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ABSTRACT

Purpose: This paper presents a statistical approach for the prediction of trabecntaparameters
from low-resolution multi-sequence MRI in children, thus addressing the limitavénisigh-
resolution modalities such &R-pQCT, including the significant exposure of young patients t@aradi

tion and the limited applicability of such modalities to peripheral bones in vivo.

Methods: A statistical predictive model is constructed from a database of MRI and HR-p@C
tasets, to relate the low resolution MRI appearance in the cancelloutotibadrabecular parameters
extracted from the high-resolution images. The description of the MRI appedsaackieved &-
tween subjects by using a collection of feature descriptors, which describe thre mxiperties in-
side the cancellous bone, and which are invariant to the geometry and size of the tratessuldha
predictive model is built by fitting to the training data a nonlineatigideast square regressior-b

tween the input MRI features and the output trabecular parameters.

Results: Detailed validation based on a sample of 96 datasets shows correlations > @ahkibev
trabecular parameters predicted from low-resolution multi-sequence MRI badleel mroposed at

tistical model and the values extracted from high-resolution HRp-QCT.

Conclusion: The obtained results indicate the promise of the proposed predictive tecforigoe
estimation of trabecular gamreters in children from multi-sequence MRI, thus reducing the need for

high-resolution radiation-based scans for a fragile population that is under developmeawoindahd g

Keywords: Prediction of trabecular parameters, HR-pQCT, skeletal MR, texture dessrifeature

selection, partial least squares regression.
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. INTRODUCTION

The study of skeletal growth and development is an important yet challenging researgtitlain
musculoskeletal imagi The assessment of bone-microarchite¢tiiiein particular, can provide
significant insight into the changes that occur during skeletal development in relatioretal sk g-
rity, as well as a clearer understanding about the factors underplomegfracture and disease in
children and adolesce

Essentially, bone micro-architecture consists of an ensemble of separated anisctbmuulae,
which react to the loadings and stresses that the bone is subj Bdothe assessment of these
trabeculae, important parameters or morphometric indices can be calculated, whiokasures
characterizing the three-dimensional microstructure of the cancelloug fholmongst these, @
becular thickness (Tb.Th) estimates the mean thickness of the trabeculae. Abditicatzecular
spacing or separation (Th.Sp) measures mean space between the trabeculae. Anothat paport
rameter is the trabecular number (Th.N), which indicates the number of trabpeularit length
(mm)EI

To estimate these parameters, imaging of the cancellous bone in very highsdefqiliredi.e.
through imaging modalities that can produce much higher image resolutions tharcahwsenly
used in clinical practice such as standard magnetic resonance imaging (MRI).ndidatamoda
ties for this purpose are micro-Ciland high-resolution peripheral quantitative CT (HR-p )

Micro-CT (isotropic resolutior- 8um) is only limited to ex vivo imaging following bone biopsy and

thus far has been used mostly for orthopedic resé%lﬁéhOn the other hand, whildR-pQCT (iso-

tropic voxel size 82m) has shown promise for bone assessment in adoleﬁenhte modality can

only be used to acquire high-resolution images of the ultra-distal radius and tibig ‘(Tf‘r mand so

may not provide an accurate reflection of proximal appendicular and axial skeletastnicture
Furthermore, the radiation associated with X-ray based modalities timgitsroutine use in clinical
practice for children and adolescents, in particular in longitudinal studiessiquire repetition exa

inations to assess bone strength/growth over time.



73 Amongst alternative imaging modalities, Magnetic Resonance Imaging (MRIXdpgoai potential
74  solution to bone imaging in children as it imparts no ionizing radiation. ¥e&on@e, high-resolution
75 images derived from 3T and 7T MRI scanners have been investigated as a messessihg &

76  becular bone but it is limited to research studies as special coils and sequaihss are required,

77  although there is clear potential for future clinical applica tﬂlﬂ’ Standard clinical 1.5 T MRI, on

78 the other hand, provides a unique image-weighting contrast mechanism by varyaugytisition

79  parameters to exploit tissue relaxation properties (e.g., T1 recovery, T2,dbaayproducing a nhu

80 ti-sequence stack for the same image. Each MRI sequence typically displays distincinapgpea
81  properties, thus highlighting varying aspects of the tissue under investigation.

82 Cortical bone and trabecular bone have extremely short intripgjardton relaxation time) values
83  (0.4-0.5 milliseconds), low water content, and thus relatively low MR-deteatsdectization thus
84  producing a limited signal and appearing dark next to bone marrow (white) on congemiRI

85 sequences. Water is predominantly bound to collagen with the remaining fractionrfonicdapores

86 of the Haversian and the lacunar-canalicular system of cortical bone. Concentional MRI sequences
87  use spinecho imaging with relaxation times (TE’s) of 8-10 milliseconds and with gradient echo pulse
88 reducing TEs to 1-2 milliseconds. Recently pulse sequences with even shorter thEsdnge of
89  0.05-0.20 milliseconds have been developed by the use of half radiofrequency exgitatidmsse

90 ultrashort TE (UTE) pulse sequences have TEs about 10 to 20 times shorter than prdeiss!

91 oped sequences and have been used to quantify both trabecular and cortical bone patdvhéters

92  sequence MRI has been applied for the study of various musculoskeletal bones, jointsteastisft

93 Ij However, its potential for the estimation of trabecular parameters rermeges/lunclear and un-

94  explored.

95 In this work, we present a new technique for the prediction of trabeculangtara of bones in

96 children from multi-sequence MRI. Instead of performing the calculationslgitthe MR images,

97  which is difficult due to the complexity and low-resolution of these images, we indalueethod

98 that learns statistidgl the relationship between the low-resolution MRI appearance in the cancellous
99 bone and the trabecular parameters as extracted from high-resolution imageheatatimation of

100 high-resolution information from low-resolution image data is a well-knovablpm in computer

4
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vision[“*[”| In this work, a database of both MRI and HR-pQCT datasets of the same patoehts

lected and used as a training sample for a nonlinear regression model, which isesulyseged to
predict the trabecular parameters conditioned on the information extracted fromo itowier-
resolution MR images. Due to the variation in the image properties and gesnoétthe trabecular
areas, a collection of invariant image descriptors are calculated from thenddgés to obtain con-
sistently the same level of information in all the cases. Featurdigelecapplied to select theed
scriptors that are the most relevant for the prediction of each trabecular paramepertefitial of the

proposed technique is shown based on a data sample acquired from 96 children.

(a) MR image (b) ROI delineation (d) HRpQCT image

(f) Build predictive model

X Kernel Y
== PLSR —_— l
(c) Calculate textural descriptors REGRESSINMODEL (e) Extract trabecular indices
Lo | Zy|eee|eee | T, | eee]een | L, yl yz yﬁ
INPUT OUTPUT

FIG. 1. Schematic diagram illustrating the main steps involved in the proposedcsthagproach

for the prediction of trabecular parameters conditioned on MR images.

II. METHODS

The aim of the proposed technique is to predict statistically the unkimalecular indices based on
the information contained within low-resolution MR images of the cancellaws. Ry using a train-

ing sample that contains both low-resolution and high-resolution data tohlteeular areas, we learn

a predictive regression model by following the workflow schematicallgrdees] in Figure 1 and the
steps summarized as follows:

Step 1: Collect a data sample in which each individual undergoes both a multi-sequenceadRI sc

and a high-resolution HRpQCT scan of the same bone regions.



120  Step 2: Calculate the trabecular parameters using the high-resolution HRpQCT images.

121 Step 3: Delineate the trabecular bones on the MRI images.

122  Step 4: Calculate texture descriptors that describe the appearance patterrslifyariepeatability,
123  complexity) inside the trabecular region.

124  Step 5: Select for each sequence and trabecular parameter a subset of texture Vidhtunasimal
125  prediction power.

126  Step 6: Build a nonlinear regression model between the optimal textures and the trapeacane-
127  ters, which is the output of the proposed method.

128 The details of these steps are now given in the subsequence Subsection ICA to II-

129 A. Patient Data

130 We recruited 96 volunteers aged 13 to 16 years old to undergo HRpQCT and skeletsMRRlof
131 the non-dominant ultra-distal tibia at 1.5 T. Clinical pathologiesevescluded from this study. The
132 non-dominant limb was scanned as this is standard practice in clinidedsstlue to the influence of
133 additional forces through physical activity for example. Participants wengitegcfrom local adve
134 tisements, from healthy cohorts who had taken part in previous bone-related reseafadm the
135  orthopedic clinic at Sheffield Children’s NHS Foundation Trust, UK. Written informed consent was
136  obtained from all participants. The following exclusion criteria wemieg— known metabolic bone
137 disease, previous orthopedic surgery or fractures that preclude imaging tedselts, history of
138 long term immobilization, known chronic/systemic illness, endocrine disorders, genadiomes,

139 use of oral or intravenous steroids, and known skeletal dysplasia, or any contraindications to MRI.

140 HR-pQCT data acquisition: HR-pQCT image acquisition and analysis of the distal tibia was pe
141 formed using the standard built-in software (XtremeCT, V 6.0, Scanco Medical A@is8llen,
142  Switzerland) and in accordance with the methods used previously by Paggioﬂetnaall post-
143  pubertal participants with fused tibial growth plates, a reference lisglaaed on the scan image at
144  the endplate of the distal tibia to indicate the position of the first measurdicer{f28.5 mm and 9.5

145 mm proximal from the reference line for the tibia and radius respectivelpye-pubertal and those
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participants with open tibial and growth plates, the reference lingphaesd on the scan image at the
proximal end of the growth plate to indicate the position of the first measurementlsinm prox

mal from the reference li All scans were performed using the non-dominant limb. A single stack
of parallel CT slices (110 slices = 9.02 mm) for each site was adquirthe high resolution mode
(image matrix = 1536 x 153@-plane resolution = 28 pm, acquisition time = 2.8 mins). Dailysmea
urements of the manufacturer device-specific phantom (Scanco Medical AG, éiditfiSwitze-

land) were performed to monitor the stability of the XtremeCT. Tibial trddeaucrostructural p-
rameters measured were included trabecular number (Tb.N, 1/millimeters), laabdbictkness

(Tb.Th, millimeters), and trabecular separation (Tb.Sp, millimeters).

MRI data acquisition: All MRI data were acquired on a GE Signa Horizon HDXT 1.5 Tesla (Gen-
eral Electric, Milwaukee, WI, USA) whole body clinical system, usimyanufacturer supplied ankle
colil. In this study, the MRI protocol included our standard roufibeveighted Fast Spin Echo (T1),
T2-weighted Fast Spin Echo (T2), T2*-weighted Gradient Echo (T2*), Fast Imaging #nplo
Steady State Acquisition (FIESTA) sequences used in clinical practice, alongivibhort Echo
Time Dual Echo (UTE) and Ultrashort Echo Time Dual EchghHResolution (UTE-HR) sequences
provided by the manufacturer for research purposes. The UTE sequences were acquiredern thre
sions, i.e. UTE_1, UTE_2, and UTE_sub, which refer to the 1st and 2nd echoes of thédual ec
guence and their subtraction, respectively (similarly for the HR vejsMfesthus obtain a total of 10
MRI sequences in this study (T1, T2, T2*, FIESTA, UTE_1, UTE_2, UTE_sub, UTE_HR_1, UTE_
HR_2, UTE_ HR_sub).

All imaging sequences were acquired in the axial plane and the pulse sequanestgrarare pro-
vided in Table 1. Furthermore, the images were processed with the calibration pror&s@hbsed
Array Uniformity Enhancement), which is a correction for non-uniform signehsity from the e-
ceiver coil. Due to time constraints (i.e. keeping the scan time reasonahly tsteosubjects did not
have all sequences performed, but were randomly assigned a subset and the number okeabes for
sequence is given in Table 1. The slice thickness was tuned for each sequedee tio give a good

diagnostic quality image and without compromising signal to noise ratio, \WRIIBTE high resolu-
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tion images generally have thinner slices. Note that the same protocol wfthéothe region of
interest (9.02 mm) for HRpQCT was also applied to skeletal MRI imagirensure that the same

region of interest and the same limb was imaged for comparison.

TABLE 1. A summary of the MRI pulse sequence parameters used in the study.

Sequencg No. | TR TE a | Res FOV No. | Slice | Scanning| Band-
cases (ms) (ms) (mm)| (mm) | slices| Th. time width

(mm) | (mins) | (kHz)

T1 26 | 400 16.3 9¢° | 0.35 | 180x180| 12 3.0 2.20 20.83
T2 46 | 4000 98.2 9¢° | 0.35 | 180x180| 11 4.0 4.32 41.67
T2 48 | 705 13.3 25° | 0.35 | 180x180| 11 4.0 5.22 13.89

FIESTA 27 | 5.93 2.67 80° | 0.54 | 280%x280] 9 4.1 0.65 83.33

UTE 47 | 11.6 | 0.03/4.37| 1 | 0.5 | 140x140{ 20 3.0 4.18 62.5

UTE-HR | 30 | 18.1| 0.03/7.17| 1¢° | 0.3 | 140x140| 10 2.0 6.21 62.5

All the MR images were transferred in DICOM format onto a standard PC waoksgatd con-

verted into the Analyze 7.5 (AnalyzeDirect Inc., Overland Park,|Wi8w.analyzedirect.coinfile

format using custom software. Regions of interest were then drawn to demarcate borte; ta-
becular bone and background noise on each sequence acquired in each patient,cifioadlyspa

the three slices proximal to the growth plate using 3Dslicer V ﬂ(ﬁ;urgical Planning Lab,

Brigham and Women’s Hospital, Boston, MA,|www.slicer.ord. These regions of interest were then

exported in Analyze 7.5 format to provide tissue masks for further analysis, aatddstichemati¢a

ly in Figure 1.

B. Textural Feature Descriptors

The aim of this work is to build a predictive model of the form:


http://www.analyzedirect.com/
http://www.slicer.org/
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Y predicted — X MR]A ! (1)

where A is the regression matrix of the model, estimated statistically from aimveny sample as
detailed below. In the proposed method, the output of the predictive model is simgignarsional

vector that contains the three trabecular indices of interest, i.e.,

Y, = Tb.Th,
Y predicted — (y 1Y,Y QTa Wherey2 = TbSp, (2)
y, = Tb.N.

For the input of the predictive model, we need a vegfor, which describes the appearance and

the contextual information contained within of the cancellous bone in the MR imagespas:foll

X\RI :(xv"'?xiawaxm)T' (3)

More specifically, we calculate: image texture descriptors from the entire cancellous bone area
such that the computed properties are invariant to differences in bone shape andasthe, mumber
of slices used to image the bone. In other words, we choose feature descriptors that conrvey inf
mation about the trabecular appearence in the cancellous bone. From an image analgsisvpers
trabeculae are pattertisat can be characterized by the variability, repeatability, and/or comptdxity
the underlying image texture. In accordance with these notions, we can clasfifyttines used here
in these distinct types of of complementary nature as detailed below. The midthéderivations of

the descriptors are summarized in Table 2 to enable researchers to re-implement them.

Statistical variability: Moment-based statistical features are computed directly on image intensity
values and will enable to obtain some information about the ratios ebwnand bone. The average
intensity (feature 1 in Table 2) is expected to be higher or lower dependimgatargelative quant

ties of marrow and bone. The spread of the intensity values as captured in the stathdisbhre
deviations (features 2 and 3 in Table 2) may relate to the trabecular regulangtydimectly as ind

vidual voxel values are determined less or more by mixture of bone and marrow re§jibesesa-

tistical moment-based features we consider in this work are skewness (#@ancekurtosis (feature
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5), which describe the shape of the distribution of the intensity values in thdlamasmdmne. Note
that for the statistical descriptors, the image intensity ranges were mapmzety Ibetween 1 and 256
to obtain normalized intensities between subjects. While the limited iigteasge of the cancellous
bone allowed this to be a sufficiently good approach, more sophisticated normalizatiorclaggproa
should be considered to mitigate the risk of outlier intensities dominating the remagpihtp better

match the actually non-linear relationship between intensity values in different acgsisit

Repeatability of the patterns: In this section we estimate Grey Level Co-occurrence Matrices
(GLCM‘S)E| which encode information about fixed-size neighborhoods and are parameterized by a
displacement vectcd. The entryGZ, in a GLCMG? reflects the frequency of observing the veiue

at locationsx in the ROI and valuv at locationx + d, also in the RQIBy using a fixed set of i
placements, we can build several GLCM's and combine them as appropriate for our applitati
this paper, we use the four in-plane displacements of 1 pixel (or ac/2afiixels for the two diagr

nal displacements) that comprise half of the 8-neighbourhood, as we are lookinguiesfesanaller
than our voxel sizes (trabeculae). Statistics on the summation of these faoesnate then used to
convey information about the regularity of patterns occurring (energy, enitnagymum: features 6,

7, and 8, respectively), in addition to some information about the types of the pdimnselves
(contrast: feature 9; homogeneity: feature 10). Note that the maxiefens to the highest value in
the GLCM, or in other words the probability of the most likely co-occurringgiaintensities. This is
greatest when the maximum probability reaches its theoretical miniireimvfien the distribution is
uniform). For all the GLCM features, we estimated the 5th and 95th itytgresicentiles for each
ROI, and the corresponding intensity range was mapped between 1 and 16 to ensiget suétrix

density.

Complexity of the patterns: In addition to measures like the GLCM entropy, we use run-length analy-
sis to establish a measure of complexity of the patterns. While the GLCM analysis is confined to fixed
neighborhood sizes, this analysis provides a complement in that it does not Hawelisoitation;
instead this encodes information for maximal areas (linear only) of equalitar sntensity in a run-

length matrix (RLM)R, where the entrieR,, ,, indicate the relative frequencies of observing intensity

10
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u a total ofv consecutive times, under condition that such a sequence is immediately preceded and
followed by either another intensity or the ROI boundary. From these summariegave iofor-
mation about fragmentation (short primitive emphasis, long primitive engplieatures 11 and 12 in
Table 2), regularity (primitive length uniformity: feature 13) axK of such variation (grey level ian
formity: feature 14). As with the GCLM, we compute this only in-plane, alovage scan lines, and
sum the RLM’s obtained in the two directions. In this section, the image intensity ranges were
mapped linearly between 1 and 32 to ensure sufficient matrix density. Noteahgestquantization
would lead to greater numbers of long runs and likely a greater spread engths| leading once
more to sparse RLM’s. Therefore, we used a quantization level different from that used to compute
the GLCM’s.

The final measures of complexity used are based on the Fractal Dimdm3joof the image. The
FD as proposed measures, informally speaking, a ratio of the change in detail to the change i
scale, by a log linear fit to the intensity standard deviations obtaineffieaeu rates of subsampling.
While the run length features could work in only one dimension at a timé&,Dtheorks in two &
mensions. Using a differential box-counting apprﬁl:theFD at each pixel in a slice is computed,
resulting in theFD imageF, and these are aggregated in the mean, standard deviation and laeunarity
the latter a measure of how densely the fractal fills the space it infifgaitares 15, 16, and 17 in

Table 2). For more details on the method of computing the Kizalve refer to the appendixlﬂ

TABLE 2: A summary of the image feature descriptors and their mathematicaltidainiusing
imagel, Region of InteresQ (as a set of pixels/voxels), Grey Level Co-occurrence MGyiRun-

length MatrixR, Fractal Dimension maF, and subscripts for indexing.”

Num. | Feature descriptor Type Equation

1
1 Mean Statistical MQ, 1) = Tl z I;
ieQ

11



Uy :M(.Q,I)

Yieal; — u)?

2 Standard deviation Statistical SD(Q, 1) = T
. . icall; —
3 | Absolute deviation Statistical AD(Q, 1) = W
||Q”ZLEQ(I .ul)3
4 | Skewness Statistical Sk(Q,1) = ) 3
2
(”Q” 12169(1 ) )
1 4
mzz‘enﬂi — W)
5 | Kurtosis Statistical Kur(Q,I) = 1 3
(mzl’enai - .UI)Z)
— 2
6 | Energy Pattern/GLCM Ene(G) = Z Gij
ij
7 | Entropy Pattern/GLCM Ent(G) = - Z GijlogGy;
ij
8 | Maximum Pattern/GLCM Max(G) = max G,
9 | Contrast Pattern/GLCM Contr(G) = z“ —J1Gy
ij
. Gij
10 | Homogeneity Pattern/GLCM Hom(G) = z [T
iJ
P Tmax
Reot = Reoe(R) = ) Z Ry
a=1 r=
14 Tmax
11 | Short primitive emphasis | Run-length SPE(R) = 2
tota 4 A= r

12




257

258

259

260

261

262

263

264

265

266

P Tmax
o . 1
12 | Long primitive emphasis | Run-length LPE(R) = Z Z Ry, 12
Reot a=1 r=1
1 Tmax 14 2
13 | Primitive length uniformity | Run-length PLU(R) = Z Z Rar
tot r=1 \a=1
1 14 Tmax 2
14 | Grey level uniformity Run-length GLU(R) = Z Z Ryr
tot =1 \ r=1
. - - . 1
15 | Fractal dimension mean | Fractal dimension FDM(Q,F) = mz Fi
=)
Fractal dimension standarg . co(F; — p1p)?
16 Fractal dimension FDSD(Q, F) = Zieal\i — HF)”
deviation [l
Fractal dimension ||_111||2i69 F?
17 Fractal dimension FDL(Q,F) = 1 1
lacunarity (”—Q” dicq Fi)

C. Nonlinear Regression M odel

In this section we describe the technique usdalild an optimal regression model that estimates the

missing trabecular parameteys . based on the values of the feature descriptors ig thevector

(see Eq. (1)). More specifically, we need to define statistically tireggign matrixA such that the
predictions are optimal. Furthermore, we need to take into account the likegnpeeof non-linear
inter-dependencies in the data.

To achieve these goals, we implement a nonlinear regression model based on pariglideast
regression (PLSFm which has several suitable properties for the present work, in particudail-ts

ity to build optimal models from relatively small training samples, and its robustneeisﬁ

13



267 Let us denote aX = (x”,...,x")) the matrix of all the input data (we remove the index MRI from

268 eachx, for simplicity) as obtained from the/ samples, and¥ = (y",...,y'") the matrix of all

269 the corresponding output trabecular parameters. The aim of PLSR is to perform angoudtd-

270  composition ofX andY such that the score vectors obtained along the new representation axes of
271  both the input and output matrices correlate best, thus leading to optimal predi@ne solution to

272  the problem can be obtained through the NIPALS algom\More specifically, we wish to extract a

273 set oft latent variablesC = (c,,...,c,) from the input training datX that correlate most with the

274  output training trabecular vectors. We perform a simultaneous decomposition of the input and

275 output training data using the form:

X =CP’
Y =DQ’ (4)

such thatcov[C' X, D"Y] is maximized.

276  Note thatD = (d,,...,d,) are the latent trabecular variables after the decomposition (samedahing

277  C with respect toX ), while P and Q are the vector projections for the inpXit and outputY ma-

278  trices, respectively.

279 The inherent nature of the extracted descriptors are likely to ingcglnonlinear interdependency
280 between the input and output matricKsand Y. As a result, we use in this paper a kernel-based
281 nonlinear implementation of PLSR as describgd’fiThe fundamental idea is to first perform a-ke

282 nel transformationd of the input data, for example using a Gaussian kernel function. The kernel
283  Gram matrixK = ®®" of the cross product between all input data points is obtained, which will act

284  as the new input matrix to find the optimal predict@rsEach elements  of the kernel matrixk

285 (of size N by N) is calculated as:

K, =Kz, 2") = exp(—”x“” — x(”HZ /d), (5)

kl
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where k and/ are indices related to th& samples in the databasé.is the width of the Gaussian
kernel and its value is obtained automatically through leave-one-out tests (iteyingydifferent
values and selecting the one that optimizes the trabecular predictions).

The decomposition of the matricd and Y is then achieved using the iterative algorithm & T
ble 3, which allows to obtain the matricEsand D . These are then used to obtain the final nonlinear

regression model:

Y bredicted — K(X MRl)A ! (6)

where A is the optimal regression matrix calculated from the PLSR decomposition as:

A =KD(C'KD) 'C"Y. (7

Choosing a certain number of latent variablesr Table 3 enables to remove the information in the
input data that is less relevant to the predictions, and thus contributesitoizinig model over-
fitting. This number varies depending on the trabecular parameters (it is specifiach y,
prediction) and it is defined the one that reduces prediction errors in leave-one-out tests.
Additionally, to further increase robustness to the size of the traininglesathe final step of the
proposed technique is to apply a feature selection pro ach trabecular parameter and MRI
sequence, to select the best textural descriptors (i.e., those with the piglkestive power) to in-
clude in the vectok . and in the predictive model amongst the 17 variables described in Table 2.
More specifically, we start with the textural descriptor that gives the lowestiwecerrors, and then
we iteratively add descriptors until the predictions stop improving. Génexa found that between

three and six texture descriptors are sufficient to reach maximal prediction accuracy
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308 TABLE 3: Algorithm listing for the PLSR decomposition used in the regression model.

Initialization: K, =K
For each latent variable =1...t

(1) Initialize 4, with one of the columns of

(2) Calculate the input latent variable, =K K'd, , Wwith

d,,
|-
(3) Update output scoreg, = Y'c, ;
Calculate output latent vectar = Yq, , With “dkH =1.
(4) Repeat (2)-(3) until no change is noticectjn

(i.e. ||Ck —c, | is very small).

o

(5) Remove the contribution of in K, for next iteration:

K  =I-ccX )X (I-ccX,).

k+1

End for

16



309

310 FIG. 2. Examples of different subjects and different MRI sequences used in the experimerts. (a

311 (b) T2, (c) T2*, (d) FIESTA, () UTE_1, (f) UTE_2.

312 IlIl. RESULTS

313 In this section, we evaluate the ability of the proposed statistical approestimate trabecular iird

314 ces (Tb.Th, Th.Sp, and Th.N) by using the selected MRI sequences consideredtindthisee ex-

315 amples in Figure 2) as the input of the prediction models. To this end, eaxgione-out exper

316 ments such that the subject used for assessing the trabecular predictions is removed from ttie constru
317 tion of the feature-based regression models. For each test, we calculater¢tati@morcoefficient

318 (CC) as a measure of the extent of agreement between the valuesrabécealar parametergs,

319 as predicted from the low-resolution multi-sequeMi® images by using the proposed statistical

320 technique and the ground truth values of the paramgters . as estimated from the high-resolution

321 HR-pQCTimages.

322 Prediction by using individual MRI sequences. In the first experiment, we evaluate the prediction

323 power of all MRI sequences separately for the prediction of all trabeculangtara. The obtained

324  results are summarized in Table 4, where the sequences are listed in the dgswelediof the ob-
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325 tained correlation coefficients. It can be seen that the MRI sequences hawndiéfeels of perfo

326 mance. In general, the high-resolution UTE sequences UTE_HR_1 and UTE_HR_2 are those that
327  provide the best results (average CC = 0.63 and 0.61, respectively), followed by tomwentional

328 sequences FIESTA and T1 (average CC = 0.58 and 0.58, respectively). The calculati@uetp

329  shows that the differences between these sequences are not statistically significant)(p > 0.01

330 In general, the MRI sequences have an inconsistent performance as shown by the diffeteress

331 the maximal and minimal CC values across the trabecular indices (seeluast cb Table 4). For

332 example, with UTE_HR_2, there is a positive aver@@eof 0.70 in the prediction of Th.N but this is

333 reduced to 0.53 for Th.Sp. To obtain optimal predictions for all the parametershamsedar exm-

334 ple three MRI sequences consisting of UTE_HR_1, UTE_HR_2, and FIESTA.

335 TABLE 4: Summary of the obtained correlation coefficients for the prediction of the parameters
336 Tb.Th, Th.Sp, and Th.N by using the different MRI sequences.
Sequence Mean Th.Th Th.Sp Th.N Max — Min
UTE_HR_1 0.63 0.55 0.71 0.61 0.16
UTE_HR 2 0.61 0.61 0.53 0.70 0.16
FIESTA 0.58 0.64 0.62 0.49 0.15
T1 0.58 0.60 0.68 0.47 0.21
UTE_HR_sub 0.57 0.41 0.63 0.67 0.25
UTE_2 0.53 0.50 0.61 0.49 0.11
T2* 0.47 0.54 0.48 0.41 0.12
T2 0.47 0.47 0.56 0.38 0.18
UTE1 0.46 0.50 0.44 0.45 0.06
UTE_sub 0.43 0.26 0.58 0.44 0.31
337
338
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Prediction by combining multiple MRI sequences: In the last experiment, we investigate whether the
combination of multiple MRI sequences within a single predictive model gamova the predictions
for a given trabecular parameter. Thus we combine textural descriptors fferamiiMRI sequences
into the input vector of the nonlinear regression ebdy selecting those texture features that maxi
ize prediction power following the method described in Section II-C. Thetsesfuthis experiment
are summarized in Table 5 for the three trabecular indices. It can be seen thhttiigatrabecular
parameters are slightly improved with this approach. For example, by combining FIESTH, the
Th.Th is now estimated with a CC that reaches 0.68. Similarly, the estimation %y ifbachieved
this time with a CC = 0.75 by using UTE_HR_1 and UTE_HR_2, from a previousf ©J1 by
using UTE_HR_1 only. For Th.N, however, the CC value decreases from 0.70 to 0.75 byvosing t
MRI sequences (T1 and UTE_SUB). Generally, we found the improvement in performacaa-by
bining multiple MRI sequences to be limited. This can be explained by thiad&aombining muit

ple sequences increases the dimensionality of the statistical model, wdnitdh therefore call for
additional datasets. Yet, in our case, the number of cases does not increase and easgsdeer

lot of the combinations. For example, T2 has 46 cases and UTE 47 cases, but thesguemces
have only 23 subjects in common in our sample. As a result, the combined models in tlméeave-
experiments become over-constrained and do not generalize well to new cases. Note tbansome

binations could not be tested because the MRI sequences did not have common subjects.

TABLE 5: Prediction performance for each individual trabecular parameter

by combining multiple MRI sequences.

Tb.Th Tb.Sp Tb.N
Correlation coefficients 0.68 0.75 0.73
Optimal combination of T1 UTE_HR_1 UTE_HR_1
MRI sequences FIESTA UTE_HR_ 2 UTE_HR_2
No. cases 26 30 30
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V. DISCUSSION

A. Current Performance

We presented in this paparstatistical approach to estimate trabecular parameters in children from
low-resolution MRI, without the need for acquiring high-resolution imagelebbnes that induce
significant radiation to a fragile population that is still under development andigrdiwe method
relates statistically the appearance of trabecular bones in low-resolutiamagls with the trabecu-
lar parameters estimated from high-resolution images. The results show posi&lationis between
the parameters predicted from the MRI sequences and those measured from HRpia@icular,
we found that the use of a single MRI sequence to drive the estimation of all the trabecular parameters
is not sufficient to obtain the most consistent results between attrip parameters. In comparison
correlation coefficients improved when individual sequences were used to predict SoTgletros-
tural parameters, and were further optimized when dual combinations of sequences were used.
We found the high resolution UTE sequences UTE_HR_1 and UTE_HR_2 to have potential for t
prediction of trabecular parameters, with CC > 0.70 obtained for Th.Sp and Tbh.Ththeseags-
guences. More research should be thus conducted to investigate these ultrashort TE pulse sequences
for the quantification of trabecular bone.

The proposed technique has two limitations that are worth mentioning. Filséyto its reliance
on low-resolution MRI, it is unlikely to provide the same performance foatiadysis of the cortical
bone, which has currently a less well defined appearance in the MR images. Other research techniques
have been used to assess cortical bone but are not easily translatable ilwicthesetting, or e-
quire sequences that are not currently available on clinical scﬁ‘nsescondly, the application of
the technique to other populations such as for osteoporotic adults may not Iracsémme perfe
mance, as such patients vary significantly in the age range (from young to o) aslwiell as in the
guality of the cancellous bone. Consequently, adaptation may be required such as by touililing
class predictive models (depending on the disease class or age range). Hosestadythvas speti

ically designed to assess the feasibility of 1.5T MRI scanning for skigtetging in children, witha

20



385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

view to significantly reduce their repetitive and harmful radiation exposumngitudinal studies of

growth and development.

B. FutureWork

In terms of clinical translation, the current results are very promgiiven the small size used to
build the models. However, one should aim for CC > 0.9 in order to obtain quaictificttat can be
used in clinical practice. In this paper, we have demonstrated a first proof-ejptafche potential

of low-resolution MRI to predict trabecular parameters, but there are sewerales that we are
planning to explore in order to enhance the accuracy of the technique and its clinical value.
Training sample: In this work, we have used models built with samples in the range of abtat 20
40 cases, which are unlikely to generalize well to more variable population® tMsilhas shown
promise, we plan to extend this work by collecting larger datasets (skuadiked cases) from miilt
ple UK hospitals and with larger variability in the propertieshaf participants. This will lead to
models that are more robust and that have much higher coverage of bone variability.

Prediction methodology: We are also planning to improve the prediction framework in two main
directions. Firstly, in this preliminary study, we used a limited humbstaofdard texture descriptors
(see Table 2) because the feature selection in the leave-one-out experiments is timegohkw-
ever, we are planning in the future to implement a much more comprehensive listucd txt
scriptors, including the most advanced and recent image representations developedrblyenessin
the machine learning and image processing communities. Furthermore, we willgemeestiore ad-

vanced statistical prediction methods that can benefit from larger trainingesarapth as byne

ploying decision tre¢s]>’

In summary, the proposed technique shows promise in the estimation of trabeculargraramet
children from low-resolution MRI by learning statistically the relatiopstietween the statistical and
contextual information extracted from the cancellous bone in MRI and the parametersedstimat
HR-QCT. More generally, this statistical approach can promote the use of alternadiakties for in
vivo microstructural bone assessment in children and in various sitee afusculoskeletal system,

without the current limitations of high-resolution imaging modalities.

21



412

413
414

415
416

417
418

419
420
421
422

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

REFERENCES

1. Ruff C. Growth in bone strength, body size, and muscle siaguwmenile longitudinal sample. Bone 33: 317-
329, 2003.

2. Seeman E. and P. D. Delmas. Bone qualitye material and structural basis of bone strength and fragility.
New England Journal of Medicine 354: 2250-2261, 2006.

3. Williams B., D. Waddington, D. Murray and C. Farquharson. Borength during growth: influence of
growth rate on cortical porosity and mineralization. Calcified tissue internafidn236-245, 2004.

4. Oliver H., K. A. Jameson, A. A. Sayer, C. Cooper and E. M. Benn Growth in early life predicts bone
strength in late adulthood: the Hertfordshire Cohort Study. Bone 41: £)2d07.

5. Wren T. A. and V. Gilsanz. Assessing bone mass in children and adtéestament osteoporosis reports 4:
153158, 2006.

6. Kirmani S., D. Christen, G. H. van Lenthe, P. R. Fischer, MBduxsein, L. K. McCready, L. J. Melton, B.
L. Riggs, S. Amin and R. Muller. Bone structure at the distal raditiagladolescent growth. Journal of Bone
and Mineral Research 24: 1033-1042, 2009.

7. Bachrach L. K. Osteoporosis and measurement of bone mass in childrenlolescents. Endocrinology and
metabolism clinics of North America 34: 521-535, 2005.

8. Dalle Carbonare L. and S. Giannini. Bone microarchitecture as an important detewhibane strength.
Journal of endocrinological investigation 27: 99-105, 2004.

9. Brandi M. L. Microarchitecture, the key to bone quality. Rheumatologi¥38v8, 2009.

10. Genant H., P. Delmas, P. Chen, Y. Jiang, E. Eriksen, G. Dalsky, Ru#fand J. San Martin. Severity of
vertebral fracture reflects deterioration of bone microarchitecture. Osteopatesigtional 18: 69-76, 2007.
11. Chappard D., M.-F. Baslé, E. Legrand and M. Audran. Trabecular boneancdigitecture: A review.
Morphologie 92: 162-170, 2008.

12. Ulrich D., B. Van Rietbergen, A. Laib and P. Ruegsegger. The ability reétiimensional structural
indices to reflect mechanical aspects of trabecular bone. Bone 25: 55-60, 1999.

13. Ding M., A. Odgaard and I. Hvid. Accuracy of cancellous bonemaeldraction measured by micro-CT
scanning. Journal of biomechanics 32: 323-326, 1999.

14. Boutroy S., M. L. Bouxsein, F. Munoz and P. D. Delmas. In v@gsessment of trabecular bone
microarchitecture by high-resolution peripheral quantitative computed tomogra@pbayJournal of Clinical
Endocrinology & Metabolism 90: 6508515, 2005.

15. Hulme P., S. Boyd and S. Ferguson. Regional variation in vertebral bopkalugy and its contribution to
vertebral fracture strength. Bone 41: 946-957, 2007.

16. Sran M. M., S. K. Boyd, D. M. Cooper, K. M. Khan, R. F. Zernickeé &nR. Oxland. Regional trabecular
morphology assessed by micro-CT is correlated with failure of agedcib vertebrae under a posteroanterior
load and may determine the site of fracture. Bone 40: 751-757, 200

17. Burrows M., D. Liu and H. McKay. High-resolution peripheral QCTagimg of bone micro-structure in

adolescents. Osteoporosis international 21: 515-520, 2010.

22



449
450
451

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

18. Liu X. S., X. H. Zhang, K. K. Sekhon, M. F. Adams, D. J. McMahbrR. Bilezikian, E. Shane and X. E.
Guo. Highresolution peripheral quantitative computed tomography can assess micreostraictlimechanical
properties of human distal tibial bone. Journal of Bone and Mineral Rés2a: 746-756, 2010.

19. Krug R., J. Carballidgsamio, S. Banerjee, A. J. Burghardt, T. M. Link and S. Majumdavivim ultra-
high-field magnetic resonance imaging of trabecular bone microarchitecture at 7urhalof Magnetic
Resonance Imaging 27: 854-859, 2008.

20. Wehrli F. W. Structural and functional assessment of trabecular and corticabpomécro magnet
resonance imaging. Journal of Magnetic Resonance Imaging 25: 3926409,

21. Robson M. D., P. D. Gatehouse, G. M. Bydder and S. Neubauer. Homagimg of phosphorus in cortical
and trabecular bone in vivo. Magn Reson Med. 51: 888-892., 2004.

22. Robson M. D., P. D. Gatehouse, M. Bydder and G. M. Bydder. Magrstimance: an introduction to
ultrashort TE (UTE) imaging. J Comput Assist Tomogr. 27: 825;82083.

23. Berquist T. H. MRI of the musculoskeletal system. Lippincott Williams & WHk2912.

24. Freeman W. T., E. C. Pasztor and O. T. Carmichael. Learning loWwMisi@n. International Journal of
Computer Vision 40: 25-47, 2000.

25. Zou W. W. and P. C. Yuen. Very low resolution face recognitioflpro. IEEE Transactions on Image
Processing 21: 327-340, 2012.

26. Paggiosi M. A., R. Eastell and J. S. Walsh. Precision of high-tesolperipheral quantitative computed
tomography measurement variables: influence of gender, examing¢iparsl age. Calcif Tissue Int. 94: 191-
201. doi: 110.1007/s00223-00013-09798-00223. Epub 03@p300222., 2014.

27. Fedorov A., R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. FilliobkR&. Pujol, C. Bauer, D. Jennings,
F. Fennessy and M. Sonka. 3D Slicer as an image computing platfothe fQuantitative Imaging Network.

Magnetic resonance imaging 30: 1323-1341, 2012.

28. Haralick R. M., K. Shanmugam and |. H. Dinstein. Textural featuresinfage classificationlEEE
Transactions on Systems, Man and Cybernétl€s621, 1973.

29. Mandelbrot B. B. The fractal geometry of nature. Macmillan, 1983.

30. Chen S. S., J. M. Keller and R. M. Crownover. On the calculatioraofalr features from images. IEEE

Transactions on Pattern Analysis and Machine Intelligence 15: 1087-1993.

31. Al-Kadi O. S. and D. Watson. Texture analysis of aggressive and nessiggrlung tumor CE CT images.
IEEE Transactions on Biomedical Engineering 55: 1822-1830, 2008.

32. Abdi H. Partial least squares regression (PLS-regression). Thousand OakadgeA2003, p. 792-795.

33. Wold S., P. Geladi, K. Esbensen and J. Ohman. Multi-way principal cemiseand PLS-analysis. Journal
of Chemometrics 1: 41-56, 1987.

34. Rosipal R. and L. J. Trejo. Kernel partial least squares regression anluepry kernel Hilbert space. The
Journal of Machine Learning Research 2: 97-123, 2002.

35. Guyon |I. and A. Elisseeff. An introduction to variable and feature selecliom Journal of Machine
Learning Research 3: 1157-1182, 2003.

23



486
487
488
489

36. Dietterich T. G. An experimental comparison of three methods fotraoting ensembles of decision trees:
Bagging, boosting, and randomization. Machine learning 40: 1392080,

37. Prasad A. M., L. R. Iverson and A. Liaw. Newer classification ragdession tree techniques: bagging and

random forests for ecological prediction. Ecosystems 9: 181-199, 2006.

24



