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Abstract— This paper presents a position tracking system for 

real-time position estimation of a passive rehabilitation robot. The 
table-top robot shall be used for upper limb rehabilitation by 
stroke patients. Accurate estimates of the robot's position are 
determined by fusing data from two sensors: a laser optical sensor 
and a webcam. The laser optical sensor is mounted underneath the 
robot and tracks the motion of the robot relative to the surface on 
which the robot is used. The webcam is positioned above the robot 
and mounted on a stand fixed to the surface. The webcam detects 
the robot's motion relative to a fixed absolute coordinate system 
and supplies data at a lower frequency than the optical sensor. A 
data fusion scheme is implemented and validated in experiments 
where markers are moving along circular and pentagram 
trajectories. After the fusion is completed, a Kalman filter is 
implemented to investigate if it can improve the accuracy of the 
fusion tracking system. The results demonstrate that the 
developed fusion position tracking system can reliably track the 
robot’s position with greater accuracy than would be possible with 
the webcam or the optical sensor tracking systems on their own.  

Keywords— sensor fusion, position tracking, passive 
rehabilitation, Kalman filter. 

I.  INTRODUCTION  

Each year there are 110,000 cases of stroke reported in 
England. The estimated direct cost of stroke in 2008-2009 was 
at least £3 billion and the wider economical cost resulting from 
stroke cases was estimated to be £8 billion. Stroke is the single 
largest cause of adult disability in England, and approximately 
300,000 people are living with post–stroke complications. 
These numbers are likely to increase as the population ages [1].  

One of the state–of–the–art and rapidly developing 
technologies in post-stroke recovery therapies is robotic 
rehabilitation. A robot-assisted therapy has many advantages 
over hands–on, manual therapy. Robotic systems can monitor 
movements and measure motor skills and can deliver coherent 
training during each session [2][3]. Advances in robotic 
technology have resulted in the development of several 
advanced active robotic systems for upper limb post-stroke 
rehabilitation. Systems such as ARMin [4], MIT-Manus [5], 
GENTLE/s [6] and iPAM [7] have been developed to enhance, 
assist and assess arm rehabilitation. There is evidence that the 
use of these systems can contribute to a reduction in upper limb 
impairment in stroke patients. However, most of these devices 
are not used on a mass scale due to cost, complexity and a lack 
of comprehensive clinical trials [8].  

Robotic rehabilitation systems can be used to promote 
rehabilitation beyond the hospital stay. Nowadays, despite an 

initial hospital-based post-stroke rehabilitation being intensive, 
patients generally do not achieve their full recovery potential. 
This happens because after being discharged from hospital 
patients do not receive proper rehab training, which is mainly 
due to economic pressure and a lack of qualified human 
resources [8]. In order to enable patients to continue 
rehabilitation training at home, without the supervision of a 
qualified physiotherapist, a number of passive rehabilitation 
systems have been developed (e.g. balanced forearm orthosis 
and mobile arm support). However, these devices have many 
limitations, such as difficulty in adjusting the levels of support 
and resistance. Generally, they do not monitor the movements; 
hence they do not provide recovery feedback [9]. A novel 
approach to home-based arm and shoulder rehabilitation are 
table-top, low-cost devices such as the Arm Skate [10], 
ARMassist [11] and Reha-Maus [12].  All three of these devices 
are designed to support therapist-independent rehabilitation 
protocols incorporating computer games, which have been 
proven to maximize patient attention and therapy outcomes 
[13]. In order to monitor the patient’s performance during the 
exercise (or game), each of the aforementioned table-top 
devices includes a system estimating their position on the table. 
The Arm Skate uses a webcam to determine the absolute 
position of the robot. The ARMassist incorporates two 
subsystems to determine the position and the orientation of the 
robot: an absolute tracking system based on an optical mouse 
sensor and a relative tracking system based on two mouse 
optical sensors. Similarly, the Reha-Maus uses two subsystems 
to track its position: an absolute tracking system based on an 
infrared camera mounted on the ceiling and a relative tracking 
system based on incremental encoders measuring rotations of 
wheels mounted underneath the robot. The Reha-Maus uses a 
modified Kalman filter to fuse data from the two subsystems. 

In this paper, a novel position tracking system fusing 
position data from a webcam (absolute tracking) and an optical 
mouse sensor (relative tracking) is presented and 
experimentally evaluated. Position data from the webcam and 
the optical mouse sensor is fused to provide more accurate 
position estimates than would be possible using these sensors 
on their own. The developed tracking system can be used to 
track the position of a passive rehabilitation joystick, which is 
shown in Figure 1. The joystick is intended for use on a table 
top, with rehabilitation tasks displayed on a monitor. The two 
main subsystems are the low-cost position tracking system and 
the guiding system. The guiding system directs the patient’s 
movements in the correct direction. The position tracking 



system is introduced in this paper. Its objective is to monitor the 
trajectory of the patient’s movements in order to monitor the 
progress of their rehabilitation therapy. 

 
Fig. 1. Conceptual setup of a passive rehabilitation joystick system. 

II. POSITION TRACKING SYSTEM 

The developed position tracking system consists of two 
independent subsystems whose measurements are fused 
together. These two subsystems are: an absolute position 
tracking system, and a relative position tracking system, the 
main components of which are a webcam and an optical sensor 
respectively. The absolute position tracking system is based on 
a webcam mounted on a fixed stand and tracking a marker 
moving underneath it. The webcam detects the motion of the 
moving marker relatively to a fixed coordinate system. The 
relative position tracking system is based on a mouse laser 
optical sensor which is attached to the tracked object. The laser 
optical sensor detects motion relatively to the surface on which 
it is being used. A suggested fusion scheme, described later, 
combines position data acquired from the webcam and the 
optical sensor in order to obtain higher precision position 
estimates than would be possible if the systems were used on 
their own. Data sampling time is different and unsteady for both 
the webcam and the optical sensor. The optical sensor sampling 
frequency is assumed to always be faster than the sampling 
frequency of the webcam. A fusion trajectory is based on 
optical sensor measurements and the webcam measurements 
are utilized to correct the drift inherent to the optical sensor. 

A schematic diagram of a proposed fusion scheme is 
presented in Figure 2. The webcam acquires low-update-rate 
absolute position measurements which are subject to noise 
corruption. The optical sensor acquires fast-update-rate position 
measurements which are subject to drift affecting tracking 
accuracy. Position measurements acquired from the webcam 
and optical sensor are fused together utilizing the fusion scheme 
presented in this section. In the last step fused data which is 
partially noise-corrupted is filtered using a discrete Kalman 
filter. 

 
Fig. 2. Schematic diagram of the fusion scheme. 

A. Fusion scheme: A case when webcam data is not 
available. 

If the webcam data is not available the following equation 
was used to calculate the position: 
 
 qf (t)  =  qf (t-1) + ǻqo (t)   (1) 

 
qf is the fused position, ǻqo is an optical sensor-measured 
position increment from the most recent position measurement 
and t is the time when the measurement was taken. 

B. Fusion scheme: A case when webcam data is available. 

When webcam position measurements qf are present the 
position is calculated as follows: 
 
 qf (t) = qf (t-1) + ǻqo (t) + w×C(tw) (2) 

 
where w is a weight, C is a position correction term and tw is a 
time when webcam measurements are available. The correction 
term C is calculated according to: 

 
 C(tw) = qw (tw) – qf (tw) (3) 

 
qw is a position measurement from the webcam. qf was 
interpolated at  tw, for each iteration tw satisfies 

 
 tw  ≤  t  and  tw  >  t – 1 (4) 

 
Instead of adding the correction term C in one t time step to 
compute position results, it was divided by eight and added 
eight times. This approach minimises sudden sharp changes on 
a trajectory graph. Implementing the correction C over eight 
steps was done as the minimum measured number of 
measurements acquired by the optical sensor between two 
webcam position measurements was eight. 

 
The gain w is calculated based on an average strength (AS) 
parameter measured by the webcam. Average strength is a 
gradient magnitude of the detected edge (of the tracked marker) 
and it was measured on a scale from 0 to 1. The gain w was 
calculated using the following formulas: 

 
w = 0, for AS < 0.90 

 w = 6.25 × AS – 5.125, for AS ≥ 0.90 and AS < 0.98 (5) 
w = 1, for AS ≥ 0.98 

C. Kalman filter. 

The type of the Kalman filter used is a discrete Kalman filter 
which was applied to the fused position data [14]. The Kalman 
filter was designed to estimate the state of a discrete-time 
controlled process that can be described by the use of a 
stochastic difference equation 
 
ݔ  ൌ ିଵݔܣ  ݑܤ   ିଵ (6)ݓ

  
with a stochastic output equation 
 
ݖ  ൌ ݔܪ   ିଵ (7)ݒ



 
where xk is the process state and zk is the process measurement 
at the step k. The variable wk is the process noise and the 
variable vk is the measurement noise. H is a matrix of 
compatible dimension that relates the state to the output. uk is 
the optional control input. A and B are matrices that govern the 
dynamic behaviour of the system.  
 
Assuming that Q and R are the process noise covariance and the 
measurement covariance, the recursive discrete Kalman filter 
algorithm can be written with the following five equations: 

1) Time update equations 
a) A state prediction: ݔො ǉ ൌ ොିଵݔܣ   ݑܤ
b) Prediction of the error covarience: ܲ ǉ ൌ ܣ ܲିଵ்ܣ  ܳ 

 
2) Measurement update equations 
c) Computing the Kalman filter gain: ܭ ൌ ܲ ǉ்ܪሺܲܪ ǉ்ܪ  ܴሻିଵ 
d) Correct the state prediction (a) with updated 

measurement: ݔො ൌ ො ǉݔ  ݖሺܭ െ  ො ǉሻݔܪ
e) Update error covariance: ܲ ൌ ሺܫ െ  ሻܲ ǉܪܭ

 
The state of the marker tracked in the experiment, and a 

linear system of equations describing the velocity and position 
in a matrix form can be written as follows: 
 

ݍ  ൌ  ቂݔ௧ݔሶ௧ቃ ൌ  ቂͳ ܶͲ ͳቃ ቂݔ௧ିଵݔሶ௧ିଵቃ   ቂοܶଶοܶ ቃ  ሷ௧ (8)ݔ

 
Where ݔ௧ and ݔሶ௧ are the position and the velocity of the tracked 
object at the time step t. 
 
By comparison of the above equation with (6), we can write 
 

ܣ  ൌ ቂͳ ܶͲ ͳቃ ܤ  ݀݊ܽ   ൌ  ቂοܶଶοܶ ቃ (9) 

 
Position tracking performed during the experimental testing is 
a 2D tracking case with position data acquired for the X and Y 
coordinates.  The Kalman filter was applied separately to X and 
Y fused coordinates considering them to be one-dimensional 
tracking problems.  

III.  EXPERIMENTAL METHODOLOGY 

The sensor fusion scheme has been validated in 
experiments. Figure 3 shows a diagram of how the experimental 
apparatus was utilized. During the experiments, a robotic arm 
(Denso VS-068) was used to perform 2D movements which 
were tracked by the webcam and the optical sensor attached to 
a fixed stand. In order to evaluate the tracking performance, a 
reference (benchmark) trajectory was acquired using an 
Optotrak motion capture system with two infrared sensors. 

Data acquired by the Optotrak was sampled at 400 Hz with 
two infrared sensors: a moving body sensor (moving) and a lab 
frame sensor (stationary). According to the data acquired with 
the Optotrak, the measurement error was 0.17 (0.02) mm for the 
moving body sensor and 0.25 (0.001) mm for the lab frame 
stationary sensor. 

 
Fig. 3. Schematic diagram of the experimental apparatus. 

During experiments, two different trajectories were tracked: 
a circular trajectory and a pentagram star trajectory. During 
each experiment, each trajectory was repeated continuously ten 
times at three different velocities V1 (40 mm/s), V2 (55 mm/s) 
and V3 (70 mm/s). Position data acquired from the webcam and 
the optical sensor was fused and filtered using the Kalman filter 
after the experiments.   

IV.  EXPERIMENTAL RESULTS 

The results presented in this section are for the optical 
sensor tracking system, the webcam tracking system, and the 
fusion scheme. 
 

A. Result for optical sensor tracking. 

During experiments, a laser diode-illuminated optical 
sensor (ADNS-9800) was utilized. The mean measured 
sampling frequency of the optical sensor was 108.4 (21.9) Hz. 
During experiments three different optical sensor resolutions 
settings and three different surfaces above which the sensor was 
used were investigated. 
 

The optical sensor was measuring surface quality (Squal) at 
each time step. Sqaul is a number from 0 to 676 representing 
the number of valid features visible by the sensor at the current 
time step. The higher is the Squal, the more accurate the 
tracking results. Figure 4 presents mean Squal results for three 
movement velocities and three resolutions of the optical sensor. 
 

 
Fig. 4. Optical sensor surface quality (Squal) for circular and pentagram 
trajectories for three movement velocities and three resolution settings of the 
optical sensor. 



The data presented in Figure 4 shows that there is no clear 
dependence between the movement velocity and the Squal 
value. There is also no significant variation between optical 
sensor resolutions and Squal values. However, it can be noticed 
that mean Squal values for each optical sensor resolution are 
higher for the pentagram trajectory movement than for the 
circular trajectory movement. Table I shows mean Squal values 
for the three different surfaces types. 

TABLE I.  OPTICAL SENSOR SURFACE QUALITY (SQUAL) FOR 
CIRCULAR (C) AND PENTAGRAM (P) TRAJECTORIES AND THREE SURFACES 

(STANDARD DEVIATION IN BRACKETS) AT V3 VELOCITY AND 5000 CPI. 

Surface 
type 

Gaming 
mat (c) 

Gaming 
mat (p) 

MDF 
board 

(c) 

MDF 
board 

(p) 

White 
paper 

(c) 

White 
paper 
(p) 

Squal 
53.20 
(6.38) 

57.90 
(6.48) 

37.81 
(4.30) 

39.55 
(6.94) 

36.58 
(4.36) 

39.24 
(6.01) 

 

The data presented in Table I shows that mean Squal values 
are higher for the pentagram trajectory movement tracking than 
for the circular trajectory movement tracking for each of the 
three surfaces. The mean Squal value is the highest for the 
gaming mat surface – it is more than 40% higher than the mean 
Squal values for the MDF board. The lowest Squal values were 
observed for the white paper. Based on the results presented in 
Table I, the best tracking performance of the optical sensor can 
be achieved with the gaming mat surface. 

Table II shows the dependence between optical sensor drift 
values per 100 mm travelled and the resolution of the optical 
sensor. The total drift was calculated as a distance between the 
start and the end point of the trajectory tracked by the optical 
sensor. The drift per 100 mm traveled was calculated by 
multiplying the total drift with 100 mm and dividing by the total 
distance traveled. The data in Table II indicates that the drift per 
100 mm traveled values do not vary significantly with different 
optical sensor resolutions. However, it can be noticed that the 
drift values for circular trajectory tracking are double those of 
pentagram trajectory tracking. 

TABLE II.  OPTICAL SENSOR DRIFT (MM) PER 100 MM DISTANCE 
TRAVELLED FOR CIRCULAR (C) AND PENTAGRAM (P) TRAJECTORIES AND 
THREE OPTICAL SENSOR RESOLUTIONS AT V3 VELOCITY AND 5000 CPI. 

Resolution 
[cpi] 

1800 
(c) 

1800 
(p) 

5000 
(c) 

5000 
(p) 

8200 
(c) 

8200 
(p) 

Drift 
[mm] 

0.30 0.15 0.33 0.16 0.32 0.13 

 
Table III shows the relation between surface type and drift 

values. As expected, for the pentagram trajectory tracking the 
lowest drift value (0.16 mm) was recorded for the gaming mat. 
However, for the circular trajectory tracking the lowest drift 
value was recorded for MDF board (0.07 mm), whereas a 
corresponding value for the gaming mat was 0.33 mm. It is 
difficult to explain the unexpectedly low drift value for the 
MDF board during circular trajectory tracking. Squal values 
presented in Table I are lower for the MDF wood than for the 

gaming mat, therefore it was expected that the drift value for 
the gaming mat would be the lowest while tracking a circular 
trajectory. The very low drift value (circular trajectory) for the 
MDF board can be explained by the fact that the direction of the 
optical sensor drift changes during movement and in this special 
case the drift was effectively being cancelled out. 

TABLE III.  OPTICAL SENSOR DRIFT IN MM PER 100 MM DISTANCE 
TRAVELLED FOR CIRCULAR (C) AND PENTAGRAM (P) TRAJECTORIES FOR 

THREE SURFACE TYPES AT V3 VELOCITY AND 5000 CPI. 

Surface 
type 

Gaming 
mat (c) 

Gaming 
mat (p) 

MDF 
board 

(c) 

MDF 
board 

(p) 

White 
paper 

(c) 

White 
paper 
(p) 

Drift 
[mm] 

0.33 0.16 0.07 0.75 2.25 1.88 

 

B. Result for webcam tracking. 

During the experiments, a standard webcam (Logitech Pro 
9000) capable of recording at 30 fps maximum was used. The 
webcam was mounted on a stand above the tracked object and 
covering an area 448 by 336 mm, larger than an A3 sheet of 
paper. The selected resolution was 640 by 480 pixels, therefore 
1 pixel was equivalent to 0.7 mm. In order to neutralize the 
effect of lens distortion, a division calibration method was 
applied, which reduced the maximum sampling frequency. The 
mean measured sampling frequency for the webcam was 10 
(0.05) Hz. The diameter of the tracked marker (matte red 
painted ball) was 40 mm. In order to monitor the quality of the 
recorded data (with the webcam) two parameters were recorded 
at each time step: average strength (AS) (gradient magnitude of 
the edge) and radius of the tracked marker. Table IV shows the 
relation between mean AS values, marker radius and the three 
velocities. No significant dependence between AS and 
experimental velocities was observed. The AS values are 
similar for the circular and pentagram path tracking. However, 
it can be noticed that the marker radius measurements are more 
accurate for the circular movement tracking than for the 
pentagram movement tracking. This suggests that there is an 
image calibration accuracy problem, which can be solved using 
a more efficient image calibration method. However, this can 
lead to an increase in the computational cost of the position 
calculations. 

TABLE IV.  WEBCAM AVERAGE STRENGTH AND MEASURED RADIUS OF 
THE MARKER FOR CIRCULAR (C) AND PENTAGRAM (P) TRAJECTORIES FOR 

THREE VELOCITIES (STANDARD DEVIATION IN BRACKETS). 

 V1 V2 V3 
Average 
Strength 

(c) 
0.985 (0.010) 0.985 (0.010) 0.986 (0.010) 

Average 
Strength 

(p) 
0.985 (0.008) 0.987 (0.009) 0.987 (0.009) 

Radius 
mm (c) 

19.94 (0.47) 19.94 (0.48) 19.92 (0.49) 

Radius 
mm (p) 

19.68 (0.44) 19.67 (0.48) 19.59 (0.51) 

 



C. Results for the fusion of webcam and optical sensor data. 

The performance of the fusion tracking scheme was 
experimentally evaluated. To compute the results trajectories 
tracked with the Optotrak were used as a benchmark to evaluate 
the performance of the other tracking systems. Figure 5 presents 
a comparison between root mean squared errors (RMSE) of the 
tracking systems at three velocities. Fusion trajectory is based 
on combined webcam and optical sensor tracked position 
results, therefore it is significantly dependent on the 
performance of these two systems. The RMSE values in Figure 
5 show that the fusion scheme is benefiting from both the 
webcam and optical sensor tracking systems. At each velocity, 
the RMSE value is lower for the fusion scheme when compared 
to RMSE values for the webcam and the optical sensor. 
Utilizing the Kalman filter to filter the fused position data did 
not improve the accuracy of the fusion tracking system. It can 
be noticed in Figure 5 that RMSE values for the Kalman filter 
are slightly lower for the circular movement tracking than the 
corresponding values for the fusion. However, for the 
pentagram point-to-point movement tracking, the RMSE values 
for the Kalman filter are higher than the corresponding RMSE 
values for the fusion. It seems that using the Kalman filter was 
not significantly beneficial, as the fused tracking data was not 
very noisy. Utilizing the Kalman filter may be beneficial for 
tracking movements at velocities higher than the velocities used 
during the testing or tracking movements with changing 
acceleration. 

 
Fig. 5. Root mean squared error (RMSE) for optical sensor, webcam, fusion 
scheme and Kalman filter, for circular and pentagram trajectories for three 
velocities. 

Figure 6 presents a sample plot of root mean squared 
tracking error vs. time for the tracking of a pentagram 
movement repeated seven times at V3 velocity. It can be 
observed that the tracking error value for the optical sensor was 
diverging with time. No significant divergence was observed 
for the webcam, fusion and Kalman filtered fusion. 
 

 
Fig. 6. Tracking root mean squared error vs time for the pentagram movement 
tracking at V3 velocity, on a white paper surface. 

 Figure 7 presents the circular movement tracking results for 
one full movement repetition (revolution). It grants a closer 
look at sample plots of X and Y coordinates, surface quality 
(Squal) measured with the optical sensor, and average strength 
(AS) together with the marker radius (R) measured with the 
webcam plotted against the same time scale. It can be seen that 
the optical sensor measurements diverge and that the trajectory 
of the fusion scheme is similar to the Optotrak reference 
trajectory. 

 
Fig. 7. Results for the circular movement tracking: one full revolution (a), 
sample plot of X coordinate vs time (b), sample plot for Squal (optical sensor) 
and AS and R plots vs time and sample plot of Y coordinate vs time (d). 

 Similarly, Figure 8 presents the pentagram movement 
tracking results for one full movement repetition. It grants a 
closer look at sample plots of X and Y coordinates, Squal, AS 
and R plotted against the same time scale. In this case, optical 
sensor measurement divergence is more noticeable than during 
the circular trajectory tracking. However, once again the 
trajectory of the fusion scheme is similar to reference trajectory 
recorded with the Optotrak. 
 



 
Fig. 8. Results for the pentagram movement tracking: one full repetition (a), 
sample plot of X coordinate vs time (b), sample plot for Squal (optical sensor) 
and AS and R plots vs time and sample plot of Y coordinate vs time (d). 

V. DISCUSSION 

According to the results, fused data from the webcam and 
the optical sensor can be successfully utilized for position 
tracking of a passive rehabilitation robot resulting in more 
accurate position estimates than would be possible if the 
systems were used on their own. Interestingly, in this case it has 
been shown that using the Kalman filter did not improve the 
tracking performance as the tracking trajectory was not very 
noisy. Instead, a simpler approach using a fusion algorithm with 
an eight-step correction reduced sudden position data changes 
during trajectory corrections and provided an effective strategy 
for position tracking. There are many forms of the Kalman filter 
which can be implemented, and only the simple discrete 
Kalman filter was investigated in this work. However, different 
types of the Kalman filter will be considered in future work if  
this become necessary. Nonetheless, as long as it performs well, 
the fusion algorithm will be kept as simple as possible in order 
to increase computational efficiency.  

It has been noticed that the accuracy of position estimations 
calculated with the fusion algorithm is limited by the quality of 
absolute and relative position measurements from the webcam 
and the optical sensor respectively. The accuracy of the 
webcam positioning is highly dependent on the implementation 
of a calibration method, whereas the accuracy of the optical 
sensor positioning varies with different surface types.  

The methods employed in this work can be adapted to 
include the tracking of orientation in addition to linear position. 
This requires one additional optical sensor and an extension of 
the fusion algorithm. In its current form, the algorithm cannot 
be used to track simultaneous changes in an object’s position 
and orientation. 

The focus of the work reported here was to evaluate the 
feasibility and performance of the above techniques under 
controlled conditions. The trajectories used were representative 
of human movement in terms of their speed and range of 
motion. However, to ensure this work is appropriate for use in 

the design of home rehabilitation equipment, a key requirement 
to evaluate these techniques using human participants must be 
fulfilled. Testing with human participants will reveal the effects 
of different features of movement such as jerk and spasm on the 
tracking performance of the system.  

VI.  CONCLUSIONS 

A novel type of a position tracking system fusing data from 
a webcam and an optical sensor was proposed and 
experimentally evaluated, demonstrating appropriate 
performance (both temporally and spatially) for use in 
rehabilitation. The accuracy of the fusion tracking system can 
be further improved by improving the calibration of the 
webcam. The proposed fusion tracking system is simple and has 
the potential to be easily be implemented in a table-top robot 
designed for home-based upper limb rehabilitation. 
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