 

(/m
m

–2
)

G H I

Figure 5 Age-related changes in human bowel mast cell density. Representative images showing toluidine blue staining in the (A) mucosa, (B)

submucosa, (C) serosa. (D) A magnified image showing a mucosal mast cell. (E and F) Representative images of colonic mucosal mast cells from

young and aged donors (43- vs 84-year-old). (G) Mucosal mast cells density was much greater than that in the submucosa and serosa in the colon

(p < 0.0001, one-way ANOVA, N = 15). (H and I) Mucosal mast cell density in both ileum (p < 0.05, linear regression, r2 = 0.606, N = 8) and colon

(p < 0.05, r2 = 0.413, N = 14) was positively correlated with age. LP, laminar propria; MM, muscularis mucosae. Scale bar = 10 lm in D; 20 lm in

A–C, E, and F. ****denotes significance at p < 0.0001.

Figure 4 Density of SP-positive nerve fibers and the mast cell-SP anatomical relationship in the human colonic mucosa. (A and B) representative

images showing SP-IR (green) nerve fibers running through the laminar propria of colonic mucosa (54- and 80-year-old donors, respectively). (C)

Density of SP in colonic mucosa was reduced with advanced age (p < 0.01, r2 = 0.614, linear regression, N = 10). (D) Representative image showing

tryptase-positive mast cells (red) and SP-IR varicosities (green) in the colonic mucosa. (E) Magnified image showing the close apposition between mast

cells and SP. (F) Frequency distribution pattern of distances between mast cell and SP (N = 9). (G) A representative comparison of the frequency

distribution patterns in 54- and 80-year-old donors. (H) The percentage of mast cells within 1 lm distance to SP was increased with age (p < 0.01,

r2 = 0.741, linear regression, N = 9) but reduced within 8–9 lm distance (I: p < 0.01, r2 = 0.684, N = 9). LP, laminar propria; MM, muscularis

mucosae. Scale bar = 20 lm (A, B), 50 lm (D), 10 lm (E).
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in sensory firing and altered serotonergic signaling.11 A

similar decline in afferent sensitivity was also observed

for the human bowel although sample size was limited

by the availability of tissue. Basal nerve activity was

reduced with age, less burst firing was seen in prepa-

rations from older people and sensitivity to the

inflammatory mediator bradykinin was blunted. While

this is by no means conclusive evidence, these data do

support the concept that aging is associated with

reduced sensory signaling. This may contribute to

reduced pain signaling in the elderly.

Previous morphological studies suggest that neu-

ronal numbers in the enteric nervous system decline

with age.6,9,28,29 Sympathetic and vagal innervation in

the gut also show signs of degeneration10,30 and a

reduction in the size or number of primary neurons

in the mammalian nodose and dorsal root ganglia

(DRG) have been described.31 In this study, we

measured sensory nerve density using SP as a marker,

and found significant attenuation in immunoreactiv-

ity in correlation with increasing age. Two previous

studies also reported a decline in SP-positive nerve

fibers in the circular muscle of the aged guinea-pig

colon32 and the DRG of the aged rat.33 While we

recognize that this is just one marker of afferent

nerve endings, these data suggest that either neu-

ropeptide content in the afferent terminal is reduced

with age or that aging induces neurodegeneration in

the gut wall. Clearly further studies are still required

to fully identify how aging alters innervation patters

in the bowel, however, sensory neurodegeneration

may explain the decreased sensitivity observed in our

afferent nerve recordings.

Neuro-immune interactions and aging

Altered neuro-immune interactions might also play a

role in changing afferent sensitivity in the aged bowel.

Our data revealed an age-related increase in the density

of mucosal mast cells and EC cells in the gut wall. It

has been proposed previously that increased circulating

levels of pro-inflammatory cytokines including

interleukin (IL)-1, IL-6, tumor necrosis factor-alpha,

and IL-12, interferon-alpha/beta promote a low-grade

chronic systemic pro-inflammatory state in the

elderly.34–36 This state is associated with enhanced

immune cell infiltration and could explain the increase

in mast cell numbers observed in this study.

Previous studies have reported an anatomical asso-

ciation between mast cells and SP-positive nerves in a

variety of rodent organs, human skin, and the colon of

IBS patients.37–40 Interestingly, when we looked at the

proximity of mast cells to the SP-positive fibers in our

human tissues, we found a significant correlation with

age, whereby mast cells were in closer association with

the nerve fibers in tissues from older donors compared

to those from younger donors. In our analysis, we

normalized the absolute number of cells to the relative

distribution excluding the possibility that this closer

association was only secondary to increased cell num-

ber. Why this mast cells-nerve association is altered

with age remains unclear, however, it is tempting to

speculate that with aging, mast cells could migrate

toward the nerve fibers as a compensatory mechanisms

due to a reduction in innervation.

The EC cell, releases 5HT to regulate motility,

secretion, and neuronal activity. In our previous study

looking at the effect of aging in the mouse intestine,

we found EC cell numbers were elevated but that

afferent sensitivity to 5-HT was reduced. In this study,

numbers of EC cells in the ileum but not the colon

were also elevated with age. As with the increased

mast cell number, increased EC cell density might also

be a consequence of accumulation of inflammatory

events. It has been suggested that EC cell hyperplasia

and reduced serotonin transporter (SERT) expression

may persist in the gut as a consequence of short-term

inflammation.41 Indeed, in this study, we found a

positive correlation between mast cell number and the

density of EC cells in the ileum. However, our PCR

data found that the expression of TPH1 was not

changed suggesting that 5HT bioavailability is not

altered with age.

Limitations and advantages of using human
tissue

The vast majority of what we know about the function

of the gut has been gained from animal studies,

however, very little translational research looking at

Figure 6 Age-related changes in human bowel EC cell density. (A) Representative images showing a lateral view of an EC cell in a villus of ilium. (B

and C) EC cells detected in the ileal mucosa from young (B, 50-year-old) and aged donors (C, 87-year-old). (D) Representative image showing a topical

view of EC cells surrounding colonic pits. (E and F) Representative image showing EC cells in the colonic mucosa from a young (E, 49-year-old) and an

aged donor (F, 80-year-old). (G and H) EC cells density in the ileum (G, p < 0.05, r2 = 0.528, linear regression, N = 10) but not colon (H, p = 0.848,

r2 = 0.003, N = 16) was increased with age. (I and J) Consistently, EC cell density also showed positive correlation with mast cell density in the ileum

(I, p < 0.05, r2 = 0.818, N = 6) but not colon (J, p = 0.226, r2 = 0.201, N = 9). E, epithelium; L, lumen; LP, laminar propria. Scale bar = 20 lm in A and

D; 50 lm in B, C, E, and F.
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human GI physiology has been conducted. In this

study, we wanted to investigate how afferent signaling

and neuro-immune function was affected by age in

human tissues. Although studies on human tissues

offer the distinct advantage of looking directly at the

function of the human bowel, key disadvantages and

limitations exist. Firstly, conducting the ex vivo extra-

cellular afferent recordings using human tissues proved

to be extremely technically challenging. In a typical

recording of mouse jejunum, 10–15 afferent units can

be simultaneously recorded, however, in human tis-

sues, the recording sites were very close to the gut wall

and typically only 1 or 2 units were recorded. Secondly,

the region of the gut from where the tissues were taken

was unpredictable (i.e. ileum, colon, or rectum) and

tissue variability was an issue, finally variations in

donor age, gender, genetic background, and medical

history add complexity to the data. As previous studies

have revealed alterations in mast cell, EC cells, and SP

with IBS, understanding donor symptomology might

also influence the evaluation of age-related changes in

the gut. Although our specimens were taken from the

‘safe margins’ and appeared to be morphologically

normal, the changes we observed could have been

influenced by disease phenotype. Also outside our

control was any ongoing or previous treatment patients

may have been receiving.

CONCLUSIONS

This study is the first to provide insight into the

functional and morphological changes in the sensory

function of human bowel with age. Although reliant on

relatively small sample sizes, and taking into consid-

eration all the limitations described, we find that the

aged bowel has reduced afferent sensitivity and

increased immune cell numbers suggesting altered

neuro-immune function occurs with aging. Our find-

ings clearly show some key alterations in the human

gut. However, further studies are now required to

provide detailed mechanistic insight.
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SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article:

Table S1 Table showing the disease phenotype of specimens used in this study and the experiments they were

used for.

Table S2 Fluorescent probes sequences used in real-time quantitative PCR.

Figure S1 Correlation between success rate of a recording and the age and region of specimens.

Figure S2 Tissue integrity and ultrastructure of recorded nerves.

Figure S3 The association between mast cells and SP was not random.

Figure S4 Changes in TRP channel and EC cell gene expression in the human bowel.

Data S1 Supplementary methods.
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