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 14 

ABSTRACT 15 

Field trials have demonstrated the potential of soil conservation technologies but have 16 

also shown significant spatial-temporal yield variability.  This study considers the 17 

PESERA-DESMICE modelling approach to capture a greater range of climatic conditions 18 

to assess the potential effect of an improved agricultural management practice 19 

emerged from field trials as a promising strategy for enhancing food security and 20 

reducing soil and land degradation. The model considers the biophysical and socio-21 

economic benefits of the improved soil conservation technique (T3) - residue mulch 22 

combined with pigeon-pea hedges and an organic amendment, against a local baseline 23 

practice (T0).  The historic rainfall statistics and 50-year rainfall realizations provide a 24 

unique time-series of rainfall and an envelope of the potential crop yield. Envelopes of 25 

potential biomass production help express the agricultural risk associated with climate 26 

variability and the potential of the conservation measures to absorb the risk, 27 

highlighting the uncertainty of a given crop yield being achieved in any particular year. 28 

T3 elevates yield under both sub-humid and semi-arid climates with greater security 29 

for sub-humid areas even though risk of crop failure still exists. The technology offered 30 

good potential to increase yields by 20% in 42% of the dryland area in Santiago Island 31 
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and reduce erosion by 8.6-Mg ha-1, but in terms of cost effectiveness, it might be 1 

prohibitively expensive for farmers lacking inputs. The findings can enable the 2 

assessment of policy options at larger scale or influence adoption of improved 3 

conservation measures under the climatic variability of the Cabo Verde drylands and 4 

resilience to future climate change.  5 

KEY WORDS: PESERA-DESMICE, climate variability, sustainable land management, time series analysis, 6 

probability of yield.  7 

 8 

INTRODUCTION 9 

Land degradation persists as one of the most pressing environmental concerns with 10 

important consequences for sustainability at various levels through complex links with 11 

food production, poverty and climate change (Stringer et al., 2014, Fleskens et al., 12 

2014). Soil erosion by water is recognized as an important worldwide driver of land 13 

degradation with consequences for the maintenance of soil fertility, sustainable 14 

dryland crop yields (Lal, 1995; Geissen et al., 2007; Kirkby et al., 2008; Muzinguzi et al., 15 

2015), water availability (Araya et al., 2011), affecting food production, fuelwood, 16 

income and housing  (Tesfaye et al., 2015). By removing the most fertile topsoil, 17 

erosion reduces soil productivity, potentially leading to a progressive loss of farmland 18 

where soils are shallow or conducting to desertification in more vulnerable areas (Xu 19 

et al., 2014; Baptista et al., 2015b; Xie et al., 2015; ).  20 

 21 

In semiarid and arid areas, rainfall variability, the occurrence of extreme drought and 22 

inappropriate historical land management practices have been recognized as 23 

contributing to serious environmental impact (Hessel et al., 2009; Baptista & Tavares, 24 

2011; Ferreira et al., 2012; Baptista et al. 2015a). For example, in Cabo Verde, a 25 

Sahelian country severely affected by land degradation and desertification (Ferreira et 26 

al., 2013; Tavares et al., 2015), rainfall in 2014 was 65 % lower than the year prior. 27 

Consequently, Cabo Verde produced just 1000 Mg of corn in 2014 (FAO, 2015), the 28 

lowest output ever in the history of the country which has caused a considerable 29 

shortage of livestock feed.  30 
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This significant impact of the 2014 drought occurred despite enormous investment in 1 

soil conservation, which has become visible throughout the Cabo Verde landscape 2 

(Tavares et al., 2014; Baptista et al., 2015a). However, the biophysical and 3 

socioeconomic impacts of the conservation measures have been poorly assessed and, 4 

in particular, their performance under variable climatic conditions has not been 5 

documented. In recent years, a concerted approach based on Schwilch et al. (2012) has 6 

started to address this gap by documenting stakeholder consultations and carrying out 7 

field trials for selected sustainable land management (SLM) technologies.  8 

 9 

SLM technologies are practical measures to prevent and/or decrease and/or reverse 10 

the effects of land degradation on land resources (e.g. soil and water) extending over 11 

defined spatial, temporal, and socio-cultural boundaries, and maintain and improve 12 

land productivity, water saving and use efficiency (Fleskens et al., 2014; Baptista et al., 13 

2015b). Successful SLM technologies may support the rehabilitation of degraded land 14 

or conservation, helping to harness benefits over larger areas (Stringer et al., 2014). 15 

Yet, scaling-up adoption of SLM technologies beyond initial spatial, temporal and 16 

socio-cultural boundaries is challenging, often with low adoption of technologies due 17 

to design failures and lack of an approach that fully recognizes land managers’ 18 

interests and socioeconomic dynamics (Tenge et al., 2005; 2007). Comprehensive 19 

identification and evaluation of SLM technologies are crucial to assess the applicability 20 

of promising technologies, their cost and the likely impact they will bring. Close 21 

stakeholder involvement in selecting the technologies to evaluate is vital (Schwilch et 22 

al., 2009; Tavares et al., 2014; Hessel et al., 2014; Baptista et al., 2015a). Model 23 

evaluation of the selected technologies additionally informs stakeholders regarding the 24 

spatial extent and regional impact of the technologies being considered; thus 25 

enhancing their understanding of the technology. Fleskens et al. (2014) highlight that 26 

this principle underpins the integrated PESERA-DESMICE (Pan-European Soil Erosion 27 

Assessment - Desertification Mitigation Cost Effectiveness) approach developed as part 28 

of the DESIRE project. 29 

 30 

The PESERA-DESMICE modeling approach offers a methodology to assess the 31 

biophysical and socio-economic benefits of SLM technologies against a local baseline 32 
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condition (Fleskens et al., 2014; Stringer et al., 2014). PESERA is a process-based 1 

erosion prediction model, which explicitly considers climate variability and can be 2 

adapted to consider SLM strategies. DESMICE is an economic model that operates 3 

through spatial cost-benefit analysis (CBA), considering the suitability of the 4 

conservation measures in terms of environmental conditions and market access. The 5 

modeling approach departs from the assumption that for SLM technologies to get 6 

adopted they need to be financially attractive to land managers in terms of cost 7 

reduction and /or benefit enhancement (Fleskens et al., 2014). 8 

 9 

Although biophysical factors and land-use influence soil erosion, the results from plot 10 

studies typically indicate the benefits of adopted SLM measures.  The aim of this paper 11 

is to appraise the applicability of the PESERA-DESMICE modelling approach to extend 12 

biophysical and economic benefits of a previously selected promising SLM technology 13 

(Baptista et al., 2015b; 2015c) across typical field conditions in the Ribeira Seca 14 

catchment, where the SLM had been tested, and over the whole Santiago Island under 15 

variable climatic conditions. The rainfall time series for modelling are generated from 16 

the distribution of historical data and provide the opportunity to explore a full range of 17 

climate variability beyond the period of the trials.  18 

 19 

MATERIAL AND METHODS 20 

Study site 21 

The PESERA-DESMICE model application has been based on outcomes from a two-year 22 

field experiment carried out with stakeholder participation in three sites (São Jorge, 23 

site I; Serrado, site II; and Órgãos Pequenos, site III) in the Ribeira Seca watershed 24 

(RSW), which is the largest watershed on Santiago, the main agricultural island of Cabo 25 

Verde (Baptista et al., 2015a). The RSW has a drainage surface of approximately 72 26 

km², is located on the east-central side of the Santiago Island (991 km2), between 27 

latitude 15°07'40''W and longitude 23°32'05''W (Figure 1) and extends across four 28 

representative agro-ecological zones of the Cabo Verde classification: semiarid (49%), 29 

arid (20%), subhumid (20%) and humid (11%) (Diniz & Matos, 1986). 30 
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The climate of the RSW, as well as that of the Santiago Island, is characterised by a 1 

unimodal rainfall regime, with a short (3-4 month) humid season (July-October) and a 2 

long (8-9 month) dry season (November-June). Mean annual rainfall is extremely 3 

heterogeneous and has an irregular spatiotemporal distribution, varying from <200 4 

mm in the downstream section of the watershed to 650 mm upstream. The 30-year 5 

(1980-2010) mean annual rainfall was 437, 300, and 310 mm at experimental sites I, II, 6 

and III, respectively, with most of the rain falling in August and September (INMG, 7 

2010). The topography is rugged and predominant land use is rain-fed (e.g. dryland) 8 

agriculture, particularly of the staple crops (maize and beans) and groundnut, 9 

occupying >83% of the area (Figure 2). The remaining area is used for: irrigated crops 10 

(sugarcane, fruits, vegetables, cassava and sweet potato) 5%, forest 4%, rock outcrops 11 

1% and 7% are built environment (Figure 2). Livestock keeping is an important activity 12 

in the watershed and in the country in general as most family farmers own animals 13 

that often graze freely. In 2013, Cabo Verde had 22000 cattle, 1117000 chickens, 14 

190000 goats, 85000 pigs, and 12000 sheep (FAO, 2013). 15 

Over a two-year period, (2011 - 2012) study plots representing a baseline scenario (T0) 16 

and three SLM scenarios (T1-T3) were monitored at the three sites and T3 revealed a 17 

promising SLM technology for the steep slopes.  Full details of the field study are 18 

presented in Baptista et al. (2015b). The baseline scenario (T0) represented a 19 

traditional maize/bean intercropping system with no input or conservation measure. 20 

The SLM scenario (T3) trialed represented a combination of mulch (4 Mg ha-1 of crop 21 

residue) and organic fertilizers (e.g. 4 Mg ha-1 of compost at site I, 4 Mg ha-1 of animal 22 

manure at site II, and 1 Mg ha-1 Leucaena leucocephala prunings at site III). In addition, 23 

in T3 pigeon-pea hedges were planted cross-slope at 3-meter intervals.   24 

PESERA model background 25 

The Pan European Erosion Risk Assessment (PESERA) model provides an objective, 26 

physically based and spatially explicit methodology to consider land degradation 27 

(Kirkby et al., 2008).  Spatial applications at the continental scale at 1 km resolution 28 

and at 100m resolution at regional scale allow detailed observed data to be placed in 29 

the broader spatial context.  As rainfall variability and the occurrence of drought are 30 
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key issues in food security and land degradation in Cabo Verde consideration is also 1 

given to time series analysis at representative points to consider the probability of 2 

achieving a defined yield under baseline conditions (T0) and the SLM scenario (T3).  3 

Simulated time series generated from historical climate statistics are run repeatedly 4 

for each treatment to produce a probability distribution of yield, runoff and erosion. 5 

This approach aims to capture a representative picture of the rainfall variability 6 

observed on the island. Field observations and measurements enable a conceptual 7 

understanding of the SLM technology, which informs model adaptations. Through the 8 

comparison between the response of the treatments T0 and T3 to the variable rainfall, 9 

PESERA-DESMICE offers a methodology to compare the benefits of an adapted 10 

conservation scenario against a baseline scenario assessment.  PESERA provides this 11 

comparison through a series of monthly estimates of biomass (productivity), runoff 12 

and erosion for T0 and T3.  13 

The core of the PESERA model (for both spatial and point applications) is the water 14 

balance which partitions precipitation into interception losses, evapotranspiration 15 

(from the vegetation canopy and bare ground), overland flow, runoff and infiltration 16 

(Figure 3, Irvine & Kosmos, 2003). The rainfall is partitioned such that soil water 17 

remains available for plant growth after overland flow is conveyed (Kirkby et al 2008; 18 

Esteves et al., 2012). Transpiration is controlled by potential evapotranspiration and 19 

the availability of soil water. Soil organic matter contributes to the runoff threshold 20 

and infiltration capacity of the soil. Soil organic matter is built through in situ leaf fall 21 

and the addition of mulch. The organic matter decomposes as a function of 22 

temperature.��23 

The PESERA model is first run to equilibrium to estimate initial or average conditions 24 

before the time-series model is executed. The equilibrium conditions are achieved by 25 

running the model with monthly climate statistics derived from the frequency 26 

distribution of observed daily rainfall totals. Daily rainfall data is used, as it is more 27 

readily available than finer temporal rainfall data even though it is appreciated that the 28 

finer storm detail is that which generates most overland flow and erosion.  29 

 30 
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DESMICE model background 1 

The Desertification Mitigation Cost-Effectiveness (DESMICE) model (Fleskens et al., 2 

2009; 2014) essentially performs a spatially-explicit financial cost-benefit (in terms of 3 

long term investments) or gross margin (in terms of annually repeated measures) 4 

analysis of SLM technologies. DESMICE evaluates the applicability limitations and 5 

inventories the spatial variation in the investment and maintenance costs involved for 6 

a pre-selected portfolio of technologies. The effects of the implementation of the SLM 7 

technologies (here the T3 scenario) relative to the without situation (T0 scenario) are 8 

subsequently assessed and valuated in monetary terms. DESMICE consists of a number 9 

of steps. First, an analysis is made where a SLM option can in principle be applied 10 

based on biophysical factors such as soil depth, slope, landform and land use. The 11 

output of this step is a map showing applicability in a dichotomous fashion. A 12 

subsequent step assesses investment costs based on environmental factors (e.g. slope) 13 

and socio-economic factors (e.g. distance to market) in a spatially explicit way. It 14 

allows defining for each cost item the location of source areas (markets) and 15 

transportation costs assuming the cheapest transport path, either through a (road) 16 

infrastructure network or over a cost surface. Next, in case of assessing multiple SLM 17 

options, a common time horizon is set, which in the case of T3 was set at 1 year. Costs 18 

and benefits are subsequently assessed including production output (yield x value) 19 

realized with the technology, costs of implementing the technology and land use 20 

associated with it, and production output and costs of the land use in the without case 21 

(T0). Production output is derived from the PESERA model output of biomass yield. 22 

Again, benefits and costs may vary in both space and time. The annual cash flows thus 23 

established are used either in a financial cost-benefit analysis or, as in this study, gross 24 

margin analysis. For each grid cell, one of the following three possible outcomes will 25 

apply for assessment of an SLM option: if the gross margin is positive, the technology is 26 

deemed viable; if the gross margin is negative, the investment is not financially 27 

attractive; or the technology is not applicable in the area. Finally, per unit and 28 

aggregate cost-effectiveness indicators can be calculated, e.g. the cost per unit of soil 29 

conserved (as simulated by PESERA) by implementing an SLM option (Fleskens et al., 30 

2014). 31 
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Model Application  1 

Rainfall data 2 

Climate variability and agricultural practice have been identified as drivers of land 3 

degradation in Cabo Verde (Tavares et al., 2014, Baptista et al., 2015a). T0 and T3 4 

consider possible management options while rainfall records provide the basis for 5 

generating simulated time-series. These time series have been derived from rainfall 6 

data obtained from two locations, one (São Jorge) representing sub-humid and the 7 

other (Ponto Ferro) semi-arid conditions.  The simulated time series are generated 8 

directly from the observed variability in the rainfall data (mean monthly rainfall, mean 9 

rain per rain day and coefficient of variation in rain per rain day), as the future rainfall 10 

predictions for Cabo Verde do not indicate a significant trend (McSweeney et al., 11 

2010). The records extend beyond the two-year period of the field trials and, as such, 12 

they can be used to put the experimental rainfall in a wider context by considering 13 

frequency of the events experienced during the trials. 14 

Rainfall frequency is estimated from the rainfall records at São Jorge as this station is 15 

more representative of the study site. The record covers the period 1983 – 2008 16 

(Figure S1).  17 

The return period of a given rainfall is estimated by fitting a Gumbel Extreme Value 18 

distribution to the observed annual rainfall totals and monthly values.  Annual rainfall 19 

totals and monthly values are plotted for the duration of the record against a reduced 20 

variate ‘�’ (ℎ���	� = (− ln � �

���) which describes the probability on a linear scale. 21 

The Gumbel Extreme Value distribution estimates the probability of a given event 22 

based on the observed mean and variance. This allows the observed event of the two-23 

year field trial to be put in context with the extended rainfall record.  24 

 25 

 26 

Page 8 of 38

http://mc.manuscriptcentral.com/ldd

Land Degradation & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Adapted Model 1 

Field observations inform the conceptual model for the SLM scenario (T3). A key 2 

element considered in the T3 scenario is the improved soil condition through the 3 

application of mulch, compost, animal and green manure in soil pits. Manure and 4 

mulch are added directly to the soil humus and above ground biomass residue 5 

respectively. In the adapted model, this impacts directly on the soil water storage 6 

capacity. Soil pits have previously been considered in the modelling of in-situ water 7 

harvesting technologies (Lebel et al., 2015).  Although the benefits of pits have been 8 

highlighted, the application of organic matter is a much more significant component of 9 

the hydrological equilibrium.  Several studies (Zougmoré et al., 2003; Sawadogo et al., 10 

2008; Lebel et al., 2015) highlight that soil pits alone have little benefit, however, when 11 

combined with compost the soil water available to plant growth increases. A number 12 

of additional benefits of pits are not readily modelled such as increasing sediment-13 

trapping efficiency, reducing the removal of seed and soil organic matter. Further, soil 14 

water available to plants is elevated as the infiltration is reduced, allowing greater soil 15 

water retention time.  16 

Time series application 17 

As way of validation, the PESERA baseline model and the adapted model were run 18 

against a single 50-year simulated rainfall time-series for the three study sites. 19 

Cumulative runoff and erosion are plotted for T0 and T3 (Figure S2a-b).  Over the 50-20 

year simulation, the reduction in average annual runoff and erosion is of the same 21 

magnitude as the observed site data (Baptista et al., 2015b). Extrapolating the 22 

experimental data beyond the plot scale requires further data at increasing scales to 23 

account for the complexity of scaling between plot area and PESERA hillslope 24 

application.  However, the magnitude and direction of the observed change remains of 25 

greater value and interest when considering spatial applications. 26 

Spatial Application 27 

Applicability of the SLM scenario (T3) confined to areas under rainfed cropping.  28 

GLOBCOV data for Santiago Island (Bontemps et al., 2011) defined these areas.  Slope 29 
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also imposed further limitation on applicability. SRTM90 digital elevation data 1 

provided slope maps of the island, and land with slope >45% was considered too steep 2 

to apply the SLM technology.  3 

Experimental data included estimates of the costs of inputs and produce (Table 1). 4 

From variations between experimental sites, it was estimated that 20% of cost levels 5 

was due to differences in accessibility, expressed as the distance between field and 6 

road. The island’s main road network was taken from the gROADSv1 dataset 7 

(CIESIN/ITOS, 2013) and used to map variable transport costs based on Euclidian 8 

distance to the nearest road. For example, transport costs in Site I amounted to 4000 9 

ECV; the site is at 500m distance to road, so transport costs of the 4 Mg crop residues 10 

amount to 0.2*4000/500 = 1.6 ECV per meter, or 0.4 ECV per Mg per meter. Based on 11 

experimental yield data (Baptista et al., 2015b), biomass partitioning was assumed as 12 

follows: 33% of biomass is produce (50% maize, 50% beans, at average price 130 13 

ECV/kg) and 67% crop residues valued at 6 ECV/kg.  14 

Soil type and depth are poorly defined at the available spatial resolution for Santiago 15 

Island. Available data classifies the majority of the island into one category and depth, 16 

where both are seemingly independent of landscape characteristics. However, it is 17 

noted from the study plots that biomass growth before and after mitigation may be 18 

more sensitive to land management practice and inputs rather than typical soil 19 

parameters.  This observation therefore justifies the potential value of the spatial 20 

assessment based on available data. For the upscaling, climate data is distributed 21 

according to annual rainfall totals. However, rainfall variability is considered relative to 22 

the two points considered (São Jorge and Ponto Ferro). Mean erosion rates and crop 23 

potential are estimated under the rainfall time series derived from the observed 24 

climate data from these two stations. 25 

Input data for DESMICE, average and standard deviation of biomass yield, was derived 26 

from a regression analysis of the probability maps of exceedance of nominal biomass 27 

yield. Parabolic trend lines were fitted through probabilities of having 0 (always 100% 28 
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probability), 0.8 and 1.2 Mg ha-1 biomass (PESERA). P50 values of biomass were taken 1 

to inform spatial financial viability assessment. Fluctuating biomass rasters were 2 

created using random normal raster creation with probability distribution details 3 

specific for T0 and T3. Random rasters were created independently for T0 and T3 to 4 

mimic variability due to a range of conditions, but the direction of variability was kept 5 

equal (e.g. positive and negative deviances coincide for both treatments). 6 

RESULTS 7 

Rainfall magnitude and frequency 8 

Monthly and annual rainfall totals were plotted on a probability scale (Figure 4). The 9 

observed annual rainfall range of 2011-2012 (vertical black line) shows a return 10 

frequency range of 1 in 2 years to 1 in 5 years. The observed maximum monthly rainfall 11 

range (2011-2012) shows a return period from 1 in 2 years and 1 in 30 years relative to 12 

the long-term records.  Records do not suggest significantly unusual dry periods but do 13 

indicate a significant monthly rainfall bias.  Simulated 50-year time series generate 14 

rainfall variability that allows the impact of rainfall to be extended. Multiple 15 

simulations allow this to be extended further typically covering annual rainfall in the 16 

range between 200 – 1000mm.  17 

Sensitivity to climate variability  with / without treatment 18 

 19 

Historical rainfall records, field observations and recent reports (FAO, 2015) highlight 20 

the potential rainfall variability of the climate in Cabo Verde.  Thus, we consider the 21 

impact of rainfall variability on both the baseline and improved soil management 22 

conditions and the financial viability of the measures. The PESERA model has been 23 

modified to represent both the untreated plots (T0) and the treated plots (T3).  The 24 

benefits of T3 are achieved through management inputs and cultivation practice. 25 

Improvements are observed for both climate zones (sub-humid and semi-arid) when 26 

treated (T3). However, despite significant improvement in the semiarid case, in the 27 
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drier years yield does not exceed a nominal value of 0.8-Mg ha-1 as in the sub-humid 1 

case (Figure 5). 2 

 3 

Time series analysis of yield and probability of yield 4 

 5 

The time series approach allows repeated realisations of the climate to be generated 6 

from the frequency distribution of observed data, thus enabling sampling of the 7 

performance of the standard and improved practice across a much wider spectrum of 8 

climatic conditions. The envelope of potential biomass growth is derived from the 9 

modelling of repeated realisations. The maximum and minimum biomass predictions 10 

are plotted for a notional 50-year simulation for both climate zones (Figure 6a and 6b). 11 

Simulations of the SLM interventions indicate that biomass yield in the sub-humid 12 

regions tend to be secured (e.g. future yield level under climate variability exceeds 13 

nominal value over time). However, extreme years remain critical.  14 

 15 

The probability of a given yield being achieved or exceeded is determined by 16 

treatment and climate variability at a given location (point). At a point, the probability 17 

distribution is derived with respect to treatment and climate (Figure 7). The probability 18 

for a given yield is derived from the cumulative frequency of 300 years simulated yields 19 

for treated and untreated sites in sub-humid and semi-arid climates. The generated 20 

probability is taken as the basis to distribute the probability of achieving a nominal 21 

value across the landscape based on annual rainfall totals assuming a similar 22 

distribution of observed inter-annual monthly variability applies across the island. 23 

Spatial assessment at island scale    24 

 25 

The probability of potential biomass growth envelopes can be considered across the 26 

island by setting a nominal limit and considering the probability of exceedence at each 27 

point based on the available climate distribution.  The estimated probability for 28 

biomass growth greater than nominal values of 0.8 Mg ha-1 and 1.2 Mg ha-1 are 29 

presented in Figure 8.  The change in the associated erosion risk is a direct result of the 30 

SLM intervention (Figure 9). Significant reductions of soil erosion are possible, from an 31 
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average of over 15 Mg ha-1 to below 7 Mg ha-1. Average biomass production was 1 

simulated derived from the probabilities of exceedence (Figure 10a-b), and allowed to 2 

vary between 2 standard deviations from the average value (Figure 10c-d). The effect 3 

of T3 is large relative to introduced variability in low potential arid zones, but in the 4 

most productive subhumid part of the island, the variability effect is larger than the 5 

difference in average yields between T3 and T0, hence some negative effect (T3 – T0  < 6 

0) can be observed (Figure 10e-f).  7 

 8 

Applicability limitations limit the suitability of the SLM scenario to about 42% of 9 

Santiago Island (Figure 11a). In addition, the distance to main roads is taken into 10 

account for transport costs of organic inputs to the fields for a number of situations 11 

(Figure 11b). This works out differently depending on the situation: if all inputs are 12 

locally available the SLM technology is an attractive investment in most parts of the 13 

island except in the high potential zones where negative results are possible because 14 

little difference in biomass production and higher costs involved in  T3 compared to T0 15 

(Figure 12a). However, although T3 is profitable in low potential zones it is unlikely 16 

that inputs are locally available. Therefore situations b and c explore the viability of the 17 

SLM technology if manure and crop residues are not locally available (Figure 12b) or 18 

only manure needs to be transported (Figure 12c). In situation b costs amount to ECV 19 

48000 for inputs plus variable transport costs (0-14000 ECV for most remote 20 

locations), whereas in situation b an allowance is made of 24000 ECV for manure only 21 

and variable transport costs. Clearly, purchasing of inputs is generally too expensive, 22 

except in few locations. 23 

 24 

The average maximum simulated reduction of soil erosion and food production 25 

increase in the Santiago Island were 8.6 Mg ha-1 and 0. 1 Mg ha-1, respectively, 26 

corresponding to a low cost-effectiveness of 10060 ECV Mg-1 and 566 ECV per kg 27 

(Table 2). 28 

 29 

 30 

 31 
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 1 

DISCUSSION 2 

 3 

Sensitivity to climate variability 4 

 5 

Historical rainfall records, field observations and recent reports (FAO, 2015) highlight 6 

the potential rainfall variability of the climate in Cabo Verde. The time series 7 

simulations generate rainfall variability that allows extending the impact of rainfall and 8 

putting the observed event of the two-year field trial in context with the extended 9 

rainfall record.  The observed annual rainfall range for the experimental years (2011-10 

2012) show a return frequency range of 1 in 2 years to 1 in 5 years.  Although there 11 

were marked differences in rainfall between the experimental seasons (2011 and 12 

2012), based on the historical record both seasons fall close to the average annual 13 

rainfall.  However, the intra-seasonal pattern is significantly different, with one-month 14 

dominant in 2012.  High monthly rainfall in September 2012 approached a 1: 30 year 15 

return period, skewing rainfall significantly and greatly reducing the length of growing 16 

season.  Thus, results do not suggest significantly unusual dry periods but do indicate a 17 

significant monthly rainfall bias, as previously reported (Smolikowski et al., 2001; 18 

Sanchez-Moreno et al., 2014; Baptista et al., 2015c). 19 

The model can be constrained to the plot scale results with and without treatment and 20 

as such, over the 50-year simulation, the reduction in average annual runoff and 21 

erosion is of the same magnitude as the observed site data (Baptista et al., 2015b). 22 

This helps validate the modified PESERA model as a suitable model but requires further 23 

consideration at the field and slope scale to consider more confidently the biophysical 24 

impact of the improved SLM technique. However, as stated earlier the magnitude and 25 

direction of the observed change remains of greater value and interest when 26 

considering this spatial application. 27 

Time series analysis and probability of yield 28 

Improvements were observed for both climate zones (sub-humid and semi-arid) when 29 

treated with the proposed SLM (T3). However, despite significant improvement in the 30 
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semi-arid case, in the drier years yield does not exceed a nominal value of 0.8-Mg ha-1 1 

as in the sub-humid case.  Though T3 elevates biomass yield under both sub-humid 2 

and semi-arid climates, risk of crop failure still exists. Results also suggest greater 3 

security or return on investment in sub-humid rather than semi-arid conditions. 4 

The historic rainfall statistics and the multiple 50-year rainfall realisations capture a 5 

fuller range of climatic conditions, providing a unique time-series of rainfall, simulated 6 

crop yield and an envelope of the potential crop yield. Envelopes of potential biomass 7 

production help express the agricultural risk associated with climate variability and the 8 

potential of the conservation measures to absorb the risk, thus, highlighting the 9 

uncertainty of a given crop yield being achieved in any particular year. This information 10 

can directly inform or influence the adoption of conservation measures under the 11 

climatic variability of the Cabo Verde drylands.  12 

Applicability of the improved scenario 13 

 14 

While analysis at plot level is informative, upscaling the analysis to the island level was 15 

able to demonstrate that the viability of the improved technology is questionable from 16 

a farmer’s perspective. By fluctuating the yield level to represent natural variability, it 17 

could be established that T3 could lead to yield increase in 81% of circumstances. 18 

However, given additional labour costs, if crop residues and manure are available 19 

locally, investment in the technology is attractive in 65% of cases. However, land users 20 

have to buy and transport manure to the farm, a favourable return on investment 21 

occurs in only 10% of cases, and if also crop residues have to be sourced off-farm, this 22 

drops to a mere 3%. The investments involved are too high to justify investment for 23 

the benefit of reduced risk of poor crop yield alone. Further data are required to be 24 

able to quantify the contribution of pigeon pea to system productivity.  25 

 26 

It seems appropriate to consider additional benefits from the improved technology, 27 

which could be applied on 41679 ha, or 42% of Santiago Island. It should be noted 28 

though that the land cover map used to inform the area of rainfed cropping (Bontemps 29 

et al., 2011) includes mosaic land cover classes, which are leading to a higher area 30 

under agriculture than observed from governmental data that shows a 50% less 31 
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potential area (PEDA, 2005). Notwithstanding this discrepancy, the average reduction 1 

of soil erosion that can be achieved was simulated to be 8.6-Mg ha-1 (Table 2). Apart 2 

from the direct on-site damage, with the dominant local soil bulk density this 3 

translates in a loss of 0.6-0.7 mm of soil annually, which implies nutrient losses of e.g. 4 

86 kg N and a gradual reduction of maximum available soil water. Several authors (Ali 5 

et al., 2007; Zhang et al., 2011; Xia et al., 2013; Baptista et al., 2015c) also reported 6 

similar rates of erosion-related nutrient loss. Considering the medium to long-term 7 

impact of land degradation, the cost-effectiveness of the investment for the purpose 8 

of soil conservation could, in some cases be of sufficient interest. The increased food 9 

production is, when considered in isolation, not cost-effective with a per unit cost of 10 

over three times the crop price. However, in total 4800 Mg food could be produced 11 

extra annually, which is almost 50% more than was produced in the whole archipelago 12 

in 2014 (FAO, 2015) and could be a strategic asset from a food sovereignty 13 

perspective. There is finally a need to consider effect on the regional water balance 14 

and any improvements to off-site conditions, such as raising local water table and 15 

reducing stream erosion and sedimentation of downstream reservoirs.  16 

 17 

While the improved technology show great biophysical potential as an adaptation 18 

strategy to climate change, there exist specific barriers to its adoption (e.g. availability 19 

of crop residue and organic amendment, which will need to be addressed to guarantee 20 

its successful application at a wider scale (Lebel et al., 2015). Moreover, for farmers to 21 

adopt technologies, these must be attractive in economic terms, e.g. have potential 22 

from a farmer’s perspective, lead to cost reductions, benefit enhancements, or both 23 

(Teshome et al., 2013; Fleskens et al., 2014). Strategies to assist farmers in 24 

simultaneously conserving water and nutrients have shown promise in similar 25 

environments (Wakeyo & Gardebroek, 2013; Zougmoré et al., 2014). In the case of 26 

Cabo Verde, improvement of animal husbandry practices seems to hold good potential 27 

as simulations highlighted insufficient financial returns for farmers with poor 28 

availability of organic amendments. The quantification of off-farm benefits to society 29 

would enable the government to decide on institutionalizing a Payment for Ecosystem 30 

Services scheme to incentivise farmers to adopt SLM technologies. 31 
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CONCLUSIONS 1 

 2 

Using the PESERA-DESMICE modelling approach, we analysed the potential benefits for 3 

upscaling an innovative land management technique – residue mulch combined with 4 

pigeon-pea hedges and an organic amendment – that emerged from field trials at 5 

Santiago Island, Cabo Verde.  Biophysically, the technique offered good potential to 6 

increase yields by 20% in 42% of the Santiago Island area and reduce erosion by 8.6 Mg 7 

ha-1, but might be prohibitively expensive in terms of cost effectiveness for farmers 8 

lacking crop residues, manure, or both. The technique elevates yield under both sub-9 

humid and semi-arid climates with greater security for sub-humid areas even though 10 

risk of crop failure still exists due to rainfall variability. Simultaneous improvement of 11 

land management and animal husbandry would be required to fulfil the promise of the 12 

technology. In addition, a governmental payment for ecosystem services scheme could 13 

incentivise farmers to adopt the technology. Further research should also look at the 14 

downstream effects through a series of nested catchment studies to consolidate 15 

impact of the technology. Despite limited data availability and considering that the 16 

purpose of our analysis was not to extensively test, calibrate and validate the model, 17 

we conclude that PESERA-DESMICE could be calibrated to local conditions using data 18 

from two years of field experiments, complementing missing data with data from 19 

global datasets. Based on our results the PESERA-DESMICE modelling approach 20 

enables the assessment of policy options at larger scale, under variable climatic 21 

conditions, to improve soil management and, thus, resilience to future climate change. 22 

 23 
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Table 1: Cost of inputs and produce of the conventional (T0) and improved (T3) soil management 1 

scenarios.  2 

Scenario T0  Scenario T3 

Item # of units unit price 
(ECV)

**
 

total cost 
(ECV) 

 # of units unit price 
(ECV) 

total cost 
(ECV) 

Labour (man days/ha) 85 800 68000  100 800 80000 

Seeds        

maize (kg.ha
-1

) 12 100 1200  12 100 1200 

beans (kg.ha-1) 12 160 1920  12 160 1920 

pigeon pea (kg.ha
-1

) 0  0  5 200 1000 

Organic amendments Site I  

Crop residue (kg.ha-1)* 0   0  4000 6 24000 

compost (kg.ha
-1

) 0   0  4000 8 32000 

Organic amendments Site II  

Crop residue (kg.ha-1)* 0   0  4000 6 24000 

Animal manure (kg.ha
-1

)
*
 0   0  4000 6 24000 

Organic amendments Site III  

Crop residue (kg.ha-1)* 0   0  4000 6 24000 

green manure (kg.ha-1) 0   0  1000 0 

Transportation (ECV ha-1)  

Products to local market 1 1000 1000  1 1000 1000 

 Materials to the field* 0 0 0  1 4000 4000 
*
 Costs depending on local availability of inputs and need for transportation. 

**
 (Cabo-Verdean Escudos). 3 

Source: own experimental data, local price information. 4 
 5 

 6 

Table 2: Cost-effectiveness indicators for selected ecosystem services for the T3 scenario. 7 

 Unit value Total value Cost-effectiveness 

T3 applicable area  41679 ha  

Reduction of soil erosion -8.6 Mg ha-1
 -358 * 103 Mg 10060 ECV Mg-1

 

Increased food production 115 kg ha-1 4800 Mg 566 ECV kg-1 

100 ECV = 1 US$ 8 
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