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Abstract—There has been recent interest in the transmission 
of acoustic signals along a chain of spheres to produce waveforms 
of relevance to biomedical ultrasound applications. Effects which 
arise as a result of Hertzian contact between adjacent spheres can 
potentially change the nature of the signal as it propagates down 
the chain. The possibility thus exists of generating signals with a 
different harmonic content to the signal input into one end of the 
chain. This transduction mechanism has the potential to be of use 
in both diagnostic and therapeutic ultrasound applications, and is 
the object of the study presented here. The nonlinear dynamics of 
granular chains can be treated using discrete mechanics models. 
However, in cases where the underlying assumptions of these 
models no longer hold, and where geometries are more complex, 
a more comprehensive numerical solution must be sought. 
Contact mechanics problems can efficiently be treated using the 
finite element method. The latter was used to investigate the 
dynamics of a pre-stressed chain of six, 1 mm diameter stainless 
steel spheres excited at one end using a tone burst displacement 
signal with a fundamental frequency of 73 kHz. The final sphere 
of the chain was assumed to be in contact with a cylindrical 
matching layer radiating into a half-space of fluid with the 
properties of water. After addition of the fluid loading, radiated 
acoustic pressures in the medium were predicted. Comparison 
with experimental results suggests that finite element analysis is a 
suitable tool for investigating the design and performance of 
contact mechanics based transducers. Nevertheless, a better 
handle on the model input parameters as well as an improved 
experimental protocol are required to fully validate the model. 

Keywords—Finite element analysis; Granular chain; Nonlinear 
systems; Ultrasonic transducers. 

I.  INTRODUCTION 

Granular chains are generally defined as one-dimensional 
alignments of usually spherical particles. The interactions 
between such particles are governed by the laws of contact 
mechanics. The study of granular chains is of interest to a 

range of disciplines in science and engineering, and has 
recently been extended to biomedical applications [1], [2]. 
Solitary waves are known to be generated in a one-dimensional 
granular chain of spherical particles, where dispersive and 
nonlinear effects, due to the discreteness of the system and the 
Hertzian contact among spheres, balance out [3]. Effects which 
arise as a result of Hertzian contact between adjacent spheres 
have the potential to change the nature of the signal as it 
propagates down the chain. The possibility thus exists of 
generating signals with a different harmonic content to the 
signal input into one end of the chain. In [1], the generation of 
high-amplitude focused acoustic pulses using a one 
dimensional array of granular chains was investigated, where 
the amplitude, size, and location of the focus could be 
controlled by varying the static pre-compression of the chains. 
Such an array could have important applications to both 
therapeutic high-intensity focused ultrasound and medical 
imaging. In this context, it is of interest to assess the potential 
of a transduction mechanism based on the nonlinear dynamics 
of granular chains. Alongside experimental measurement, the 
development of validated theoretical models capable of 
simulating the nonlinear transduction process is vital. This will 
generate a more thorough understanding of the evolution of the 
solitary waves throughout the granular chain. It will also help 
determine how best to couple the chain to the acoustic medium, 
so that signals of appropriate amplitude, transient and harmonic 
content may be produced. Discrete mechanics formulations 
have been proposed to predict the dynamics of granular chains 
[3], [4]. These essentially consist of a one-dimensional system 
of point masses linked by nonlinear springs. When 
investigating biomedical applications of such devices, it may 
be required to move beyond such formulations. Indeed, it is 
expected that the granular chain will couple into an acoustic 
medium, such as water or soft tissue, via a matching layer. 
These loading conditions will affect the dynamic behavior of 
the chain in a way which will be difficult to predict using a 
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discrete mechanics formulation. Hence, a numerical solution to 
the design of such a transducer is likely to provide more 
flexibility in designing an application-specific device. The use 
of the finite element method to analyze the dynamic behavior 
of a granular chain was instigated in [5], providing good 
agreement with the discrete mechanics solution proposed by 
[3] and [4] and with experimental results. Finite element 
analysis (FEA) was subsequently employed in [6] to model the 
dynamics of granular chains with signals relevant to 
biomedical ultrasound. This yielded good agreement with the 
discrete mechanics solution and demonstrated that the multiple 
collisions which occur between the beads of the chain could be 
accurately modeled using FEA. 

In this paper, we describe an extension of the axisymmetric 
FEA proposed in [6]. The configuration involved a granular 
chain of six perfectly aligned beads, coupled into an acoustic 
medium via a Sigradur® K vitreous carbon cylinder. The beads 
were assumed to be of spherical shape, with a 1 mm diameter, 
and were made of chrome steel. The first sphere of the chain 
was excited via a steel cylindrical piston, the axial 
displacement of which was obtained from a laser vibrometer 
measurement at the tip of a purpose-built horn ultrasonic 
transducer, described in [2]. The fundamental frequency of the 
signal was 73 kHz and the peak normal tip displacement 
magnitude 3.78 m. The FEA was carried out using a transient 
analysis in ANSYS Mechanical version 16.1 [7]. The final 
sphere of the chain was in contact with a vitreous carbon 
cylinder of 0.5 mm thickness. This layer was then coupled into 
a half-space of water. The acoustic pressure was then predicted 
along the axis of symmetry at 1 cm from the vitreous carbon 
front face and compared with experimental results using a 
calibrated Precision AcousticsTM membrane hydrophone. 

II. METHOD 

A. Finite element analysis 

When the surfaces of two separate bodies touch each other 
so that they become mutually tangential, they are said to be in 
contact. In the physical sense, the surfaces that are in contact 
do not interpenetrate and can transmit compressive normal 
forces and tangential frictional forces. They do not generally 
transmit tensile normal forces and are thus free to separate and 
move away from each other. The static frictionless interaction 
between two adjacent elastic spheres is an exact solution of 
linear elasticity and is known as Hertz’s law [3]. As a result of 
geometrical effects, there exists a nonlinear relationship 
between the exerted force on the spheres and the distance of 
approach of their centers. 

It is common to formulate the problem of frictionless 
contact between two solid bodies as a variational inequality. 
This presents a special type of minimization problem with 
inequality constraints, which can be efficiently treated in a 
standard manner, i.e. with (1) the penalty method, (2) the 
augmented Lagrangian method or (3) the Lagrange multiplier 
method [8]. The ANSYSTM Mechanical v16.1 FEA package 
includes these three options as formulations to establish a 
relationship between two surfaces to prevent or limit them 
from passing through each other during the analysis. For an in-
depth description of these methods, the reader is referred to 

Chapter 4 of [8]. Methods (1) and (2) are both penalty-based 
and invoke the concept of contact stiffness i.e. the virtual work 
due to the deformation of imaginary springs at the contact 
interface term. This inevitably results in some degree of 
penetration between the two surfaces, depending on the chosen 
value for the contact stiffness term. Method (3), or the Normal 
Lagrange Formulation as it is described in ANSYS 
Mechanical, adds an extra degree of freedom (contact pressure) 
to satisfy contact compatibility. Consequently, instead of 
resolving contact force as contact stiffness and penetration, 
contact pressure is solved for explicitly as an extra degree of 
freedom. This has the advantage of enforcing near-zero 
penetration when modelling frictionless contact between two 
bodies. For this reason, the Normal Lagrange Formulation was 
opted for over the penalty and augmented Lagrangian 
formulations. 

Propagation in the acoustic medium was assumed to be 
governed by the linear, inviscid acoustic wave equation, so that 
the fluid could be defined in terms of its equilibrium density 
and speed of sound. Coupling at the fluid/structure interface 
assumed continuity of normal velocity. An absorbing boundary 
was placed around the acoustic finite element mesh in order to 
simulate the Sommerfeld radiating condition and propagation 
of acoustic waves into a half-space. Details of the underlying 
equations and physical principles may be found in [7]. 

A mesh of the structural section of the model is displayed 
in Fig. 1, with a description of the forcing and boundary 
conditions. This mesh features refinements around the contact 
regions to improve accuracy of the solution, as well as 
convergence. 

 

Fig. 1. Structural model mesh: 3D visualization of the axisymmetric model 

B. Experimental measurements 

The experimental displacement normal to the horn 
transducer tip was measured using a laser vibrometer in 
absence of any mechanical loading. The displacement as a 
function of time is displayed in Fig. 2. The measurement 
protocol is further described in [2] and [9]. 



3 
 

The acoustic pressure was measured as a function of time, 
1 cm from the Sigradur® K cylinder into the fluid, using a 
calibrated Precision Acoustics™ D1604 membrane 
hydrophone. The hydrophone active element was positioned 
on symmetry of the granular chain (i.e. the Cartesian y-axis). 
The acoustic pressure measurement is displayed in Fig. 3. 

 

 

Fig. 2. Normal displacement applied to the outer surface of the stainless steel 
piston in the FEA model, measured using a laser vibrometer. 

 

Fig. 3. Acoustic pressure at 1 cm from Sigradur® K front face, measured in 
water. 

While the horn transducer is switched on (i.e. for values of 
time between 25 s and 350 s in Fig. 2), the hydrophone 
measurement is contaminated by electromagnetic interference 
[9]. Additionally, as the acoustic pressure decays, the 
hydrophone measurement suffers from poor signal-to-noise 
ratio. The acquired acoustic pressure waveform is therefore 
only displayed and analyzed between 350 s and 650 s. 

The FFT of the acoustic pressure waveform in Fig. 3 is 
displayed in Fig. 4. This graph shows a dominant harmonic 
component at 73 kHz, corresponding to the fundamental 
frequency at which the horn transducer is driven. In addition to 
this, the presence of second, third and fourth harmonics are 
noted, demonstrating the potential of a transduction mechanism 
based on the nonlinear dynamics of granular chains for 
generating broadband acoustic signals inside an acoustic 
medium. 

 

Fig. 4. Normalized FFT of acoustic pressure magnitude at 1 cm from 
Sigradur® K front face, measured in water. 

III.  FINITE ELEMENT MODELING RESULTS 

The input properties used for each structural material is 
displayed in table I. 

TABLE I.  MATERIAL PROPERTIES 

Material Young’s 
modulus (GPa) 

Poisson’s ratio Density (kg m-3) 

Stainless steel 200 0.35 7800 
Chrome steel 201 0.35 7833 
Sigradur® K 35 0.15 1540 

 

The fluid region was assigned the properties of water, i.e. a 
speed of sound of 1500 m s-1 and a density of 1000 kg m-3. 

The normal displacement excitation described by the time 
history in Fig. 2 was applied to the disc surface of the stainless 
steel piston not in contact with the granular chain. In addition 
to this, a static force of 0.1 N was also applied normal to this 
surface in the negative y-direction, thus pre-stressing the 
granular chain. Damping was included in the chrome steel 
material to in the form of a stiffness matrix damping multiplier, 
of value 310-6 [7]. 

The velocity at the final sphere of the chain was obtained as 
a function of time, along the y-direction, on the axis of the 
chain and on the side where the bead and the Sigradur® K 
cylinder are in contact. This result is shown in Fig. 5. The sharp 
impulses generated in the velocity signal displayed in Fig. 6 are 
consistent with the signals measured and predicted in [2]. 
Oscillations occur beyond 750 s due to residual motion of the 
granular chain and vitreous carbon cylinder, possibly indicating 
that additional damping in the model is required to simulate the 
experimental configuration. The resulting acoustic pressure 
radiated by the front face of the Sigradur® K cylinder at 1 cm 
into the medium is displayed in Fig. 6. For the purpose of 
comparison with experimental data, the acoustic pressure is 
only displayed for values of time between 350 s and 650 s. 
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Fig. 5. y-component of velocity of final sphere of granular chain as a 
function of time. 

 

Fig. 6. Acoustic pressure at 1 cm from Sigradur® K front face, predicted in 
water using FEA. 

The normalized FFT magnitude of the acoustic pressure 
signal in Fig. 6 is shown in Fig. 7, demonstrating the presence 
of higher order harmonics and spectral content beyond 200 
kHz. 

 

Fig. 7. Normalised FFT of acoustic pressure at 1 cm from Sigradur® K front 
face, predicted in water using FEA. 

Despite similar features between the experimental 
measurements and the FEA results, it can be seen that 
discrepancies between these exists. At this stage, it is thought 
that this is due to a combination of uncertainties in the FEA 
input parameters, such as damping and pre-stressing force, and 
the need for refinement in the measurement protocol. Indeed, 
the hydrophone sensitivity below 300 kHz has not been 
directly measured, and a sensitivity of 213 nV Pa-1 at all 
frequencies was assumed to obtain the pressure waveform. 
This figure corresponds to the sensitivity of the device at 300 
kHz. 

IV.  CONCLUSION 

A finite element model has been developed for the analysis 
of acoustic signals resulting from the coupling of a pre-
stressed, dynamically excited granular chain, into a fluid. 
Preliminary comparisons with experimental data show that a 
better handle on the FEA input parameters and further 
refinement of the experimental protocol are required for 
experimental validation. Nevertheless, this preliminary study 
suggests that FEA will be a useful tool in assisting the design 
of biomedical transducers which employ a mechanism based 
on the nonlinear dynamics of granular chains. 
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