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Abstract

This paper investigates the linear response of an archetypal energy harvester that

uses electromagnetic induction to convert ambient vibration into electrical energy.

In contrast with most prior works, the influence of the circuit inductance is not as-

sumed negligible. Instead, we highlight parameter regimes where the inductance

can alter resonance and derive an expression for the resonant frequency.

The governing equations consider the case of a vibratory generator directly

powering a resistive load. These equations are non-dimensionalized and analytical

solutions are obtained for the system’s response to single harmonic, periodic, and

stochastic environmental excitations. The presented analytical solutions are then

used to study the power delivered to an electrical load.

Key words: Energy harvesting, electromagnetic induction, energy scavenging

Preprint submitted to Elsevier November 4, 2009



1. Introduction

Energy harvesting devices scavenge energy from the environment. The sim-2

plest type of device uses environmental disturbances to excite an inertial gener-

ator; inertial generators contain a moving mass, sometimes called a proof mass,4

that is suspended in reference to the generator frame by a compliant mechanism

- such as springs or magnets [1, 2]. When the generator frame is accelerated,6

the inertial mass begins to oscillate and convert environmental disturbances into

mechanical energy. Transduction methods, such as electromagnetic inductance,8

capacitance, or piezoelectric elements, are then used to couple the oscillator with

an electrical circuit for mechanical to electrical energy transfer [3–7]. A side effect10

of this energy transfer is an increase in the mechanical oscillator energy dissipa-

tion. The transferred electrical energy is then used directly, as studied in the12

present manuscript, or stored for future applications [8].

Starting with the work of Williams et al. [9], the focus has primarily been on14

inertial generators with linear behavior. A primary limitation of inertial genera-

tors with linear performance is that they only perform well for a narrow band of16

frequencies; any variation in the excitation frequency or frequencies will greatly

reduce device’s ability to harvest energy. This also provides an implementation18

challenge, since it is typically difficult to match the linear resonance of a fabri-

cated device to an environmental frequency [2]. Recent efforts have attempted20

to overcome the shortcomings of linear devices by: 1) taking advantage of non-

linear phenomena to broaden the frequency response [2, 10–12]; 2) adding many22

oscillators with staggered resonances to broaden the systems frequency response

[8, 13, 14]; or 3) through passive or active methods to tune the device’s resonance24

[15]. The present article contributes to the last of these strategies by providing an
2



exact expression for the harvester’s resonance in terms of the physical parameters26

for the inertial generator and accompanying electrical circuit.

The objective of this paper is to provide analytical solutions for the linear28

response of an archetypal harvester. More specifically, we investigate analyti-

cal solutions for devices that use electromagnetic induction to transfer energy30

between the mechanical and electrical domains. In contrast with several recent

works [2, 3, 16–19], the present study does not neglect the influence of the circuit32

inductance. Thus the presented closed-form solutions can be applied to eluci-

date the influence of additional design choices on device performance. Another34

difference in the present work is that analytical solutions were obtained for sev-

eral types of ambient excitation (i.e. single-harmonic, periodic, and narrow-band36

white noise excitations). In contrast, most prior works only consider single-

harmonic excitation [8, 20–23].38

The content of this paper is organized as follows. The next section derives

the governing equations for an archetypal harvester that uses electromagnetic in-40

duction. The governing equations have been non-dimensionalized and analytical

solutions were obtained for single-harmonic, periodic, and stochastic environ-42

mental excitations. The analytical solutions were then used to study the power

delivered to an electrical load before discussing general conclusions in the final44

section of the paper.

2. Energy harvester model46

This section describes a model for the base excitation of an inertial generator

that converts mechanical energy into electrical energy via electromagnetic induc-48

tance. The section is organized into a presentation of the relationships govern-
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ing the energy conversion process and a formulation of the non-dimensionalized50

governing equations. Although an archetypal electromagnetic harvester is con-

sidered, for the case of directly powering an electrical load [9, 16], the governing52

equations are presented for completeness.

2.1. Electromechanical coupling and energy conversion54

This section describes the relationships governing the energy flow from the

mechanical system to the electrical circuit (see Fig. 1). To describe the motion of56

the system, two reference frames were applied. The first reference frame, desig-

nated as ẑ, tracks the housing translation; the second reference frame, designated58

as x̂, is used to track the motion of the magnet. Using ŷ = x̂− ẑ as the relative

displacement between the magnet and coil, the electromechanical coupling can60

be written in terms of the instantaneous power

Fe
dŷ

dt
= iV , (1)62

where Fe is the electrical damping force, V is the induced voltage across the coil,

and i is the current in the electrical circuit of Fig. 1b. The magnitude of the64

voltage induced across the coil, as described by Faraday’s law of induction, is

equal to the time rate of change in the magnetic flux66

V =
dΦ
dt

=
dΦ
dŷ

dŷ

dt
, (2)

where Φ is the magnetic flux. Since Φ is a function of the spatial magnetic field68

(typically defined as B), the coil geometry, number of windings, construction,

and the coil location within the magnetic field, we have chosen to omit a specific70

expression thereby keeping the analysis that follows general. While Eq. (2) gives
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the voltage drop across the coil, substituting Eq. (2) into Eq. (1) gives an equation72

for the force that opposes the motion of the oscillating magnet

Fe = i
dΦ
dŷ

. (3)
74

While the flux gradient is generally a function of space, we have assumed it to

be constant over the range of interest - thus keeping the governing equations76

linear. Before implementing these expressions in the governing equations, we

note that
dΦ
dŷ

provides the electromechanical coupling between the mechanical
78

and electrical system.

2.2. Harvester model80

An equation for the electrical circuit was obtained by applying Kirchoff’s

voltage law to the electrical circuit of Fig. 1b,82

L
di

dt
+ i (RL +Ri) =

dΦ
dŷ

dŷ

dt
, (4)

where L is the inductance, Ri is the internal resistance of the coil and RL is84

the resistance of the external load. The equation for the mechanical system was

obtained from a summation of forces in the vertical direction86

m
d2ŷ

dt2
+ c

dŷ

dt
+ kŷ + i

dΦ
dŷ

= −md2ẑ

dt2
, (5)

where m is the inertial mass, k is the spring stiffness, c is a constant used to88

described the mechanical damping and
d2ẑ

dt2
is the base acceleration. For the sake

of analytical convenience, Eq. (4) and Eq. (5) were non-dimensionalized using the90

following substitutions

2ζω =
c

m
, ω2 =

k

m
, τ = ωt , y =

ŷ

l
, z =

ẑ

l
, and I =

i

im
, (6)

92
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where ζ is the damping ratio, ω is the natural frequency, τ is dimensionless

time, l is the maximum displacement allowed by physical constraints, and im is94

a threshold or reference current. The resulting non-dimensional equations are

İ + αI = βẏ , (7a)96

ÿ + 2ζẏ + y + γI = −z̈ , (7b)
98

where a dot denotes a derivative with respect to dimensionless time and the

dimensionless constants,100

α =
RL +Ri
ωL

, β =
1
imL

dΦ
dy

, and γ =
im

mω2l2
dΦ
dy

, (8)

have been defined in terms of the original physical parameters. For the purposes102

of clarifying the results that follow, we note that both α and β contain L. This

means that multiplying α and β by a constant is identical to changing in L while104

holding all other parameters constant. Similarly, a change in RL would only alter

α, again assuming all other parameters remained unchanged.106

3. Response to various types of ambient vibration

This section investigates the response behavior of the electromagnetic har-108

vester model to different types of ambient vibration. Investigations first consider

a simple input - in the form of harmonic base excitation - before investigating110

more complex excitations. The single-harmonic results are followed by the inves-

tigation of periodic-base excitation and predictions for narrow-band white noise.112

3.1. Single-frequency base excitation

This section derives the harvester’s response when subjected to single-frequency114

base excitation. A base excitation was assumed in the form, Â cos Ωt, where Ω
6



represents the excitation frequency and Â the acceleration amplitude. A dimen-116

sionless form for the base excitation, z̈ = A cos ητ , was obtained by defining

η = Ω/ω and A =
Â

lω2
. Inserting this excitation into Eq. (7b) gives118

İ + αI = βẏ , (9a)

ÿ + 2ζẏ + y + γI = A cos ητ . (9b)120

The steady-state response of the system was determined by applying the method122

of undetermined coefficients. The assumed form for the steady-state response is

y(τ) = a cos(ητ + φ) =
1
2
a
(
ej(ητ+φ) + e−j(ητ+φ)

)
, (10a)124

I(τ) = b cos(ητ + ψ) =
1
2
b
(
ej(ητ+ψ) + e−j(ητ+ψ)

)
, (10b)

126

where j =
√
−1, a is the response amplitude of the mass and φ is the phase

response relative to the input excitation; the parameters b and ψ represent the128

response amplitude and phase of the electrical current. The following two equa-

tions were obtained after substituting Eq.(10a) and Eq.(10b) into Eq.(9a) and130

Eq.(9b) and collecting the coefficients of ejητ ,

(
jη + α

)
b = jβηaej(φ−ψ) , (11a)132 (

1− η2 + 2jζη
)
aej(φ−ψ) + γb = Ae−jψ . (11b)

134

The second of these two equations was separated into real and imaginary terms

to obtain136

A cosψ =
(
1− η2

)
a cos(φ− ψ)−

(
2ζη
)
a sin(φ− ψ) + γb , (12a)

−A sinψ =
(
1− η2

)
a sin(φ− ψ) +

(
2ζη
)
a cos(φ− ψ) . (12b)138

Equation (11a) was also separated into real and imaginary terms to obtain140

Eq. (13a) and Eq. (13b). Squaring and adding these two equations gives the
7



relationship of Eq. (13c),142

a sin(φ− ψ) = − bα
βη

, (13a)

a cos(φ− ψ) =
b

β
, (13b)

144

b = a
βη√
α2 + η2

. (13c)
146

The steady-state amplitude of the dimensionless electrical circuit was found by

substituting Eqs. (13a)–(13c) into Eq. (12a) and Eq. (12b). After squaring and148

summing the resultant equations, the following solution was obtained for the

response of the electrical circuit150

b =
Aβη[

(α2 + η2)
(

(1− η2)2 + (2ζη)2
)

+ 2βγη2 (1 + 2αζ − η2) + (γβη)2
]1/2 .

(14)

The response amplitude of the mass was obtained by combining Eq. (13c) and152

Eq. (14) to formulate the following expression

a =
A
√
α2 + η2[

(α2 + η2)
(

(1− η2)2 + (2ζη)2
)

+ 2βγη2 (1 + 2αζ − η2) + (γβη)2
]1/2 .

(15)154

The above result is rather instructive since removing the coupling between the

mechanical and electrical systems, by setting β = γ = 0, returns the exact156

response for the linear harmonic oscillator.

The steady-state phase response can also be determined from the results of158

this section. Specifically, Eqs. (12a)–(13c) were used to determine the phase

response of the electrical circuit,160

ψ = tan−1

(
2ζ + α

(
η2 − 1

)
η (η2 − 1− 2αζ − γβ)

)
, (16)
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along with the corresponding phase response for the oscillating magnet162

φ = ψ − sin−1

(
α√

α2 + η2

)
. (17)

The analytical solutions of Eqs. (14)–(17) were used to study the response be-164

havior for several parameter combinations.

The primary observations from our studies have been summarized in the166

graphs of Figs. 2–4. Focusing on the reference case of Fig. 2, the predictions show

prototypical behavior for the response amplitudes and phase. More specifically,168

the peak response or resonance occurs near η = 1 for both the mass and circuit - a

result that is in agreement with the findings of several prior works [8, 9, 22]. The170

first contrasting case is shown in Fig. 3; notice that the resonance for the mass

is no longer near η = 1, although the maximum current still occurs near η = 1.172

These counter-intuitive analytical predictions, results that mimic a resistive load

change from the results of Fig. 2, were confirmed with simulation (see markers174

form simulated results in Fig. 3). Perhaps the most interesting case is shown in

Fig. 4, where the maximum current is also shown to occur far away from η = 1.176

This response was obtained for the same parameters as those of Fig. 3, with the

exception of multiplying α and β by a constant to mimic a different inductance.178

The counter-intuitive results of Figs. 2–4 can be explained by developing an

analytical expression for resonance. For instance, the extrema of Eq. (14) are180

found from
db

dη
= 0, which gives the following polynomial expression:

η6
b +

(
α2

2
+ 2ζ2 − βγ − 1

)
η4
b −

α2

2
= 0 . (18)

182

where ηb is the dimensionless resonant frequency. While Eq. (18) predicts the

peak current in Figs. 2–4, the ηb trends of Fig. 5 provide additional insight. In184
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particular, this graph shows three ηb curves, where β was held constant and

α varied, that indicate ηb is very sensitive to β for small values of α; we note186

that varying only alpha means that the inductance was held constant. If both

alpha and beta are multiplied by a constant, which mimics an inductance change,188

the result in Fig. 5 is a jump to a different curve. This essentially extends the

range where the resonance frequency is influenced by varying either inductance190

or resistance. For sufficiently large values of α, all the curves coalesce and ηb is

nearly independent of changes in either α or β; this illustrates that inductance192

changes have very little influence within this region.

To summarize, the analytical solutions obtained in this section show responses194

that replicate the intuitive results of prior work, i.e. the resonance for the os-

cillator displacement and current may occur near η = 1. However, multiple196

counter-intuitive cases were presented for other parameter regimes where the in-

ductance was shown to significantly alter the response behavior. For all of the198

cases shown, we have overlaid numerical simulation results to provide an external

check and illustrate the strong agreement with the closed form solutions. Fur-200

thermore, we have shown regions where the resonance is sharply dependent upon

the parameters of the electrical circuit and regions where the resonance is nearly202

independent of parameters in the electrical circuit. Our results also indicate that

changes in the inductance, mimicked through simultaneous α and β changes, can204

either shrink or expand the region where resonance tuning can be achieved.

3.2. Periodic base excitation206

The response of an energy harvester is intimately coupled to excitation pro-

vided by the environment. Thus it is relevant to consider the harvester’s response208
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to various types of ambient vibration; accordingly, this section derives the har-

vester response to an arbitrary-periodic excitation. For these cases, the response210

behavior can be generically determined when the excitation is written as a Fourier

series. This provides the motivation for the current section where the harvester’s212

response was determined as a function of the input Fourier series coefficients.

A periodic acceleration with zero mean was assumed for the base excitation;214

this can be expressed as a summation of harmonics,
∑∞

p=1 Âp cos p(Ωt + λ), of

acceleration amplitude Âp shifted by λ. Using the following two relationships, η =216

Ω/ω and Ap =
Âp
lω2

, the dimensional excitation was converted into a dimensionless

excitation of the form
∑∞

p=1Ap cos p(ητ + λ). Inserting the periodic excitation218

into the governing equations gives

İ + αI = βẏ , (19a)220

ÿ + 2ζẏ + y + γI =
∞∑
p=1

Ap cos p(ητ + λ) . (19b)
222

The steady-state solution takes the following form

y(τ) =
1
2

∞∑
p=1

ap

(
ejp(ητ+φ) + e−jp(ητ+φ)

)
, (20a)

224

I(τ) =
1
2

∞∑
p=1

bp

(
ejp(ητ+ψ) + e−jp(ητ+ψ)

)
. (20b)

226

After substituting Eq. (20a) and Eq. (20b) into Eq. (19a) and Eq. (19b) and

collecting the coefficients of ejpητ , the following two equations were obtained228

(
jκ+ α

)
bp = jβκape

jp(φ−ψ) , (21a)(
1− κ2 + 2jκζ

)
ape

jp(φ−ψ) + γbp = Ape
−jp(λ−ψ) , (21b)230

where the following substitution, κ = pη, has been applied. Following the solution232

procedure outlined in Section 3.1, Eq. (21a) and Eq. (21b) can be separated into
11



real and imaginary terms to determine the response of the system. The following234

solution was obtained for the pth harmonic of the dimensionless electrical circuit

bp =
Apκβ[

(α2 + κ2)
(

(1− κ2)2 + (2ζκ)2
)

+ 2γβκ2 (1 + 2αζ − κ2) + (κγβ)2
]1/2 .

(22)236

The corresponding response of the mass to the pth harmonic was determined to

be238

ap =
Ap
√
α2 + κ2[

(α2 + κ2)
(

(1− κ2)2 + (2ζκ)2
)

+ 2γβκ2 (1 + 2αζ − κ2) + (κγβ)2
]1/2 .

(23)

The phase relationships for the harvester’s response were found to be240

ψ = λ+ tan−1

(
2ζ + α

(
η2 − 1

)
η (η2 − 1− 2αζ − γβ)

)
, (24a)

φ = ψ − sin−1

(
α√

α2 + η2

)
. (24b)

242

Example response predictions were investigated by approximating the input ex-244

citation of a square wave with a Fourier series. If we denote the square wave as

f(τ), the following equations can be used to obtain the Fourier series terms Ap246

and λ

λ = tan−1

(∫ T
0 f(τ) sin(ητ)dτ∫ T
0 f(τ) cos(ητ)dτ

)
, (25a)

248

Ap =
2
T

∫ T

0
f(τ) cos p(ητ + λ)dτ , (25b)

250

where T = 2π/η. These terms were inserted into Ap cos p(ητ +λ) to approximate

the actual excitation function f(τ). In our studies, the first 20 terms of the252

Fourier series were used to approximate the square wave function shown in Fig. 6a.

Graphs (b) and (c) of Fig. 6 also show one period of the response behavior for both254

12



the mass and electrical circuit. The spectral amplitudes for the input excitation

and responses of the system have been summarized in Fig. 7. One can see that256

the largest spectral amplitude occurs near resonance for the electrical circuit, but

relatively large spectral amplitudes occur at both the excitation frequency and258

near resonance for the mass. One general observation that can be made from our

studies was that more harmonics were required for η values less than one.260

3.3. Response to narrow-band white noise

The response of the system to random environmental disturbances will be262

investigated in this section. In particular, we investigated the system’s response

to narrow-band white noise. Following reference [24], we have approximated264

this type of excitation with a summation of harmonic terms containing random

frequency and phase components. The governing equations are266

İ + αI = βẏ , (26a)

ÿ + 2ζẏ + y + γI = Γ
∞∑
r=1

cos(ηrτ + λr) . (26b)
268

where Γ is a scaling constant, λr is a random phase, and ηr is a random dimen-270

sionless frequency ratio chosen on the interval between a minimum and maximum

frequency ratio. Following the previously discussed solution procedures, we as-272

sumed a steady-state solution in the following form

y(τ) =
1
2

∞∑
r=1

ar

(
ej(ηrτ+φr) + e−j(ηrτ+φr)

)
, (27a)

274

I(τ) =
1
2

∞∑
r=1

br

(
ej(ηrτ+ψr) + e−j(ηrτ+ψr)

)
. (27b)

276
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This results in the following response amplitude and phase relationships for the

rth frequency278

ar =
Γ
√
α2 + η2

r[
(α2 + η2

r )
(

(1− η2
r )

2 + (2ζηr)
2
)

+ 2βγη2
r (1 + 2αζ − η2

r ) + (γβηr)2
]1/2 ,

(28a)

br =
βΓηr[

(α2 + η2
r )
(

(1− η2
r )

2 + (2ζηr)
2
)

+ 2βγη2
r (1 + 2αζ − η2

r ) + (γβηr)2
]1/2 ,
(28b)280

and282

ψr = λr + tan−1

(
2ζ + α

(
η2
r − 1

)
ηr (η2

r − 1− 2αζ − γβ)

)
(29a)

φr = ψr − sin−1

(
α√

α2 + η2
r

)
. (29b)

284

Since the form of this solution was already confirmed for the case of a single286

harmonic, we have chosen to omit plots of the time series.

4. Power delivered to an electrical load288

This section determines relationships for the power delivered to an electrical

load. In the analyses that follow, the material has been divided into separate290

sections that differentiate between the types of excitation studied in Section 3.

4.1. Single-frequency case292

This section investigates the power delivered to an electrical load for single-

harmonic excitation. Results are presented in terms of a dimensionless power294

ratio that accounts for the characteristics of the electrical load. More specifically,

we have assumed a power threshold, P̂m, and voltage, vm; this allows the reference296
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current, a parameter that was previously used in the non-dimensionalization, to

be evaluated from im =
P̂m
vm

. If the threshold voltage is expressed as vm =
298

imRi, the following expression is obtained for the threshold power P̂m = i2mRi.

The instantaneous power delivered to the electrical load, P̂ = i2RL, is then300

divided by P̂m to determine the ratio of the instantaneous to the threshold power.

Substituting the previously defined relationships for i = imI, τ = ωt, and η =
Ω
ω

302

into this ratio gives

P (τ) =
i2mI

2

P̂m
RL =

RL
2Ri

b2
(
1 + cos 2(ητ + ψ)

)
. (30)

304

Although an instantaneous value is sometimes of interest, the average power is

often a more meaningful quantity. The ratio of the average power to the threshold306

power was obtained by integrating P (τ) over a single period,

Pa =
1
T

∫ T

0
P (τ)dτ =

RL
2Ri

b2 , (31)
308

where T =
2π
η

.

A representative result, one that matches the findings from prior works, where310

the maximum power depends only on the resistive load, is shown in Fig. 8. Tak-

ing the physical parameters of the solid-line curve as a reference, a change in312

the inductance parameter was implemented by multiplying the dimensionless pa-

rameters α and β by a constant, to generate the dotted-line results of Fig. 8a.314

While this generates a nearly identical power curve, for the particular change in

inductance, graphs (b) and (c) show the peak Pa over a broader range of α and316

β values; however, no significant changes occur in the peak Pa value.

Although the above results only affirm the findings from prior works and do318

not highlight the influence of retaining the inductance term in the analysis, the

15



graphs of Fig. 9 focus on a case where the peak power is altered by the inductance.320

More specifically, the solid line of Fig. 9a shows the same Pa curve as Fig. 8a;

however, multiplying α and β by a constant to mimic an inductance change, gives322

the dotted Pa curve - a distinctly different result. Figure 9a highlights the primary

difference of including the inductance term in the analysis, i.e. the peak Pa is324

dependent upon both the resistive load and the inductance. This observation is

further substantiated by the graphs (b) and (c) of Fig. 9 since the peak Pa value326

of graph (a) can substantially change for small changes in α and β. However,

the maximum Pa value plateaus and becomes independent of α and β beyond328

some threshold. Figure 10 provides additional insight into the behavior shown in

Fig. 9. This figure shows that larger β values increase the rate of change in ηb330

due to solitary changes in α - at least for small values of α.

To summarize, we have shown that inductance changes can alter the average332

peak power for relatively small values of α and β. In addition, we have also shown

that inductance changes have a negligible effect on Pa for sufficiently large values334

of α and β.

4.2. Periodic-excitation case336

The ratio of the instantaneous power delivered to the electrical load to P̂m is

given by338

P (τ) =
i2mI

2

P̂m
RL =

RL
2Ri

 ∞∑
p=1

bp cos p(ητ + ψ)

2

. (32)

Although the above series is written for an infinite number of terms, reasonably340

accurate results are typically obtained with a truncated series expansion. The

ratio of the average power to P̂m is obtained by integrating Eq. (32) over a single342
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period,

Pa =
1
T

∫ T

0
P (τ)dτ =

RL
2Ri

∞∑
p=1

b2p . (33)
344

where T =
2π
η

still holds. It is interesting to note that the expression for Pa

simplifies due to the orthogonality in the response harmonics.346

Figure 11 shows Pa predictions for the approximated square wave examined

in Fig. 6. The fact that the Pa curve contained multiple local maxima was an348

interesting outcome for the η = 0.15 case. In addition, this case required a

relatively larger number of harmonics, in comparison to the η = 1 case of the350

second column, before the predictions converged. For instance, the Pa predictions

for the η = 1 case showed convergence when less than 5 harmonics were used,352

but the predictions for the η = 0.15 case did not converge until more than 20

harmonics were applied.354

4.3. Narrow-band noise case

The ratio of the instantaneous power delivered to the electrical load to P̂m is356

given by

P (τ) =
i2mI

2

P̂m
RL =

RL
2Ri

( ∞∑
r=1

br cos(ηrτ + ψr)

)2

. (34)
358

While the analytical expression for the ratio of the average power to P̂m is given

by360

Pa =
1
T

∫ T

0
P (τ)dτ =

1
2T

RL
Ri

∫ T

0

( ∞∑
r=1

br cos(ηrτ + ψr)

)2

, (35)

this expression cannot be reduced to a more convenient form since the harmonics362

of the response are not orthogonal over any single period. In addition, the time

interval to use for the averaging also seems somewhat ambiguous since a primary364

harmonic does not exist. Despite these complications, we still believe Pa to be
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a beneficial metric for characterizing the power. To illustrate why this becomes366

a reasonable metric, Eq. (34) was plotted for two different frequency bands in

Fig. 12. This was done by creating normally distributed random vectors for ηr368

and λr and then using the solutions from Eq. (28b) and Eq (29a) to solve for

br and ψr, respectively. The two important observations from Fig. 12 and all370

of the other cases we investigated are: 1) more energy is harvested when the

resonance lies within the frequency band of the excitation; and 2) P (τ) contains372

small oscillations about a mean value; thus Pa can be readily obtained from the

mean of P (τ) or by using using Eq. (35) and an integer number of periods for374

the lowest frequency.

5. Conclusions376

This paper obtains analytical solutions for the linear response behavior of an

energy harvester that uses electromagnetic induction to convert ambient vibration378

into electrical energy. The model for an archetypal harvester was derived and

investigated for the case of directly powering a resistive load. The mathematical380

model was non-dimensionalized and analytical solutions for the system’s response

were presented for three types of ambient excitations. The analytical solutions382

were then used to study the power delivered to an electrical load.

The present study does not assume the circuit inductance to be negligible;384

instead, we provide evidence that suggests the inductance can sometimes alter

the optimum power transferred to an electrical load. In addition, the results of386

Fig. (4) show the peak current can occur at a frequency away from the natural

frequency. Response and average power results indicate matching the device388

resonance to the primary harmonic of the periodic excitation will typically yield

18



the best performance. However, our investigations for relatively small values of α390

and β, results that were not included, were found to display similar behavior to

the single-frequency excitation case with peak power that can occur away from392

η = 1. Power studies for narrow-band white noise indicate that the average power

can be used in comparative studies of device performance.394

In summary, the primary novelty of the present study is the development

of closed-form solutions for the harvester response to single-harmonic, periodic,396

and narrow-band white noise excitations. The presented solutions include the

circuit inductance and highlight regions, in dimensionless parameter space, where398

the optimum power is altered by inductance. Finally, we expect the presented

analytical solutions to impact the design choices for future energy harvesters for400

two reasons: 1) we have shown the maximum power transferred to an electrical

load can be altered by the inductance; and 2) the inductance could potentially402

be used to tune the resonance to achieve peak power.
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Figure 1: Schematic diagram of an inertial energy generator that uses induction to transfer the

mechanical energy of an oscillating magnet into electrical energy is shown in (a). The schematic

of graph (b) shows the accompanying electrical circuit that uses the electrical energy.
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Figure 2: Response amplitude and phase relationships for the mass (graphs (a) and (c)) and

the electric circuit (graphs (b) and (d)) when excited by a single harmonic. A solid line repre-

sents analytical predictions and the marker ◦ denotes a result from simulation. The following

parameters were used to generate these graphs α = 2500, β = 10, ζ = 0.01, γ = 8, and A = 1/20.
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Figure 3: Response amplitude and phase relationships for the mass (graphs (a) and (c)) and

the electric circuit (graphs (b) and (d)) when excited by a single harmonic. A solid line repre-

sents analytical predictions and the marker ◦ denotes a result from simulation. The following

parameters were used to generate these graphs α = 50, β = 10, ζ = 0.01, γ = 8, and A = 1/20.
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Figure 4: Response amplitude for the mass (graph (a)) and the electric circuit (graph (b)) when

excited by a single harmonic. A solid line represents analytical predictions and the marker ◦

denotes a result from simulation. The following parameters were used to generate these graphs

α = 2, β = 0.4, ζ = 0.01, γ = 8, and A = 1/20.
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Figure 5: Dimensionless resonance frequency plotted as a function of α. Each curve represents

the following value of β: solid line β = 10, dashed line β = 20, and solid line with ◦ markers for

β = 100. The following additional parameters were used: ζ = 0.01 and γ = 8.
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Figure 6: Square wave excitation (solid line), with alternating amplitudes of ±1/20, is plotted

against the Fourier series approximation (dashed line) for the first 20 harmonics (graph (a)).

Graph (b) and (c) give one period, T = 2π/η, of the time series for y(τ) and I(τ), respectively.

The following parameters were used to generate this graph α = 2500, β = 10, ζ = 0.01, γ = 8,

and η = 0.15.
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Figure 7: Graph (a) shows the spectral amplitudes of the first 20 harmonics with a solid line

and the non-zero peaks with a ◦. The response amplitudes for the mass and electrical circuit

use the same markings for graphs (b) and (c), respectively. These results used the square wave

from Fig. 6a and the following parameters: α = 2500, β = 10, ζ = 0.01, γ = 8, and η = 0.15.
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Figure 8: Dimensionless average power curves plotted as a function of RL/Ri (graph (a)). Solid

line shows the Pa curve for β = 2.0 × 105 and 1 × 103 ≤ α ≤ 501 × 103; the dotted line shows

Pa for β = 222 and 1.1 ≤ α ≤ 557. Graphs (b) and (c) use a constant RL/Ri = 17 value while

varying the inductance to change α and β. The remaining parameters required to generate these

graphs are ζ = 0.05, γ = 8× 10−3, A = 1/20, and η = 1.
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Figure 9: Dimensionless average power curves plotted as a function of RL/Ri (graph (a)). Solid

line shows the Pa curve for β = 222 and 1.1 ≤ α ≤ 557; the dotted line shows Pa for β = 2

and 0.01 ≤ α ≤ 5. Graphs (b) and (c) use a constant RL/Ri = 17 value while varying the

inductance to change α and β. The remaining parameters required to generate these graphs are

ζ = 0.05, γ = 8× 10−3, A = 1/20, and η = 1.
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Figure 10: Dimensionless resonance frequency plotted as a function of α. Each curve represents

the following value of β: solid line β = 1, dashed line β = 2, and solid line with ◦ markers for

β = 10. The following additional parameters were used: ζ = 0.05 and γ = 8× 10−3.
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Figure 11: Dimensionless average power plotted as a function of α and RL/Ri for the approx-

imated excitation of Fig. 6. Graphs (a) and (c) are for η = 0.15 and graphs (b) and (d) show

results at resonance, η = 1. The number of harmonics used to determine Pa is denoted as fol-

lows: 5 harmonics (dashed line), 20 harmonics (dashed-dot line), and 50 harmonics (solid line).

The following parameters were used to generate these graphs β = 100, ζ = 0.01, and γ = 0.8.
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Figure 12: Dimensionless power plotted as a function dimensionless time using 5× 103 frequen-

cies. Graph (a) shows results for 0.25 ≤ η ≤ 0.75 and graph (b) shows results for 0.75 ≤ η ≤ 1.25.

The remaining parameters required to generate these graphs are ζ = 0.01, α = 2500, β = 10,

γ = 8, and Γ = 5× 10−3.
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