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Estimating uncertainty in spatial microsimulation approaches to small area estimation:  

a new approach to solving an old problem 

 

Whitworth, A1, Carter, E, Moon, G and Ballas, D 

 

Abstract 

A wide range of user groups from policy makers to media commentators demand ever more 

spatially detailed information yet the desired data are often not available at fine spatial 

scales. Increasingly, small area estimation (SAE) techniques are called upon to fill in these 

informational gaps by downscaling survey outcome variables of interest based on the 

relationships seen with key covariate data. In the process SAE techniques both rely 

extensively on small area Census data to enable their estimation and offer potential future 

substitute data sources in the event of Census data becoming unavailable.  Whilst statistical 

approaches to SAE routinely incorporate intervals of uncertainty around central point 

estimates in order to indicate their likely accuracy, the continued absence of such intervals 

from spatial microsimulation SAE approaches severely limits their utility and arguably 

represents their key methodological weakness. The present article presents an innovative 

approach to resolving this key methodological gap based on the estimation of variance of 

the between-area error term from a multilevel regression specification of the constraint 

selection for iterative proportional fitting (IPF). The performance of the estimated credible 

intervals are validated against known Census data at the target small area and show an 

extremely high level of performance. As well as offering an innovative solution to this long-

standing methodological problem, it is hoped more broadly that the research will stimulate 

the spatial microsimulation community to adopt and build on these foundations so that we 

can collectively move to a position where intervals of uncertainty are delivered routinely 

around spatial microsimulation small area point estimates. 

Keywords: small area estimation; spatial microsimulation; iterative proportional fitting; 

credible intervals; confidence intervals; variance estimation. 

 

1. Introduction 

A wide range of user groups from policy makers to media commentators desire ever more 

spatially detailed information in order to better understand their communities, better target 

resources and better plan activities and interventions. Census data are the obvious key data 

source here but although in many countries the availability of census and administrative 

data with high spatial resolution has increased dramatically in recent years key variables of 

interest frequently remain impossible to access at small area resolutions or with sufficient 

regularity to capture change over time.   

In response to this need, small area estimation (SAE) methodologies ʹ have become 

increasingly used and demanded as an important means of providing spatially detailed 

                                                           
1 Corresponding author: Dr Adam Whitworth, Dept of Geography, Univ Sheffield, UK. 

adam.whitworth@sheffield.ac.uk 

 

mailto:adam.whitworth@sheffield.ac.uk


This is the open access pre-publication version of the article published in Computers, 

Environment and Urban Systems (2016). Please cite the CEUS published version. 

 

insights.  These methodologies typically use survey data and with such data direct estimates 

of small area measures are rarely possible as survey respondents are seldom available from 

all small areas within a wider target setting.  Instead, researchers have methodologies 

developed regression-based and spatial microsimulation approaches. These have given 

insights that would not otherwise be possible (e.g. income, fear of crime, healthy behaviours 

to name but a few UK examples of non-Census variables that are of spatial interest to policy 

makers)(Marshall 2012; Whitworth, 2013). 

Despite this growing interest, one of the two chief methodological approaches to SAE ʹ the 

family of spatial microsimulation methods ʹ is at present undermined by its key inability to 

deliver intervals of uncertainty around its central point estimates. This is a critical 

requirement of any SAE method (Rao, 2005; Chatterjee et al., 2008) and the key (and 

significant) weakness of spatial microsimulation approaches (Tanton et al., 2014; Nagle et 

al., 2014). Regression-ďĂƐĞĚ “AE ĂƉƉƌŽĂĐŚĞƐ ĚŽ ŶŽƚ ƐƵĨĨĞƌ ĨƌŽŵ ƚŚŝƐ ŵĞƚŚŽĚŽůŽŐŝĐĂů AĐŚŝůůĞƐ͛ 
heel and hence make a strong claim at present to be the preferred approach, yet this is to 

overlook the possible advantages that spatial microsimulation methods have the potential 

to deliver if they could be developed to also be able to also estimate intervals around their 

central point estimates. It is this current inability to estimate credible intervals around point 

estimates within spatial microsimulation approaches to SAE that therefore motivates this 

paper to offer an innovative proposed solution to this key weakness. 

2. Methodological approaches to small area estimation 

As summarised elsewhere (Bishop et al., 1975; Ghosh and Rao, 1994; Rao, 2003; Rahman 

2008; Marshall 2012; Whitworth, 2013), various SAE methodologies currently exist and can 

broadly be described as falling within the two broad churches of spatial microsimulation 

techniques and statistical regression-based techniques, with further alternative variants and 

implementations within each broad approach. 

Statistical SAE follows logically from the basic notions of model-based prediction and 

imputation. A statistical model is developed using survey data and its coefficients are then 

applied to data that match the model explanatory variables but are available for all small 

areas of interest. A variety of alternative model specifications can be used, with the choice 

of modelling specification depending on the degree of complexity sought, the nature of the 

variable to be estimated, the type of estimates desired (e.g. mean, median, or distributional 

values), the nature of small area covariate data able to be sourced, and the level and 

structure of the data (Ghosh and Rao, 1994; Rao, 2003; Chambers and Tzavidis, 2006; 

Tzavidis et al., 2010; Pfeffermann, 2013). Whichever statistical technique is used, the result 

is a set of small area estimates accompanied by intervals around those central point 

estimates in order to give an indication of their likely plausible range.   

Within the family of spatial microsimulation techniques three alternative methodologies 

dominate the literature ʹ iterative proportional fitting (IPF), combinatorial optimisation (CO) 

and generalised regression reweighting (GREGWT). These approaches have been applied to 

diverse small area research projects in a wide range of national contexts (Voas and 

Williamson, 2000; Ballas et al 2006; Anderson 2007; Rahman et al. 2010; Tanton et al. 2011; 
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Birkin and Clarke 2011; Hermes and Poulson, 2012; Tanton and Edwards, 2013). The three 

ĂƉƉƌŽĂĐŚĞƐ ƐĞĞŬ ŝŶ ĚŝĨĨĞƌŝŶŐ ǁĂǇƐ ƚŽ ͚Ĩŝƚ͛ ƚŚĞ ƐƵƌǀĞǇ ĐĂƐĞƐ ĂƐ ĐůŽƐĞůǇ ĂƐ ƉŽƐƐŝďůĞ ƚŽ ƚŚĞ ŵƵůƚŝ-
dimensional characteristics of each separate small area for the set of selected key 

explanatory variables (termed ͚ƐŵĂůů ĂƌĞĂ constraints͛ in the literature) for which aggregate 

small area totals are known, in effect using the survey data to create synthetic micro-

populations for each target small area in turn and then using this to pick off estimates of the 

outcome variable of interest.  

The way that the three microsimulation methods achieve their goal differs in important 

respects. CO operates by selecting the required number of individuals or households from 

the survey data for the target small area in question. These survey cases are then swapped 

with cases not yet selected in an attempt to optimise the fit between the cases selected and 

the characteristics of the small area, with different possible algorithms used to assess 

whether the swaps have resulted in an improvement to the fit. In contrast, IPF and GREGWT 

reweight all survey cases to the constraint characteristics for each small area such that, 

taken together, the survey cases optimally ŵĂƚĐŚ ĞĂĐŚ ƐŵĂůů ĂƌĞĂ͛Ɛ ƉƌŽĨŝůĞ across the 

selected constraint variables. This position is reached when the reweighting process 

stabilises and no longer adjusts the weights. At this point no further improvements in the fit 

of the constraints between the survey cases and the target small area profile on those 

constraints is possible and the method is said to have converged. In an IPF approach this 

reweighting of the survey cases occurs sequentially across the constraint variables in turn. 

Whichever of these three spatial microsimulation methods is used, however, the result is a 

set of small area point estimates that can be readily calculated from the outcome values 

across either the reweighted (IPF and GREGWT) or selected (CO) survey cases for that target 

small area. 

In many ways, therefore, spatial microsimulation and statistical approaches to SAE offer 

alternative methodological routes to the same desired end point of a set of small area 

estimates of an outcome of interest that would not otherwise be available. However, one 

(quite literally) significant way in which the two broad approaches to SAE differ is in terms of 

the delivery of bounds of expected precision around the central small area point estimates. 

For statisticians the creation of confidence intervals around point estimates is deeply 

engrained into thinking and work practices and intervals around statistically derived small 

area point estimates are produced as a matter of course. These help users to understand the 

likely precision of the resulting small area estimates and, in doing so, to help users to 

consider the weight and confidence that they may wish to place in the estimates. For policy 

makers this is particularly important given their frequent need to use small area estimates to 

allocate resources, drive new policy decisions or draw conclusions about policy performance 

ʹ all decisions for which policy makers are (and should be) seeking insights around how 

much confidence they can place in the small area estimates underpinning their decision-

making.  

In contrast, the spatial microsimulation approaches that have been developed and applied 

to date do not provide similar confidence intervals around their central point estimates, in 

part a reflection of their origins in techniques of geocomputation and simulation rather than 

statistics and in part a result of methodological challenges around the task. This neglect of 
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uncertainty around spatial microsimulation small area point estimates is recognised within 

the literature as the Achilles heel to an otherwise innovative and powerful methodology, 

undermining its potential and utility for all user groups but particularly for its ability to 

rigorously inform policy decision-making. Spatial microsimulation scholars are well aware of 

this weakness and of the pressing need to develop new techniques for the creation of 

intervals around their central point estimates. Robert Tanton, a key member of the GREGWT 

spatial microsimulation team in Australia and the broader international spatial 

microsimulation community, recently recognized this, stating explicitly with colleagues͗ ͞TŚŝƐ 
has been the biggest difficulty with the modelled small area estimates derived by the ABS 

΀ƚŚĞ AƵƐƚƌĂůŝĂŶ BƵƌĞĂƵ ŽĨ “ƚĂƚŝƐƚŝĐƐ͛ G‘EGWT ĂƉƉƌŽĂĐŚ΁ ʹ there is no estimate of the 

reliability of the rĞƐƵůƚƐ͕ ĨŽƌ ĞǆĂŵƉůĞ͕ ƐƚĂŶĚĂƌĚ ĞƌƌŽƌƐ Žƌ ĐŽŶĨŝĚĞŶĐĞ ŝŶƚĞƌǀĂůƐ͟ ;TĂŶƚŽŶ Ğƚ Ăů͕͘ 
2014:80, italics added). 

To our knowledge the work of Nagle et al (2014) is the only currently published spatial 

microsimulation work within the peer-reviewed literature that has attempted to offer 

central small area point estimates along with accompanying intervals. Hence, from a 

methodological perspective, there is a significant gap in knowledge around the production of 

confidence intervals within a spatial microsimulation framework and a need to continue to 

develop innovative solutions to this key challenge. To do so the paper develops and robustly 

validates an innovative hybrid statistical-spatial microsimulation approach to the derivation 

of intervals around IPF small area point estimates.  

We demonstrate the proposed method using the IPF technique but the approach can be 

applied equally to the GREGWT method as both involve, albeit in different ways, the 

reweighting of national survey data to local small area benchmark totals in what is often 

described as a deterministic method (i.e. no randomness is involved and the same results 

are achieved with each run). The proposed approach is not suitable for the conceptually 

rather different combinatorial optimisation method as that technique involves the use of 

random number generation within the selection and reselection of survey cases such that 

the same results are not achieved with each run.  

To demonstrate the approach, the paper focuses substantively on the small area estimation 

of poor health across Wales using survey data from the National Survey for Wales 2013-14 

and small area covariate data from the England and Wales Census 2011, contributing to 

research on the utility of SAE as a census data replacement. The next section describes the 

IPF approach in greater detail, presents the small area central point estimates and validates 

these against the Census 2011 data on poor health. This is followed by a discussion of the 

approach to estimating intervals around these point estimates and consideration of the 

quality of the resulting intervals. A final section discusses the implications and next steps for 

the spatial microsimulation community. 

3. Small area estimation through spatial microsimulation: iterative 

proportional fitting in action 

Excellent detailed overviews of the IPF approach to spatial microsimulation exist elsewhere 

(Simpson and Tranmer, 2005; Ballas et al., 2005; Anderson, 2007; Whitworth et al., 2013) 
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and are only summarised here. The first task within an IPF approach is to identify a survey 

dataset containing the target outcome of interest as well as a set of predictively useful 

explanatory variables that are also available as covariate data at the target small area scale. 

These small area covariate data are, as here, often sourced from Census data, although 

covariate data may also be available from administrative, commercial or other sources.  As 

noted above, in this paper we focus as our case study on the small area estimation of poor 

health from the National Survey for Wales 2013-14. Although it would be more usual to 

focus on the estimation of an outcome not available at small scale, the choice of poor health 

within a methodologically oriented paper enables us to later conduct rigorous external 

validation of the IPF estimates and their intervals at the target small area scale using the 

known poor health data from the Census 2011. Poor health is coded as a binary outcome 

where those self-reporting in the survey as being in poor health (just under 10% of the 

cases) are coded one on the outcome and those self-reporting as in good or fair health are 

coded zero.  

A key task is to narrow down the list of potential explanatory factors affecting the poor 

health outcome to the most parsimonious set of predictively useful factors.  Currently 

researchers take a range of approaches to this task. An initial innovation that we suggest is 

the formalisation of this task through the use of multilevel multiple regression models of the 

base survey data to guide decision-making around the optimal set of constraints to use in 

the IPF based on a balance of predictive power and model parsimony and constrained by 

small area covariate data availability. In contrast to the work of Anderson (2007) who uses 

stepwise models focused mechanistically on p-values for this task, we advocate theoretically 

and empirically guided researcher development of these models.   

In our Welsh case study, Table 1 shows the full specification and results from the final 

individual-level multilevel binary logistic regression model where survey individuals (level 1) 

are nested inside MSOA small areas that are the target scale for the IPF (level 2), with an 

average of 33 survey cases in each MSOA. The underlying model specification is as follows: 

൫ݐ݅݃݋݈  ෠ܲ௜௝൯ ൌ ܾ଴ ൅ ܾଵ௝ ଵܺ௜௝ ൅ ڮ ൅ܾ௡ ܺ௡௜௝ ൅ ݑ௝ǡ    ݑ ݁ݎ݄݁ݓ௝ ̱ ܰሺͲǡ               ௨ଶሻ                    ሺͳሻߪ
The final model offers a reasonably solid foundation for the IPF with a McFaddeŶ͛Ɛ ƉƐĞƵĚŽ-

R2 statistic of 40%, in line with previous occasional studies that have used and presented a 

comparable statistical approach to constraint selection (Anderson, 2007). These constraint 

variables are prepared in the base individual level survey file as a set of binary indicator 

variables and for the small areas as aggregate population counts derived from Census 2011. 

 

Table 1: Multilevel model specification for the estimation of poor health to Welsh MSOAs 

Age-Sex Female 30-49 1.88* Highest Quals2 Level 1 0.85 

                                                           
2 Level 1 qualifications are equivalent to GCSE grades D-G and NVQ Level 1; Level 2 qualifications are 

equivalent to GCSE grade A*-C, NVQ Level 2 or Intermediate Apprenticeships; Level 3 qualifications ar 
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(ref= 

Female 16-29) 

Female 50-64 2.84* (ref=no quals) Level2 0.85 

Female 65+ 1.94* Level 3 0.87 

Male 16-29 0.56 Level 4+ 0.68* 

Male 30-49 1.86* Health 

(ref=no limiting 

illness) 

Has limiting 

illness 

55.4* 

Male 50-64 2.66* Region 

(ref=North East) 

East 0.85 

1.50* Male 64+ 1.88* South-

Eastern 

1.51* 

Tenure 

(ref=private 

renter) 

Owned 0.77* South-East 

coastal 

1.09 

Social Rent 1.27 South-West 1.50* 

Employment 

Status 

(ref=unemployed) 

Employed 0.68 North-West 1.19 

Retired 1.67 Constant 0.02* 

Inactive 2.88*  

Student 0.45 

Observations=13,566 

MSOAs (level 2 groups) = 410 

Observations per MSOA (level 2 group): 

min=5; average=33.1; max=114 

* denotes p-value < 0.05 

Explained log-likelihood / Total log-

ůŝŬĞůŝŚŽŽĚ ;MĐFĂĚĚĞŶ͛Ɛ PƐĞƵĚŽ-R2) = 0.40 

Residual ICC=0.01 (Empty ICC=0.04) 

Variance of the residual level 2 

error=0.0394 (in empty model=0.1228) 

 

This multilevel specification requires the target small area geocodes in the survey file. 

Although not universally available such small area geocodes are obtainable increasingly on a 

range of key survey data in the UK context, even if their release often requires the signing of 

additional data disclosure agreements or secure access. In the case of these survey data, 

small scale Lower Layer Super Output Area (LSOA) geocodes were included in the survey 

data and the small area estimation then worked to the slightly larger Middle Layer Super 

Output Area (MSOA) geography into which LSOAs nest and to which geocodes were 

aggregated. There are not sufficient survey sample sizes within these geocoded base surveys 

to estimate directly to the target small area scale, indeed there are areas with no survey 

respondents. Hence the continued need for SAE techniques despite knowing the small area 

geocodes of the survey cases.  

 

It is worth clarifying briefly at this point the advantages of advantages of an IPF spatial 

microsimulation approach to the SAE when it is conceptually possible for the analyst to also 

progress from here with a regression-based approach. Firstly, the spatial microsimulation 

approach enables the creation of a synthetic population micro-dataset comprised of multi-

way cross-tabulated individuals. This dataset can be used for further analyses such as 

distributional estimates of the target outcome for small areas or the small area impact of 

͚ǁŚĂƚ ŝĨ͛ ƉŽůŝĐǇ ƐĐĞŶĂƌŝŽƐ Žƌ ŝƚ ĐĂŶ ďĞ ƵƐĞĨƵůůǇ ůŝŶŬĞĚ ƚŽ ŽƚŚĞƌ ĚĂƚĂƐĞƚƐ Žƌ ƐŝŵƵůĂƚŝŽŶ ŵŽĚĞůƐ 
(Vidyattama et al., 2015). In contrast, regression-based approaches struggle to incorporate 

this individual-level granularity because of the limited availability of individual level census 

data for reworking models to produce estimates for all areas.  As Twigg et al. (2000) note, in 

one of the methodologies to address this constraint, the required census data are seldom 

available beyond three-way cross-tabulations. In this context, potential gains from spatial 

                                                           

equivalent to A-levels, NVQ Level 3 or Advanced Apprenticeships; Level 4 qualifications and above 

include Degrees, Postgraduate Qualifications and Higher Apprenticeships. 
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microsimulation approaches highlight the importance of delivering confidence intervals 

around estimates. Secondly, Tranmer et al (2005) argue that spatial microsimulation allows 

for the complex multilevel structure, and interactions, of individuals, households and 

localities to be incorporated into SAE analyses.  

Once the data are prepared the IPF can be implemented across each target small area in 

turn. The IPF begins with the initial survey weights and its task is to move across the pre-

identified constraint variables in turn and each time to fractionally reweight the survey cases 

on that constraint according to the extent to which the aggregated weighted values on the 

survey cases on that constraint variable either over-represent or under-represent that 

characteristic in the small area.  The explanatory factors identified here become the set of 

constraints to go into the IPF. Formally, the weights on each survey case are reweighted on 

each constraint according to the following formula,  

wijk = wijk-1 * (Cjk / Sjk)      (2)      

 

where Cjk is the small area aggregate count of constraint k in small area j (taken typically 

from Census tables), Sjk is the survey weighted sum of constraint k in small area j based on 

the most recent survey reweight, wijk-1 is the weight relating to survey case i in small area j 

from the previous constraint reweighting, and wijk is the resulting new weight for survey case 

i in small area j from the current reweighting on constraint k.  

 

The reweighting technique can be demonstrated with the help of a worked example. Let us 

assume that the weighted survey total shows 2500 individuals with limiting illness but the 

target small area contains only 200 individuals with limiting illness. The weights for survey 

individuals with health conditions will be refined downwards based on the ratio between the 

two (200/2500=0.08). Hence, the extent to which this deflation of the weights occurs for 

these survey respondents varies according to their differing needs in terms of replicating the 

target small area population profile for each group on this constraint variable.  

The new, deflated weights then become the starting point for the further reweighting on the 

next constraint (e.g. economic activity), and so on across each constraint. By doing so the 

weights are gradually refined as the IPF moves across each of the constraint variables in 

turn, bringing the weighted aggregated profile of the survey dataset gradually closer both to 

the size and multi-dimensional profile of the small area population. The most powerful 

predictive factor (limiting illness) is used as the last constraint in order to maximise its fit. In 

our approach the IPF sequentially loops around the set of constraints ten times in order to 

make increasingly fine adjustments to the weights such that they stabilise.  

The final calculated weight variable shows the specific weighting that each survey case takes 

for that small area in order for the survey cases taken as a whole to optimally fit the multi-

dimensional profile of each small area. It is then a trivial task to create an estimate of the 

target outcome variable(s) for each small area by taking a weighted total of the outcome 

variable across the survey cases. Typically this weighted small area estimate is a point 

estimate such as a weighted mean or median but distributional estimates of the target 

outcome variable can also easily be calculated. 
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A final necessary step in the process is to validate the small area estimates both externally in 

terms of the face validity of the estimates and internally in terms of goodness of fit on the 

constraints. Understandably, external validation is often challenging given that comparable 

ƐŵĂůů ĂƌĞĂ ĚĂƚĂ ŽĨƚĞŶ ĚŽ ŶŽƚ ĞǆŝƐƚ ŐŝǀĞŶ ƚŚĞ ŶĞĞĚ ĨŽƌ “AE ŝŶ ƚŚĞ ĨŝƌƐƚ ŝŶƐƚĂŶĐĞ͘ IŶ ƚŚŝƐ ƉĂƉĞƌ͛Ɛ 
example, a key reason for estimating poor health as the outcome variable is that this can be 

validated at the target small area level given that the variable is collected in the UK Census. 

AĐƌŽƐƐ WĂůĞƐ͛Ɛ ϰϭϬ M“OAƐ ƚŚĞ PĞĂƌƐŽŶ͛Ɛ ĐŽƌƌĞůĂƚŝŽŶ ĐŽĞĨĨŝĐŝĞŶƚ ďĞƚǁĞĞŶ ƚŚĞ CĞŶƐƵƐ 
percentage of adults in poor health and the equivalent IPF estimates shown in Figure 1 is 

extremely strong at 0.93. This does not necessarily show that they lie along a 45-degree line 

starting from the origin as one would ideally like, however, and simple bivariate linear 

regression can be used to explore this (Scarborough et al, 2009; Taylor et al., 2016): if the 

estimation has produced perfect results then the intercept of this regression model should 

be estimated as zero and the single coefficient should be estimated as one. For these poor 

health estimates the intercept in this model is 0.405 (suggesting that are the IPF estimates 

tend on average to be 0.4 percentage points higher than the Census percentages), the 

coefficient is estimated as 1.063 (suggesting only a slight deviation in slope from the ideal 

45-degree line) and the adjusted R-square is 0.85. The internal validation is highly effective 

on the fitted constraints and acceptable on non-fitted constraints using standard fit statistics 

(Smith et al., 2011). Most fitted constraints give mean standardized errors (MSEs) of zero 

and virtually all produce MSEs of 0.3 or below. All target small areas have IPF reweighted 

counts within 20% of the actual Census counts. Five non-fitted constraints were also 

assessed: being higher, medium or manual socio-economic status; having access to a car; 

and having dependent children. The IPF performed relatively well here too with MSEs of 

10.5, 13.6, 13.1, 6.6 and 10.6 respectively. Taken together these external and internal 

validation statistics provide strong evidence at the detailed target small area scale for the 

effectiveness of this small area estimation. 

 

Figure 1 shows the resulting IPF small area point estimates of the percentage of adults 

estimated to be in poor health across the target Middle Layer Super Output Area (MSOA) 

scale across Wales, areas with an average population size of 7,860 residents.  

 

Figure 1: Small area estimates of poor health across Welsh MSOAs 
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4. Getting confident in spatial microsimulation: a new approach to estimating 

credible intervals 

 

Although analysts using IPF rightly highlight the importance of the validation of point 

estimates, the process of IPF (and indeed, all forms of spatial microsimulation) currently 

ends with point estimates. This is deeply problematic for the wide range of users of the 

resulting small area estimates ʹ policy makers, commercial organisations, charities, 

academics, general public, and so on ʹ who require information not just about the central 

ƉŽŝŶƚ ĞƐƚŝŵĂƚĞƐ ďƵƚ ĂůƐŽ ĐƌƵĐŝĂůůǇ ĂďŽƵƚ ƚŚĞ ůŝŬĞůǇ ƌĂŶŐĞ ŽĨ ǀĂůƵĞƐ ŝŶ ǁŚŝĐŚ ƚŚĞ ͚ƚƌƵĞ͛ ;ďƵƚ 
unknown) population value can be expected to fall. This is key additional information to 

enable users to evaluate how much credence they wish to place on the estimates and what 

types of business, policy or financial (e.g. resource allocations) they are, and perhaps are 

not, prepared to make on their basis. 

 

Spatial microsimulation researchers are well aware of this critical weakness and have been 

explicit in describing an urgent need to make progress in the creation of intervals around 

their central point estimates (Tanton et al., 2014:80). Initial attempts made using Bayesian 

approaches offer potential (Rahman et al., 2010) but are not fully developed or tested and 

face acknowledged challenges in obtaining suitable prior distributions for interested events. 

NĂŐůĞ Ğƚ Ăů͛Ɛ ;ϮϬϭϰͿ ǁŽƌŬ ŽŶ ĚĂƐǇŵĞƚƌŝĐ ŵŽĚĞůůŝŶŐ, entropy and downscaling offers an 

alternative approach and one that is to our knowledge the only currently published 
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methodological approach in this context. Intriguingly, and helpfully at this stage of 

methodological development around this key gap in the literature, it is distinct from our own 

proposal for an innovative hybrid statistical-spatial microsimulation approach for the 

calculation of credible intervals around spatial microsimulation point estimates. We hope 

that our proposal and that of Nagle et al will further stimulate collective debate and activity 

across the microsimulation research community.  

 

To this end, the underlying regression model presented above in Table 1 can be further 

harnessed to open the pathway towards the derivation of confidence intervals around the 

point estimates following an approach utilised in the statistical SAE literature drawing on the 

residual between-area error term (Heady et al., 2003; Bajekal et al., 2004; Pickering et al., 

2004).  In single-level regression specifications the total variance in the outcome variable is 

assessed at a single level and R-square statistics are customarily used to describe model 

power in terms of the share of that total variance that can be accounted for by the 

explanatory factors in the model. In a multilevel regression specification, by contrast, the 

total variance in the outcome is partitioned across the (two or more) levels of the hierarchy, 

denoted in a two-level multilevel specification via the intra-class correlation coefficient (ICC) 

and variance terms at each level in the model. The incorporation of explanatory variables 

into the multilevel regression model enables the total variance in the outcome to be 

accounted for separately across the various levels of the model and therefore delivers 

estimates of residual error at each level of the multilevel structure, as well as of the variance 

around those residual error terms. In a small area estimation context it is confidence in the 

precision of the area level point estimates, and a desire to discriminate confidently between 

point estimates across different small areas, that is of interest. As such, within the two-level 

multilevel model presented above in Table 1 it is the estimated variance on the residual 

between-area (i.e. level two) error at the target small area scale that offers the key 

information for the construction of credible intervals. The greater our ability to account for 

the between-area variation in this multilevel model and the lesser the extent of the 

remaining uncertainty at the area level then the tighter can be, and should be, the intervals 

around the central small area point estimates.  

AƐ ƐƵĐŚ͕ ƚŚĞ ƵŶĚĞƌƐƚĂŶĚŝŶŐ ŽĨ ͚ŽƉƚŝŵĂůŝƚǇ͛ is opened out to two separate dimensions against 

which the underlying modelling endeavours to deliver. A first and more standard 

understanding of optimality relates to the predictive power of the model and resultant 

expectation of accuracy in the small area point estimates with a parsimonious set of 

constraint variables. In terms of the width of the credible intervals, however, a second 

dimension of optimality relates to the ability within the multilevel specification to explain 

the between-area variance across the data and, as a result, to narrow the width of the 

resulting intervals. As such, it is in principle possible for a set of modelled explanatory factors 

to produce underlying models that are sub-optimal in terms of the first dimension of 

predictive power but that are nevertheless optimal in terms of the second dimension of 

minimization of the residual between-area variance, and vice versa. 

Applying this to our worked example of the small area estimation of poor health across 

Welsh MSOAs, the estimated standard deviation of the residual between-area variation in 
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the underlying multilevel binary logit model is shown to the bottom-right of Table 1 above. 

The shape of this residual between-area error term is now known: its standard deviation is 

estimated; its mean is assumed to be zero; and its normality is ordinarily assumed, and in 

this example has also been verified empirically. As such, a distribution of the residual 

between-area error can be drawn and utilised in order to give a sense of the likely 

uncertainty around those IPF point estimates. 

The process of utilising this information in order to compute the intervals is as follows. For 

each target MSOA the IPF reweighting delivers a central small area point estimate of the 

percentage of adults in poor health for each Welsh MSOA. This small area estimate, 

however, fails to take into account the uncertainty around it. Therefore, for each small area 

10,000 separate values are then drawn randomly from the known distribution of the 

residual between-area error term as described above with mean of zero, standard deviation 

as estimated by the multilevel model containing the constraints used in the IPF, and 

normally distributed. The central point estimate and the 10,000 separate between-area 

error terms are expressed as log odds. Each randomly drawn between-area error term is 

added separately to the central point estimate for that small area to produce 10,000 

plausible small area estimates, each combining the small central point estimate with a 

slightly different value on the between-area error term that is added. These estimates, now 

taking into account uncertainty, can then be converted from predicted log odds into 

predicted probabilities and the 95% credible intervals can be picked off from the 2.5th 

percentile and the 97.5th percentile of the distribution of these 10,000 separate plausible 

estimates. Figure 2 provides a visual summary of the resulting credible intervals around the 

IPF ƉŽŝŶƚ ĞƐƚŝŵĂƚĞƐ ƉƌĞƐĞŶƚĞĚ ĂďŽǀĞ ĂĐƌŽƐƐ Ă ƚĞŶ ƉĞƌ ĐĞŶƚ ƐĂŵƉůĞ ŽĨ WĂůĞƐ͛ ϰϭϬ M“OA 
areas. In keeping with the nature of their calculation we term ŽƵƌ ƌĞƐƵůƚƐ ͚credible intervals͛, 
a terminology that is standard in the statistical literature. 

 

 

 

 

 

 

 

 



This is the open access pre-publication version of the article published in Computers, 

Environment and Urban Systems (2016). Please cite the CEUS published version. 

 

Figure 2: Credible intervals around a sample of Welsh MSOA IPF estimates of poor health

 

A key reason for choosing to estimate poor health for the purposes of this methodological 

work is its ability to be robustly externally validated at the target small area scale against 

known Census data. Given that the actual percentage of adults in poor health across MSOAs 

is known from Census 2011 data it is possible to assess what percentage of those values lie 

within the IPF intervals. The ability to capture these population values is in a sense the core 

function of the intervals and hence offers a useful indicator of their performance.  

Typically one would focus on the performance of the standard 95% intervals (+/- 1.96 

standard deviations around the mean) but it is possible to be more comprehensive in the 

assessment of the intervals by instead considering the performance of the estimated 

credible intervals across their entire full distribution. Table 2 offers this more detailed 

analysis. Specifically, it is possible to take a variety of differently specified levels of standard 

deviations around the mean and to set out the percentage of cases that one would expect to 

fall within ʹ and, hence conversely, beyond ʹ these bounds. This expected performance is 

shown in column two of Table 2 in relation to the variety of standard deviation levels shown 

in column one. For example, one would expect ϲϴ͘ϯй ŽĨ WĞůƐŚ M“OAƐ ƚŽ ŚĂǀĞ ͚ƚƌƵĞ͛ CĞŶƐƵƐ 
2011 values for the percentage of residents in poor health within one standard deviation, 

and 95.5% within two standard deviations, of the mean on the estimated distribution of the 

credible intervals. Column three shows the actual ƉĞƌĐĞŶƚĂŐĞ ŽĨ ͚ƚƌƵĞ͛ CĞŶƐƵƐ ϮϬϭϭ ǀĂůƵĞƐ 
that fall within these various bounds based on a comparison of those known Census values 

against the estimated distribution of the credible intervals derived. The final column shows 

the ratio between these two (i.e. actual percentage/expected percentage) such that a value 

of one would mean that the performance of the estimated credible intervals was perfectly in 

line with expectations.  

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400
10 per cent sample of Welsh MSOAs

Point estimate 95% intervals



This is the open access pre-publication version of the article published in Computers, 

Environment and Urban Systems (2016). Please cite the CEUS published version. 

 

Table 2 shows that the proposed methodology to derive the credible intervals performs 

extremely well and matches closely what would be expected across the full range of the 

distributions of the resulting intervals. Indeed, the estimated intervals here perform slightly 

better than would be expected at thresholds closer to the mean and by +/- 1.5 standard 

deviations and beyond their performance is near identical to what would be expected. This 

is strong evidence of their functionality. 

Table 2: Actual and expected performance of the credible intervals 

Standard Deviations Expected % 

Census values 

within bounds 

Actual % Census  

values within  

bounds 

Ratio 

+/- Ϭ͘ϱ ʍ 38.3 41.2 1.10 

+/- ϭ͘Ϭ ʍ 68.3 71.7 1.05 

+/- ϭ͘ϱ ʍ 86.6 87.3 1.01 

+/- Ϯ͘Ϭ ʍ 95.5 96.3 1.01 

+/- Ϯ͘ϱ ʍ 98.8 98.5 1.00 

+/- ϯ͘Ϭ ʍ 99.7 99.3 1.00 

 

5. Conclusion 

Despite the existence of national Census data in most national contexts and the growing 

ŝŶƚĞƌĞƐƚ ŝŶ͕ ĂŶĚ ĂǀĂŝůĂďŝůŝƚǇ ŽĨ͕ ͚ŶĞǁ͛ ĂŶĚ ͚BŝŐ͛ ĚĂƚĂ ƐŽƵƌĐĞƐ͕ ǁŝĚĞƐƉƌĞĂĚ ŐĂƉƐ ĐŽŶƚŝŶƵĞ ƚŽ 
exist in the spatial resolution at which key variables of interest exist. Within this context SAE 

techniques of various forms can be utilised to fill some of those informational black holes, 

squeezing additional value from existing survey data investments and offering new spatially 

detailed data insights where they could not otherwise be obtained. Such SAE techniques 

currently rely on and can supplement Census data and, in the UK context at least, take on an 

additional future importance given the on-going push away from the traditional Census in 

this context.  

The present paper has focused on spatial microsimulation approaches to small area 

estimation and the continued inability of those approaches to deliver robust intervals 

around their small area point estimates. The continued absence of such intervals from 

spatial microsimulation approaches to SAE seriously undermines the utility of these 

otherwise powerful methodologies for the various user communities seeking to make use of 

the additional spatial detailed understanding. This limitation is particularly acute for policy 

makers who are often the key group requesting the use of small area estimation techniques 

to deliver for spatial detailed information to underpin their work but whom inevitably also 

wish to reflect on the likely precision of the point estimates before making decisions around 

policy interventions or resource allocations. 

The paper has presented an innovative hybrid statistical-spatial microsimulation approach to 

the construction of credible intervals around small area point estimates from spatial 

microsimulation SAE techniques, based on the IPF estimation of adults in poor health across 

Welsh MSOAs. The proposed method can be applied either to IPF or to GREGWT spatial 
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microsimulation approaches. The approach involves the incorporation of a multilevel 

regression model in the base survey file in order to identify the optimal constraints for the 

IPF reweighting in a more rigorous and systematic way than is typically the case in the 

literature at present, with survey individuals nested inside the target small area scale (here 

MSOAs). Drawing on work in the statistical small area estimation community, given that the 

chief concern is a desire to discriminate confidently between point estimates across 

different small areas, then it is the residual variance on the between-area error term that is 

of key importance within this estimated multilevel model for the derivation of the intervals. 

With the key characteristics of this residual between-area error distribution known ʹ mean, 

variance, shape ʹ then it is possible to draw randomly a series of (in our example 10,000) 

additional error terms with which to add to the IPF derived central point estimates in order 

to, in effect, perturb the small area estimates according to the estimated extent of their 

likely precision. The 95% credible intervals can then be picked off from the 2.5th percentile 

and the 97.5th percentile of the resulting distribution of outcome estimates. 

By selecting poor health as the outcome variable, the analyses are able to validate the point 

estimates and their intervals using the collected Census data of this same poor health 

variable and at the same target small area scale. Our proposed approach performs 

extremely well in this worked example. The central IPF point estimates of adults in poor 

health correlate highly with the Census percentages across Welsh MSOAs (r=0.93) and in 

linear models produce a near-perfect slope estimate (b=1.063), though with a slightly high 

intercept estimate (a=0.405). The internal validation is highly effective on the fitted 

constraints and acceptable on non-fitted constraints. 

IŶ ƚĞƌŵƐ ŽĨ ƚŚĞ ƉĂƉĞƌ͛Ɛ key focus on the derivation of the intervals, the validation is again 

able to be conducted robustly at the target MSOA scale against the known Census 2011 

data. At the standard 95% threshold ϵϲ͘ϯй ŽĨ WĂůĞƐ͛ ϰϭ0 MSOAs ƐŚŽǁ ͚ƚƌƵĞ͛ CĞŶƐƵƐ ǀĂůƵĞƐ 
for the percentage of residents with poor health that are within the 95% intervals estimated 

using our proposed approach. The analyses also examine the performance of the estimates 

across a series of standard deviation thresholds across the full range of the estimated 

intervals. At all points throughout this distribution the credible intervals perform extremely 

well against what would be expected at each level. Our proposed innovative methodology to 

derive credible intervals in spatial microsimulation SAE approaches therefore appears highly 

effective and represents a significant step forwards in resolving this key weakness of these 

otherwise powerful methodological approaches. We call on the broader spatial 

microsimulation community to pick up this and related work so that we can collectively 

continue to make progress in the robust estimation of uncertainty around our small area 

point estimates until such time as they are produced as a matter of course. Only then in our 

view will spatial microsimulation approaches really have the statistical robustness desired 

and expected for a small area estimation methodology that can be used by policy makers, 

business users, third sector groups and the general public in understanding and seeking to 

improve social and economic outcomes at fine spatial scales.  

 

References 



This is the open access pre-publication version of the article published in Computers, 

Environment and Urban Systems (2016). Please cite the CEUS published version. 

 

Anderson, B (2007) Creating small area income estimates for England: spatial 

microsimulation modelling, a report to the Department of Communities and Local 

Government. London: Department of Communities and Local Government. 

 

Bajekal, M., Scholes, S., Pickering, K. and Purdon, S. (2004) Synthetic estimation of healthy 

lifestyle indicators: Stage one report. London: National Centre for Social Research. 

 

Ballas, D., Clarke, G͕͘ DŽƌůŝŶŐ͕ D͕͘ EǇƌĞ͕ H͕͘ TŚŽŵĂƐ͕ B͕͘ Θ ‘ŽƐƐŝƚĞƌ͕ D͘ ;ϮϬϬϱͿ ͚“ŝŵBƌŝƚĂŝŶ͗ Ă 
spatial microsimulation ĂƉƉƌŽĂĐŚ ƚŽ ƉŽƉƵůĂƚŝŽŶ ĚǇŶĂŵŝĐƐ͕͛ Population, Space and Place, 

11(1), pp13-34. 

 

BĂůůĂƐ͕ D͕͘ CůĂƌŬĞ͕ G͘ ĂŶĚ WŝĞŵĞƌƐ͕ E͘ ;ϮϬϬϲͿ ͚“ƉĂƚŝĂů ŵŝĐƌŽƐŝŵƵůĂƚŝŽŶ ĨŽƌ rural policy analysis 

ŝŶ IƌĞůĂŶĚ͗ ƚŚĞ ŝŵƉůŝĐĂƚŝŽŶƐ ŽĨ CĂƉ ƌĞĨŽƌŵƐ ĨŽƌ ƚŚĞ ŶĂƚŝŽŶĂů ƐƉĂƚŝĂů ƐƚƌĂƚĞŐǇ͕͛ Journal of Rural 

Studies, pp367-378. 

 

BŝƌŬŝŶ͕ M͘ ĂŶĚ CůĂƌŬĞ͕ G͘ ;ϮϬϭϭͿ ͚“ƉĂƚŝĂů ŵŝĐƌŽƐŝŵƵůĂƚŝŽŶ ŵŽĚĞůƐ͗ Ă ƌĞǀŝĞǁ ĂŶĚ ŐůŝŵƉƐĞ ŝŶƚŽ 
ƚŚĞ ĨƵƚƵƌĞ͕͛ Population Dynamic and Projection Methods: Understanding Population Trends 

and Processes Volume 4. London: Springer. 

 

Bishop, Y., Fienberg, S and Holland, P. (1975) Discrete multivariate analysis: Theory and 

Practice. MIT Press. 

 

CŚĂŵďĞƌƐ͕ ‘ ĂŶĚ TǌĂǀŝĚŝƐ͕ N ;ϮϬϬϲͿ ͚M-ƋƵĂŶƚŝůĞ ŵŽĚĞůƐ ĨŽƌ ƐŵĂůů ĂƌĞĂ ĞƐƚŝŵĂƚŝŽŶ͕͛ 
Biometrika, 93, pp255-268. 

 

CŚĂƚƚĞƌũĞĞ͕ “͕͘ LĂŚŝƌŝ͕ P͘ ĂŶĚ Lŝ͕ H͘ ;ϮϬϬϴͿ ͚OŶ ƐŵĂůů ĂƌĞĂ ƉƌĞĚŝĐƚŝŽŶ ŝŶƚĞƌǀĂů ƉƌŽďůĞŵƐ͕͛ The 

Annals of Statistics, 36, pp1221-1245. 

 

GŚŽƐŚ͕ M͘ ĂŶĚ ‘ĂŽ͕ J͘ ;ϭϵϵϰͿ ͚“ŵĂůů ĂƌĞĂ ĞƐƚŝŵĂƚŝŽŶ͗ ĂŶ ĂƉƉƌĂŝƐĂů͕͛ Statistical Science, 9(1), 

pp55-76. 

 

Heady, P., Clarke, P., Brown, G., Ellis, K., Heasman, D., Hennell, S., Longhurst, J. and Mitchell, 

B. (2003) Model based area estimation series No. 2: Small area estimation project report. 

London: Office for National Statistics. 

 

HĞƌŵĞƐ͕ K ĂŶĚ PŽƵůƐŽŶ͕ M ;ϮϬϭϮͿ ͚CƵƌƌĞŶƚ ŵĞƚŚŽĚƐ ƚŽ ŐĞŶĞƌĂƚĞ ƐǇŶƚŚĞƚŝĐ ƐƉĂƚŝĂů ŵŝĐƌŽĚĂƚĂ 
ƵƐŝŶŐ ƌĞǁĞŝŐŚƚŝŶŐ ĂŶĚ ĨƵƚƵƌĞ ĚŝƌĞĐƚŝŽŶƐ͕͛ Computers, Environment and Urban Systems, 36, 

281-290. 

 

Marshall, A (2012) Small area estimation using ESDS government surveys ʹ An introductory 

guide Economic and Social Data Service. 

 

NĂŐůĞ͕ N͕͘ BƵƚƚĞŶĨŝĞůĚ͕ B͕͘ LĞǇŬ͕ “ ĂŶĚ “ƉŝĞůŵĂŶ͕ “͘ ;ϮϬϭϰͿ ͚DĂƐǇŵĞƚƌŝĐ MŽĚĞůŝŶŐ ĂŶĚ 
UŶĐĞƌƚĂŝŶƚǇ͕͛ Annals of the Association of American Geographers, 104(1), pp80-95. 

 



This is the open access pre-publication version of the article published in Computers, 

Environment and Urban Systems (2016). Please cite the CEUS published version. 

 

PĨĞĨĨĞƌŵĂŶŶ͕ D ;ϮϬϭϯͿ ͚NĞǁ ŝŵƉŽƌƚĂŶƚ ĚĞǀĞůŽƉŵĞŶƚƐ ŝŶ ƐŵĂůů ĂƌĞĂ ĞƐƚŝŵĂƚŝŽŶ͕͛ Statistical 

Science, 28, pp40-68.  

 

Pickering, K., Scholes, S and Bajekal, M (2004) Synthetic estimation of healthy lifestyles 

indicators: Stage 3 report. London: NatCen. 

 

Rahman, A (2008) A review of small area estimation problems and methodological 

developments. University of Canberra: NATSEM Discussion Paper Issue 66. 

 

‘ĂŚŵĂŶ͕ A͕͘ HĂƌĚŝŶŐ͕ A͕͘ TĂŶƚŽŶ͕ ‘͘ ĂŶĚ LŝƵ͕ “͘ ;ϮϬϭϬͿ ͚MĞƚŚŽĚŽůŽŐŝĐĂů ŝƐƐƵĞƐ ŝŶ ƐƉĂƚŝĂů 
microsimulation ŵŽĚĞůůŝŶŐ ĨŽƌ ƐŵĂůů ĂƌĞĂ ĞƐƚŝŵĂƚŝŽŶ͕͛ International Journal of 

Microsimulation, 3(2), pp3-22. 

 

Rao, J (2003) Small Area Estimation. New York: Wiley 

 

‘ĂŽ͕ J  ;ϮϬϬϱͿ ͚IŶĨĞƌĞŶƚŝĂů ŝƐƐƵĞƐ ŝŶ ƐŵĂůů ĂƌĞĂ ĞƐƚŝŵĂƚŝŽŶ͗ ƐŽŵĞ ŶĞǁ ĚĞǀĞůŽƉŵĞŶƚƐ͕͛  
Statistics in Transition, 7(3), pp513-526. 

 

Rees, P, Martin, D and Williamson, P (2002) (ed), The Census Data System. Chichester: Wiley 

“ĐĂƌďŽƌŽƵŐŚ͕ P͕͘ AůůĞŶĚĞƌ͕ “͕͘ ‘ĂǇŶĞƌ͕ M ĂŶĚ GŽůĚĂĐƌĞ͕ M͘ ;ϮϬϬϵͿ ͚VĂůŝĚĂƚŝŽŶ ŽĨ ŵŽĚĞů-based 

estimates (synthetic estimates) of the prevalence of risk factors for coronary heart disease 

ĨŽƌ ǁĂƌĚƐ ŝŶ EŶŐůĂŶĚ͕͛ Health & Place, 15(2), pp596-605. 

 

“ŝŵƉƐŽŶ͕ L͘ ĂŶĚ TƌĂŶŵĞƌ͕ M͘ ;ϮϬϬϱͿ ͚CŽŵďŝŶŝŶŐ ƐĂŵƉůĞ ĂŶĚ ĐĞŶƐƵƐ ĚĂƚĂ ŝŶ ƐŵĂůů ĂƌĞĂ 
estimates: iterative proportional fitting with standard software͕͛ The Professional 

Geographer, 57(2), pp222-234. 

 

“ŵŝƚŚ͕ D͕͘ PĞĂƌĐĞ͕ J͘ ĂŶĚ HĂƌůĂŶĚ͕ K͘ ;ϮϬϭϭͿ ͚CĂŶ Ă ĚĞƚĞƌŵŝŶŝƐƚŝĐ ƐƉĂƚŝĂů ŵŝĐƌŽƐŝŵƵůĂƚŝŽŶ 
model produce reliable small-area estimates of health behaviours? An example of smoking 

ƉƌĞǀĂůĞŶĐĞ ŝŶ NĞǁ )ĞĂůĂŶĚ͕͛ Health & Place, 17(2), pp618-624 

 

Tanton, R and Edwards, K (2013) (eds) Spatial microsimulation: a reference guide for users. 

London: Springer. 

 

TĂŶƚŽŶ͕ ‘͕͘ VŝĚǇĂƚƚĂŵĂ͕ Y͕͘ NĞƉĂů͕ B ĂŶĚ MĐŶĂŵĂƌĂ͕ J ;ϮϬϭϭͿ ͚“ŵĂůů ĂƌĞĂ ĞƐƚŝŵĂƚŝŽŶ ƵƐŝŶŐ Ă 
reweighting algoritŚŵ͕͛ Journal of the Royal Statistical Society: Series A (Statistics in Society), 

174(4), pp931-951. 

 

TĂǇůŽƌ͕ J͕͘ MŽŽŶ͕ G͘ ĂŶĚ TǁŝŐŐ͕ L ;ϮϬϭϲͿ ͚UƐŝŶŐ ŐĞŽĐŽĚĞĚ ƐƵƌǀĞǇ ĚĂƚĂ ƚŽ ŝŵƉƌŽǀĞ ƚŚĞ 
ĂĐĐƵƌĂĐǇ ŽĨ ŵƵůƚŝůĞǀĞů ƐŵĂůů ĂƌĞĂ ƐǇŶƚŚĞƚŝĐ ĞƐƚŝŵĂƚĞƐ͕͛ Social Science Research, 56, pp108-

116 

 

TĂŶƚŽŶ͕ ‘͕͘ WŝůůŝĂŵƐŽŶ͕ P͘ ĂŶĚ HĂƌĚŝŶŐ͕ A͘ ;ϮϬϭϰͿ ͚CŽŵƉĂƌŝŶŐ ƚǁŽ ŵĞƚŚŽĚƐ ŽĨ ƌĞǁĞŝŐŚƚŝŶŐ Ă 
ƐƵƌǀĞǇ ĨŝůĞ ƚŽ ƐŵĂůů ĂƌĞĂ ĚĂƚĂ͕͛ International Journal of Microsimulation, 7(1), pp76-99 



This is the open access pre-publication version of the article published in Computers, 

Environment and Urban Systems (2016). Please cite the CEUS published version. 

 

 

Tranmer, M., Pickles, A., Fieldhouse, E., Elliot, M., Dale, A., Brown, M., Martin D, Steel D & 

GĂƌĚŝŶĞƌ͕ C͘ ;ϮϬϬϱͿ ͚TŚĞ ĐĂƐĞ ĨŽƌ ƐŵĂůů ĂƌĞĂ ŵŝĐƌŽĚĂƚĂ͕͛ Journal of the Royal Statistical 

Society: Series A (Statistics in Society), 168(1), pp29-49. 

 

TǌĂǀŝĚŝƐ͕ N͕͘ MĂƌĐŚĞƚƚŝ͕ “ ĂŶĚ CŚĂŵďĞƌƐ͕ ‘ ;ϮϬϭϬͿ ͚‘ŽďƵƐƚ ĞƐƚŝŵĂƚŝŽŶ ŽĨ ƐŵĂůů ĂƌĞĂ ŵĞĂŶƐ 
ĂŶĚ ƋƵĂŶƚŝůĞƐ͕͛ Australian and New Zealand Journal of Statistics, 52(2), pp167-186. 

 

VŝĚǇĂƚƚĂŵĂ͕ Y͕͘ TĂŶƚŽŶ͕ ‘͘ ĂŶĚ BŝĚĚůĞ͕ N͘ ;ϮϬϭϱͿ ͚EƐƚŝŵĂƚŝŶŐ ƐŵĂůů-area Indigenous cultural 

ƉĂƌƚŝĐŝƉĂƚŝŽŶ ĨƌŽŵ ƐǇŶƚŚĞƚŝĐ ƐƵƌǀĞǇ ĚĂƚĂ͕͛ Environment and Planning A, 47(5), pp1211-1228. 

 

VŽĂƐ͕ D ĂŶĚ WŝůůŝĂŵƐŽŶ͕ P ;ϮϬϬϬͿ ͚AŶ ĞǀĂůƵĂƚŝŽŶ ŽĨ ƚŚĞ CŽŵďŝŶĂƚŽƌŝĂů OƉƚŝŵŝƐĂƚŝŽŶ ĂƉƉƌŽĂĐŚ 
ƚŽ ƚŚĞ ĐƌĞĂƚŝŽŶ ŽĨ ƐǇŶƚŚĞƚŝĐ ŵŝĐƌŽĚĂƚĂ͕͛ International Journal of Population Geography, 6, 

pp349-366. 

 

Whitworth, A (2013) (ed.) Evaluations and improvements in small area estimation 

methodologies. Economic and Social Research Council: National Centre for Research 

Methods methodological review paper. 


