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ABSTRACT

Ethiopia has lost 90% of its forest extent. Remnant patches in the 
southwest are often semi-forest coffee (SFC), a system whereby coffee 
is managed beneath the canopy. Here, we (1) quantify aboveground 
live carbon (AGC) stored by trees in SFC and other land use types in 
the Jimma Highlands; and (2) determine coffee farmers’ preference 
for canopy shade trees, and the resulting differences in carbon 
storage. We surveyed twenty coffee farmers and assessed thirty-one 
1-ha vegetation plots across a 23.6-km transect. The most preferred 
shade species were Albizia gummifera, Acacia abyssinica, Millettia 
ferruginea and Cordia africana, which together accounted for 42% 
AGC in SFC and 12% in natural forests. These species had broad size 
class distributions, while the least preferred had scant representation 
in lower size classes. SFC stores significantly more AGC (61.5 ± 25.0 
t ha−1, mean ± SE) than woodland, pasture and cropland, significantly 
less than plantation and slightly less than natural forest (82.0 ± 32.1 
t ha−1). If SFC was converted to cropland, then 59.5 t ha−1 would be 
released, at a social cost of US$2892–4225  ha−1. Carbon-payment 
schemes (e.g. REDD+) may, therefore, play a role in conserving these 
forests and associated biodiversity and livelihoods into the future.

1. Introduction

During the last four decades, cumulative CO
2
 emissions from forest loss and other land use 

changes have increased by 45% (IPCC 2014). By early this century (2000–2005), tropical 

deforestation accounted for 7–14% of global anthropogenic CO
2
 emissions (Harris et al. 

2012), with commensurate impacts on the global climate system and biodiversity, as well 

as more localised impacts on ecosystem goods and services such as hydrological functioning, 
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soil conservation and forest products. In Ethiopia, the areal coverage of closed canopy forests 

has been reduced by around 90%, from 45 million ha at the beginning of the twentieth 

century to 4 million ha in 2013 (Teferi et al. 2013). Deforestation in Ethiopia continues, albeit 

at a slower rate (1.0–1.5% y−1; lemenih & Woldemarian 2010). Particularly in the southwest 

of the country, many remnant forest patches coincide with sites of traditional coffee farming 

and, to a lesser extent, sacred forest groves (Denu & Belude 2012).

Traditional coffee farming is an example of agroforestry, whereby shrubs and trees are 

combined with crops and/or livestock generating economic, environmental and social ben-

efits (USITC 2005; Tadesse et al. 2014a; Vanderhaegen et al. 2015). One-fifth of the global 

population depends directly upon products and services obtained from agroforestry, a sys-

tem that covers at least a billion hectares globally (Nair et al. 2009). Due to the carbon retained 

in trees, shrubs and soils, agroforestry has potential to offset greenhouse gas emissions from 

conversion to more intensive forms of land use (IPCC 2014), particularly in the case of tradi-

tional coffee farming, which typically retains a high degree of canopy cover and associated 

carbon (Tadesse et al. 2014a; Vanderhaegen et al. 2015; De Beenhouwer et al. 2016).

Coffee farming in Ethiopia has an exceptionally long history: Coffea arabica is native to 

the Jimma Highlands in the southwest, a region that hosts the highest genetic diversity of 

coffee on Earth, and that is recognised globally for its broader biodiversity value (Mittermeier 

et al. 2004). Four coffee management systems have been described in Ethiopia: wild coffee, 

semi-forest coffee, garden coffee and plantation coffee (Teketay 1999). In the wild coffee 

system, coffee berries are directly harvested from wild plants in the natural forest, while 

semi-forest coffee (henceforth, SFC) refers to the coffee management system whereby the 

canopy trees are thinned, the ground vegetation is removed and empty spaces are enriched 

by transplanting naturally regenerating seedlings of coffee (Teketay 1999). In the process 

of thinning, the farmers retain the canopy trees of their preference for shade provision and 

remove the rest. Garden coffee is established under shade as well as in open places with 

area coverage of <3 ha (Teketay 1999), while plantation coffee refers to the coffee manage-

ment system in which improved technologies such as selection of varieties, shade tree reg-

ulation, fertilisation, weed and pest control are applied. Coffee provides economic benefits 

both locally and nationally, and it is Ethiopia’s leading export (45% of total exports, US$190 

million in 2003) contributing 5% to GDP and nearly 10% of government revenue (USITC 

2005).

Among these four coffee management systems, wild and SFC retain the greatest degree 

of canopy cover, and thus have the greatest potential in terms of global benefits such as 

carbon storage (Tadesse et al. 2014a; Vanderhaegen et al. 2015; De Beenhouwer et al. 2016) 

and the conservation of forest-dependent species (Aerts et al. 2010). In Ethiopia, SFC accounts 

for approximately one-quarter of the coffee production area (Teketay 1999), and for approx-

imately 20% of the total production, with an estimated average yield of 400–500 kg ha−1 

compared with 450–570 kg ha−1 for plantation coffee (Teketay 1999).

Semi-forest coffee involves periodic, partial clearance of the shrub layer, with the purpose 

of promoting coffee yields beneath a closed canopy of preferred shade-providing indigenous 

tree species. This traditional system of forest use has thereby preserved the canopies of large 

numbers of (modified) forest patches (Hylander et al. 2013), while forests elsewhere in 

Ethiopia have given way to less carbon-rich land covers (Aerts et al. 2010). For coffee growers, 

all canopy trees are not equally preferred. Tree species with flat and wider canopies are 

preferred by the coffee growers for shade provision, and the coffee shrubs/trees are believed 
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to give better yield under the canopy of these trees (Muleta et al. 2011). Ecosystem goods 

and services associated with SFC include timber and non-timber forest products (Chilalo & 

Wiersum 2011; Senbeta et al. 2013; Tadesse et al. 2014b), regulation of soil moisture and 

nutrient content and soil fertility (Grossman et al. 2006), biodiversity conservation 

(Vanderhaegen et al. 2015; De Beenhouwer et al. 2016) and carbon storage (Aerts et al. 2010; 

Tadesse et al. 2014a; Vanderhaegen et al. 2015; De Beenhouwer et al. 2016).

The amount of carbon stored in a coffee forest varies depending on management inten-

sity. For example, compared to nearby natural forests, SFC systems have been reported to 

retain 50–62% (Tadesse et al. 2014a) and 48–65% (Vanderhaegen et al. 2015) of carbon 

storage, with a number of stems ha−1 (DBH > 10 cm) of 64% in Yeki and Decha (Tadesse 

et al. 2014a), and 32–51% in Gera and Garuke, with ca. 331 stems ha−1 around Jimma 

(Vanderhaegen et al. 2015). Supporting coffee growers in their sustainable management of 

Ethiopia’s remnant forest patches could represent a cost-effective option for climate change 

mitigation and conservation of canopy tree species. To support such a mechanism, it is critical 

to understand the amount of carbon stored by SFC, relative to degraded natural forest 

(hereafter simply called ‘natural forest’) 1 as a baseline (invariably degraded), and to alterna-

tive forms of land use, as well as farmers’ preference for canopy shade tree species.

The objectives of this study were to: (1) quantify aboveground live carbon (AGC) in the 

Jimma Highland’s SFC, compared with carbon stored in nearby natural forests and other 

common land use/land cover types (woodland, pasture, cropland and plantation forest); (2) 

determine coffee farmers’ preferences for canopy shade trees and the consequences of this 

for carbon storage and tree species composition.

2. Methods

2.1. Study region

The study was conducted along a 23.6-km transect in the Jimma Highlands of southwest 

Ethiopia (Figure 1), a region famous for contributing C. arabica to the world and part of the 

Eastern Afromontane Biodiversity Hotspot (Mittermeier et al. 2004). The Highlands are a 

Figure 1. distribution of vegetation plots (1 ha) along a 23.6-km transect plus 1 km buffer in the Jimma 
highlands, southwest ethiopia. the transect spans the districts of Gumay and setema, within the eastern 
afromontane Biodiversity hotspot. source: Background image is from Google earth (sPot, 23/10/2014; 
copyright Cnes/astrium, digitalGlobe).
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mosaic of SFC, natural forest, woodland, pasture and cropland, both with scattered trees, 

and exotic species plantation. Using Spot5 satellite images acquired in 2008, the transect 

was selected to traverse each of these six land use/land cover types, spanning an elevational 

gradient from 1640 m to 2184 m (Figure 1).

Natural (i.e. unmanaged) forests and woodlands are surrounded by villages and are 

used as common pools for provision of timber, fire wood, poles and vines for construc-

tion, and as a result are degraded. Woodland are characterised mainly by Acacia abyss-

inica, Combretum spp., Entada abyssinica and Terminalia schimperiana. Natural forest is 

mainly composed of Apodytes dimidiata, Millettia ferruginea, Ficus sur and Chionanthus 

mildbraedii (Appendix 1). Cropland (of mainly teff, maize and sorghum) and pastureland 

are characterised by scattered trees. Exotic tree plantations include Grevillea robusta, 

Pinus patula, Eucalyptus camaldulensis and Cupressus lusitanica. According to the local 

communities, these tree species plantations were started in early 1980s by the state. 

SFC is mainly composed of Albizia gummifera, Croton macrostachyus, Acacia abyssinica, 

Millettia ferruginea, Ehretia cymosa and Cordia africana (Appendix 2). Coffee, the main 

cash crop in the transect, is harvested mainly from SFC, with only a negligible amount 

of wild harvesting or garden coffee and no coffee plantations.

Southwest Ethiopia is the wettest region of the country; the study transect receives mean 

annual rainfall of 1900 mm (range, 1500–2200 mm yr−1 over the period 1981–2013. The tran-

sect typically experiences eight consecutive wet months (>100 mm month−1, March–October), 

with the heaviest rains falling from May to September (>200 mm month−1) and one short dry 

season from November to February. The mean annual temperature is 20.1 °C at the lower end 

of the transect, and 17.5 °C at the highest. Daily minima (coolest month) and maxima (warmest 

month) are in the ranges 8.2–10.1 and 26.7–30.3 °C, respectively, depending on altitude. The 

soils are volcanic in origin, with slightly acidic pH (5.1–6.4), and texture consisting clay 

 (33–39%), sand (30–38%) and silt (26–31%).

2.2. Vegetation surveys

We surveyed thirty 1-ha vegetation plots, placed at random intervals along the transect (plus 

1 km buffer), such that the number of plots per land use type was approximately proportional 

to the area covered by that land use (Figure 1). This resulted in seven plots in SFC (mean 

elevation = 1777 m, range in elevation 1532–2143 m), four in natural forest (2101 m, 1782–

2226 m), four in woodland (1709 m, 1590–1859 m), five in pasture (1681 m, 1533–1792 m), 

six in cropland (maize, sorghum and teff; 1825.33 m, 1519–2120 m) and four in plantation 

forest (Eucalyptus camaldulensis, Grevillea robusta and Pinus patula; 2086 m, 1926–2191 m). 

One of the plantation plots was found to have been recently cut, with no woody stems at 

the time of the surveys, and so was excluded from further analyses.

Each stem with diameter at breast height (DBH, 1.3 m) ≥ 10 cm was measured and 

identified to species level. Voucher specimens were deposited at the National Herbarium 

(ETH), Addis Ababa University. For growth abnormalities such as large buttresses or 

multiple stems, we followed Rainfor protocols (Phillips et al. 2009). To calculate tree 

heights, we measured the angle from the observer to the top of tree using a clinometer, 

and the distance from the observer to the tree at breast height using a Digital laser 

Distance Measurer (DlR130 K). Tree height was then obtained using standard trigono-

metric relationships.
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2.3. Carbon calculations

We used the revised non-destructive allometric equation described by Chave et al. (2014) 

to estimate the aboveground live biomass (AGB, kg) contained within each tree, given as a 

function of DBH (cm), height (H, m) and wood specific gravity (ρ, g cm−3):

Aboveground live carbon (AGC) was estimated at 50% of AGB (Chave et al. 2014). Wood 

specific gravity was obtained at species level from the Global Wood Density database (Chave 

et al. 2009), taking the mean over records for a species, preferring records from tropical Africa 

where available (otherwise the tropics, otherwise all available records). In three instances, 

no species-specific records were available, and so we used mean density values from the 

respective plots.

Differences in AGC within and between land use types were investigated using one-way 

analysis of variance. We conducted Tukey’s post hoc test to determine the difference between 

SFC and other land use types.

2.4. Elevation

Differences in the elevational distribution of land use types along our study transect 

(Figure 1) could potentially confound our inference of how much AGC is retained in SFC 

plots compared with natural forest plots, with the latter having a higher mean elevation 

(1777 m vs. 2101 m). AGC in tropical forests typically decreases with elevation, due to 

temperature and productivity gradients (Girardin et al. 2010), although mid-elevation 

peaks in AGC have also been observed, potentially driven by a combination of respira-

tion, photosynthesis and disturbance (Marshall et al. 2012). Assuming decreasing AGC 

with elevation, AGC retained in SFC compared with natural forest could be exaggerated. 

To test for this effect, we regressed AGC against elevation within each of these forest 

types.

2.5. Farmers’ preference for coffee shade trees

Based on the recommendations of local development agents, employed by the government 

to advise farmers, 20 coffee growers were selected from communities in Ageyo, Difo and 

Setema villages located along the transect. The coffee growers were asked to identify the 

most important shade trees (whose seedlings are allowed to grow to maturity). Preference 

rankings ranged from one (most preferred) to eight (least preferred), with equal scores 

allowed where no preference was given between competing species.

To investigate the impact of farmers’ preferences for certain shade species on forest com-

position, now and in the future, we plotted AGC and stem density across five DBH classes 

(10–30 cm, 30–50 cm, 50–70 cm, 70–90 cm, >90 cm) and compared the results between SFC 

and natural forest. Mean rank and AGC for each shade tree of preference were analysed using 

the R statistical software (R Core Team 2014).

AGB = 0.0673 ×
(

�D
2
H
)0.976
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3. Results and discussion

3.1. Carbon storage by land use type

Analysis of variance showed significant differences in AGC storage within all land use types 

(F
23,5

 = 22.548, p < 0.001). The largest mean value for AGC storage was for plantation forest, 

the smallest was for farmland covered by annual crops (Figure 2). Tukey’s multiple compar-

ison tests showed significant difference in AGC storage between SFC and all other land uses 

except natural forest (Table 1). SFC (61.5 ± 25.0 SE) stored significantly more AGC than wood-

land (12.9 ± 7.6 SE), pasture (2.5 ± 2.7) and cropland (2.0 ± 0.8), significantly less than plan-

tation forest (152.3 ± 56.81), and less than natural forest (82.0 ± 32.1), although 95% 

confidence intervals for the latter comparison spanned zero (Table 1).

Comparing AGC across the elevation ranges of SFC and natural forest plots, we detected 

no trend in either case (SFC: R2 = 0.0001, regression coefficient = 0.0037; natural forest: 

R2 = 0.004, regression coefficient = 0.009), suggesting that the difference in AGC between 

these forest types is unlikely to be confounded by temperature (productivity) gradients. 

Plantation forests were found to store 60% more carbon than SFC.

Figure 2. Boxplot comparison of aboveground live carbon storage across land use/land covers types. 
Whiskers extend up to 1.5 times the interquartile range from each box.

Table 1. Mean differences in aboveground live carbon (aGC), between sFC and other forms of land use 
(positive values indicate more carbon in sFC). tukey’s multiple comparison tests show significant differ-
ence in aGC between sFC and all other land uses except natural forest.

95% Confidence interval

lUlC Δ AGC (t ha−1) Std. error p-value lower Upper

natural −20.50 15.18 0.755 −67.61 26.60
Woodland 48.66 15.18 0.040 1.55 95.77
Pasture 59.02 14.18 0.004 15.01 103.03
Cropland 59.50 13.48 0.002 17.68 101.31
Plantation −90.72 16.71 0.000 −142.59 −38.86
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The 25% difference in AGC stored by SFC, compared with natural forests, is smaller here than 

reported elsewhere in southwest Ethiopia, for Yeki and Decha forests (38–50%; Tadesse et al. 

2014a) and Gera forest (48% for Vanderhaegen et al. 2015 and 38% for De Beenhouwer et al. 

2016). Compared with the nearby natural forests, the SFC in our study retains more carbon than 

most traditional agroforests elsewhere in the world (cf. Kirby & Potvin 2007; Kessler et al. 2012). 

If not on sacred grounds, managed for coffee or protected by the State, forests and woodlands 

are used as common pools for the (increasingly unsustainable) provision of timber and non-tim-

ber products (fire wood, poles, forage and thatch). By comparison, SFC systems are proactively 

managed and protected by local communities, thus maintaining the long-term integrity of can-

opy tree cover and associated carbon stocks (Tadesse et al. 2014a).

Soil organic carbon pool is affected by land use types in the Jimma Highlands of Ethiopia 

(Vanderhaegen et al. 2015). Disturbance and management intensities cause variation in the 

amount of carbon stored in the soil (De Beenhouwer et al. 2016). We expect small difference 

in the belowground carbon storage between forest and SFC systems in our study transect, 

because in both cases, soil organic layer is left almost undisturbed. On the contrary, the 

conversion of forest and SFC to cropland greatly affects the top soil, which is rich in organic 

matter and hence depletes the carbon stored in the organic layer.

As the centre of diversity for C. arabica, a number of forest patches in southwest Ethiopia 

have so far been spared cropland encroachment. In many cases, SFC systems have persisted 

without major intervention from the State (e.g. protected areas) because they are valued 

locally and nationally for their coffee. However, there is a tendency among the coffee growers 

to convert forest and SFC to plantation coffee in southwest Ethiopia, due to higher coffee 

yields in the latter system (Tadesse et al. 2014b). In the same region, there is another trend 

which is to convert SFC to cropland and pasture when the market price of coffee drops (D. 

Denu personal observation). As the human population continues to rise and land becomes 

scarcer, there is thus an increasing risk that SFC be converted to other agricultural systems, 

more productive on the short term such as plantation coffee, or more essential than SFC for 

the livelihood of local people such as cropland or pasture.

If such livelihood pressures were to cause the coffee growers along our study transect to 

convert their land to cropland or pasture, we estimate that ca. 59 t ha−1 would be released 

as greenhouse gas emissions into the atmosphere. Estimates of the social costs of carbon 

– i.e. the cost of the physical impacts of climate change resulting from carbon release – range 

from US$ 49 t−1 to US$ 71 t−1 (mean values from Tol 2008). Accordingly, the social cost asso-

ciated with the conversion of one hectare of SFC would be between US$ 2892 and US$ 4225.

To counterbalance the risk of SFC being converted, one important step would be the 

international recognition of their value in terms of climate change mitigation through the 

carbon sequestered and stored in their biomass (Tadesse et al. 2014a; Vanderhaegen et al. 

2015), as well as in terms of their contribution to local livelihoods (Chilalo & Wiersum 2011; 

Senbeta et al. 2013; Tadesse et al. 2014b) and global biodiversity (Vanderhaegen et al. 2015; 

De Beenhouwer et al. 2016).

3.2. Forest composition and shade tree preference

In the SFC, 10 species contributed 85% of AGC, while 10 families contributed 97%. The 

remaining 16 plant families recorded in SFC were each represented by just few small stems 

(<30 cm DBH).
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The top four preferred shade trees reported by farmers were, in descending order of mean 

preference, Albizia gummifera, Acacia abyssinica, Millettia ferruginea and Cordia africana (Table 

2). The farmers rated the first three especially highly (mean ranks, 1.35–1.65; range, 1–4) due 

to their flat canopy cover and the perceived quality of coffee yield beneath. C. africana was 

also reported as an important shade tree (mean rank, 2.4; range, 1–4) and was preferred by 

some farmers due to its valuable timber. The farmers’ preference for coffee shade trees was 

in line with the abundance of tree species in the coffee plots: A. gummifera (abundance = 15.4 

stems ha−1), A. abyssinica (4.29 stems ha−1), M. ferruginea (11.14 stems ha−1), C. africana (14.43 

stems ha−1). Combined, these four species contributed 42% (26.1 ± 5.2 t ha−1) of the 

aboveground carbon in SFC, compared with 12% (9.9 ± 5.7 t ha−1) in natural forests (Table 2).

Croton macrostachyus and Celtis africana were ranked lower by most farmers (mean ranks, 

3.7–4.1; range, 2–7), while Dracaena steudneri and Ficus mucuso were reported to be the least 

preferred shade trees (mean ranks, 4.75–7.05; range, 3–8), although a few large stems con-

tributed substantially to carbon storage in some plots, particularly in the case of F. mucuso 

(51.2 AGC t ha−1 in a single plot; Table 2).

For each of the top six shade species in SFC, distributions of stem density across DBH size 

classes followed laterally inverted J-curves (Figure 3(a)), indicative of healthy regeneration. 

This is consistent with results obtained from a number of studies conducted on natural 

forests of Ethiopia (Alemu et al. 2015). This pattern was less clear in the natural forest plots, 

where the density of C. africana peaked at 30–70 cm DBH (Figure 3(b)). For F. mucuso and D. 

steudneri, the pattern was reversed, with saplings in SFC outnumbered by older trees –  

evidence of suppressed recruitment (selective removal of saplings) by coffee farmers.

The results of our coffee farmers’ survey are in broad agreement with previous studies 

(Teketay & Tegineh 1991; Muleta et al. 2011). All 20 of those interviewed ranked the Ethiopian 

endemic M. ferruginea in the top three shade species. Two other species ranked similarly 

highly were A. gummifera and A. abyssinica, both from the same plant family (Fabaceae). 

Each of these species has a natural capacity for nitrogen fixation, due to symbiotic associa-

tions between their roots and rhizobia, improving soil fertility for the coffee shrubs, although 

broad and flat canopy cover was perceived by the farmers to be the main reason for improved 

coffee yield. In agreement with a study by Muleta et al. (2011) in the Yayu Hurumu and Bonga 

forests, the fourth most preferred shade species was Cordia africana. This is a multi-purpose 

tree, providing good shade for coffee and also high-quality timber. It is widely used for 

Table 2. Coffee farmers’ (n = 20) preference rankings for canopy shade trees and the mean contributions 
of these species to aboveground live carbon (aGC) in natural forest (natural) and in semi-forest coffee 
system (sFC).

Species Rank mean Rank range

AGC (mean t ha−1) AGC (mean %)

SFC Natural SFC Natural

Albizia gummifera 1.35 [1, 2] 14.62 6.48 23.76 7.90
Acacia abyssinica 1.40 [1, 2] 4.29 0.00 6.97 0.00
Millettia ferruginea 1.65 [1, 3] 3.09 3.04 5.02 3.71
Cordia africana 2.40 [1, 4] 4.10 0.36 6.66 0.44
Croton macrostachyus 3.70 [2, 5] 9.68 1.63 15.73 1.99
Celtis africana 4.10 [2, 7] 1.60 6.61 2.60 8.06
Ficus mucuso 4.75 [3, 6] 7.31 0.00 11.87 0.00
Dracaena steudneri 7.05 [6, 8] 4.15 0.00 6.75 0.00
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making doors and window frames, cabinets, mortars and beds. The farmers stressed the 

importance of C. africana as an alternative source of income, which explains its relative 

abundance even in cropland.

4. Conclusion and recommendations

Agroforestry systems have received increased attention as potentially cost-effective options 

for climate change mitigation due to their importance in carbon storage and sequestration 

(IPCC 2014), whilst also maintaining livelihoods (Chilalo & Wiersum 2011). Ethiopia’s SFC 

retains 75% of the carbon stored in natural forests, but it retains significantly more long-term 

carbon stocks than alternative forms of agricultural land use (pasture and cropland). Coffee 

farmers’ stated preference for certain shade tree species, especially in the family Fabaceae, 

is translated by the high contribution of these species to AGC in SFC. The same species have 

a much lower contribution to AGC in natural forests, suggesting historical selection by farm-

ers either of specific sites adapted to coffee-growing because they were naturally rich in 

these species, or of saplings of these species which were/are not cut during conversion and 

maintenance of the SFC. Size-class distributions of stems in our plots suggest that such 

management is still ongoing.

Figure 3. stem density (a) and aboveground live carbon (b) across dBh size-class distributions of canopy 
trees. Grouped bars compare semi-forest coffee and natural forest. species are ordered by coffee farmers’ 
mean preference rankings (see table 2).
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To ensure the continued role of SFC in the retention of carbon, conservation of biodiversity 

and provision of local livelihoods, we suggest the development of a mechanism by which 

farmers could be compensated for yield losses or for failures in the market price of coffee. 

This would reduce the risk of conversion of SFC to cropland or pasture by farmers. SFC retains 

a high degree of canopy cover with trees measuring up to 40 m high, and therefore meets 

the minimum requirements to be classify as ‘forest’ (canopy cover 10–30%, tree height 2–5 m) 

as set out by the UNFCCC in the context of the Kyoto protocol. Carbon-payment schemes 

such as REDD + may, therefore, play a role in conserving these forests and associated eco-

system services, biodiversity and livelihoods into the future.

Note

1.  Natural forests are invariably degraded in the study area.
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Appendix 1.Tree species composition, density, basal area, biomass and AGC 

in natural forest

S. No Species name Density ha−1 BA ha−1 AGB ha−1 AGC t ha−1

1 Albizia gummifera 6 1.468 12969.943 6.485
2 Allophylus abyssinicus 9.25 0.199 1055.136 0.528
3 Apodytes dimidiata 33.75 3.007 28304.042 14.152
4 Bersama abyssinica 9.25 0.276 1830.371 0.915
5 Brucea antidysenterica 0.25 0.002 4.521 0.002
6 Canthium oligocarpum 2.5 0.047 241.070 0.121
7 Celtis africana 7.25 1.139 13217.262 6.609
8 Chionanthus mildbraedii 25.25 0.566 3320.070 1.660
9 Cordia africana 5 0.114 716.890 0.358

10 Croton macrostachyus 7.75 0.441 3255.595 1.628
11 Ekebergia capensis 0.25 0.265 2311.696 1.156
12 Ficus sur 13.25 4.800 39503.647 19.752
13 Ficus sycamoras 0.5 0.072 451.633 0.226
14 Galiniera saxifraga 32 0.473 1784.668 0.892
15 Macaranga capensis 7.5 0.894 4613.892 2.307
16 Maytenus arbutifolia 1.5 0.022 76.492 0.038
17 Millettia ferruginea 25.5 0.561 6080.975 3.040
18 Nuxia congesta 1 0.067 423.607 0.212
19 Olea welwitschii 0.5 0.583 6405.312 3.203
20 Oxyanthus speciosus 0.5 0.004 13.484 0.007
21 Phoenix reclinata 2.5 0.062 335.571 0.168
22 Podocarpus falcatus 1.75 0.112 766.283 0.383
23 Polyscias fulva 0.5 0.170 521.779 0.261
24 Prunus africana 2 0.487 4928.804 2.464
25 Psychotria orophila 1 0.010 26.418 0.013
26 Rothmania ulceriformis 1.25 0.028 141.412 0.071
27 Schefflera abyssinica 6 2.224 11683.004 5.842
28 Syzygium guineense 28 1.930 16169.976 8.085
29 Teclea noblis 8.5 0.103 620.346 0.310
30 Trichilia dregeana 1 0.102 785.577 0.393
31 Vangueria apiculata 1.25 0.010 53.693 0.027
32 Vepris dainellii 15 0.258 1445.505 0.723

total 257.5 20.497 164058.671 82.029

Appendix 2.Tree species composition, density, basal area, biomass and AGC 

in SFC

S. No Species name Density ha−1 BA ha−1 AGB ha−1 AGC t ha−1

1 Acacia abyssinica 8.000 1.067 8586.187 4.293
2 Albizia gummifera 15.429 3.601 29236.632 14.618
3 Allophylus abyssinicus 1.429 0.065 385.950 0.193
4 Apodytes dimidiata 0.143 0.063 539.645 0.270
5 Bersama abyssinica 1.571 0.030 150.453 0.075
6 Bridelia micrantha 0.286 0.017 85.534 0.043
7 Celtis africana 4.286 0.373 3207.317 1.604
8 Chionanthus mildbraedii 1.000 0.017 68.742 0.034
9 Clausena anisata 2.000 0.022 57.610 0.029
10 Cordia africana 14.429 1.656 8209.625 4.105
11 Croton macrostachyus 27.286 2.780 19363.558 9.682
12 Diospyros abyssinica 2.000 0.293 2642.940 1.321
13 Dracaena steudneri 3.714 1.167 8306.061 4.153
14 Ehretia cymosa 14.857 0.432 1746.161 0.873
15 Ekebergia capensis 0.429 0.005 21.621 0.011
16 Ficus mucuso 3.143 2.284 14613.039 7.307
17 Ficus sur 1.571 0.621 3492.005 1.746
18 Ficus thonningii 1.286 0.378 1939.923 0.970
19 Ficus vasta 0.571 0.611 3546.745 1.773
20 Flacourtia indica 0.143 0.015 94.125 0.047

(Continued)
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S. No Species name Density ha−1 BA ha−1 AGB ha−1 AGC t ha−1

21 Galiniera saxifraga 0.286 0.003 8.755 0.004
22 Grewia ferruginea 0.143 0.001 3.395 0.002
23 Maesa lanceolata 1.000 0.026 102.211 0.051
24 Maytenus arbutifolia 0.143 0.046 220.473 0.110
25 Millettia ferruginea 11.143 0.743 6185.767 3.093
26 Phoenix reclinata 0.143 0.008 30.313 0.015
27 Pittosporum viridiflorum 0.143 0.001 3.835 0.002
28 Podocarpus falcatus 0.143 0.009 38.425 0.019
29 Polyscias fulva 0.286 0.058 181.505 0.091
30 Prunus africana 0.714 0.279 2428.957 1.214
31 Rothmania urcelliformis 0.429 0.011 54.004 0.027
32 Sapium ellipticum 1.000 0.389 3427.273 1.714
33 Schefflera abyssinica 0.571 0.230 1329.353 0.665
34 Schrebera alata 0.143 0.015 73.324 0.037
35 Syzygium guineense 0.286 0.088 587.377 0.294
36 Terminalia schimperiana 0.143 0.011 32.808 0.016
37 Trichilia dregeana 0.714 0.065 427.333 0.214
38 Trilepisium madagascariense 0.571 0.079 553.481 0.277
39 Vangueria apiculata 1.000 0.011 46.176 0.023
40 Vepris dainellii 4.286 0.145 788.204 0.394
41 Vernonia amygdalina 1.714 0.039 186.460 0.093
42 Vernonia auriculifera 1.143 0.013 46.269 0.023

total 129.714 17.768 123049.573 61.525

Appendix 2. (Continued).
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