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Abstract�Discrete dynamic equations of spheres in granular 

chains have been developed so as to simulate the evolution of 

acoustic signals in these media. The model was built based on 

Hertzian laws as well as the dissipation effect within the 

system, and the contact dynamics involving both compression 

and separation between spheres was also modelled. A 

molecular dynamics simulation method using the Velocity 

Verlet algorithm was developed to solve the equations. The 

strongly nonlinear solitary wave impulses are predicted by the 

numerical calculations and match the experimental results 

well. The simulation system has been used as a design tool to 

determine the optimal chain structure in term of the bandwidth 

and frequencies which are required within the output 

impulses. The results exhibit great potential in biomedical 

applications. 
 

Keywords—granular chain; Velocity Verlet algorithm; 

nonlinear waves 

I. INTRODUCTION  

    One-dimensional chains of spheres have been investigated 

and exhibit strongly nonlinear waves, due to nonlinearity of 

Hertzian interactions between neighboring particles as well as 

the absence of tensile forces between them in granular media 

[1-2]. The wave transmission is tunable if a static pre-

compression is applied on the chain. The propagation regime 

can be classified as linear, weakly nonlinear or highly 

nonlinear, depending on the ratio of the applied dynamic force 

to the static pre-compression [3]. The concept of a �Sonic 

Vacuum� was proposed by Nesterenko [2] in �weakly-

compressed� granular chains, as classical linear waves cannot 

propagate through them. However, families of solitary waves 

as a highly nonlinear mode can be present in such chains. The 

�Sonic Vacuum� equation is derived based on the continuum 

model and long-wavelength approximation, and is more 

general than the KdV wave equation, although the latter is 

well-known as a basic wave equation for nonlinear problems in 

many types of material [2]. Solitary waves have been observed 

in experimental investigations where the applied impulsive 

signals were generated by mechanical impact of a striker [1-3]. 

In order to generate solitary wave impulses with a broad 

bandwidth at higher frequencies within granular media, a 

different generation method is needed.  

    In recent years, transient signals from piezoelectric actuators 

have been used to generate impulses within chains of spheres, 

and a nonlinear acoustic lens with a tunable focus was created 

using a two-dimensional array of spherical chains interfaced 

with water [4]. However, the theoretical analysis and technical 

details were not presented in [4] to describe the propagation of 

acoustic wave along the spherical chain with the input of the 

piezoelectric actuator. Recently our research group has 

developed a new experimental method, i.e. using high 

amplitude, narrow bandwidth ultrasonic inputs to produce 

solitary wave impulses in a single chain of spheres [5]. It has 

been observed that the travelling waves with in-phase 

nonlinear normal modes (NNM) can be created in a certain 

length chain once the excitation amplitude attains a specified 

threshold value. A controllable frequency band can be realized 

by designing different chain structures. These new findings 

exhibit different characteristics from the traditional solitary 

waves studied in granular media, so it is essential to study the 

dynamic behaviour of particles in granular chains using 

resonance excitation. Although the stationary solution of the 

wave equation reveals the existence of solitary wave in chains 

of spheres, it cannot explain the periodicity behaviour of the 

output impulses observed in our experimental system. This is 

for two reasons. Firstly, the solitary wave is assumed to 

propagate in an infinite-length chain and it will take infinite-

time to return, so the reflection of wave in finite-length chains 

will not exhibited in the analytical solution in such a model. 

Secondly, friction and viscoelastic dissipation are not taken 

into account in the original dynamic equations of particles from 

which the �Sonic Vacuum� wave equation was derived [2]; 

thus, the model cannot describe the experimental results 

accurately, since the dissipation was found to be a very 

important factor in the generation of the solitary wave impulses 

observed in our experiments. 
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    Accordingly, in this paper we will develop a novel 

numerical algorithm to solve the discrete dynamic equations of 

particles in finite length chains, in which the dissipation effect 

is also modelled. Given that simulation using a molecular 

dynamics approach provides the methodology to solve the 

classical N-body problem effectively [6], we will develop a 

Velocity Verlet Algorithm to simulate the propagation of 

acoustic wave along granular chains and reveal the strongly 

nonlinear behaviour in a resonant particle chain.  

 

II. DYNAMIC MODEL OF PARTICLES IN CHAINS OF SPHERES  

    First, we will introduce a model to describe the dynamic 

behavior of particles within finite-length chains, which can 

resonate. As shown in Fig.1, the spheres in the chain are 

assumed to have a constant radius ܴ , and are made of the 

same material. The first sphere is excited by an acoustic 

transducer, and the last sphere contacts a fixed end. In both 

cases, the chain contacts a planar surface. Acoustic wave 

evolution in the granular medium mainly depends on the 

contact dynamics between particles, but is also affected by the 

boundary conditions. It assumes that the contact deformation 

between particles is within the elastic range, so the 

relationship between the contact force and deformation of the 

interaction spherical particles can be described by the non-

linear Hertzian law [2]. Accordingly, discrete dynamic 

equations for motion of each sphere in a chain can be 

constructed, as described in [5].  

    For the first sphere, the dynamics equation of motion: ݉ ௗమ௨భௗ௧మ ൌ ଶξோଷ ቂʹߠሺߜ  ݑ െ ଵሻଷݑ ଶΤ െ ఏξଶ ሺߜ  ଵݑ െݑଶሻଷ ଶΤ ቃ  ߣ ቀௗ௨బௗ௧ െ ௗ௨భௗ௧ ቁ ߜሺܪ  ݑ െ ଵሻݑ െ ߣ ቀௗ௨భௗ௧ െௗ௨మௗ௧ ቁ ߜሺܪ  ଵݑ െ                                                                             ଶሻ                                               (1-a)ݑ

    For the second sphere to the penultimate one, the dynamics 

equation of motion: ݉ ௗమ௨ௗ௧మ ൌ ξଶோଷ ିଵݑߜൣሺߠ െ ሻଷݑ ଶΤ െ ሺߜ  ݑ െݑାଵሻଷ ଶΤ ൧  ߣ ቀௗ௨షభௗ௧ െ ௗ௨ௗ௧ ቁ ߜሺܪ  ିଵݑ െ ሻݑ െߣ ቀௗ௨ௗ௧ െ ௗ௨శభௗ௧ ቁ ߜሺܪ  ݑ െ                                                                ାଵሻ                                    (1-b)ݑ

   For the last sphere, the dynamics equation of motion: ݉ ௗమ௨ಿௗ௧మ ൌ ଶξோଷ ቂఏξଶ ሺߜ  ேିଵݑ െ ேሻଷݑ ଶΤ െ ߜሺߠʹ ݑேሻଷȀଶቃ  ߣ ቀௗ௨ಿషభௗ௧ െ ௗ௨ಿௗ௧ ቁ ߜሺܪ  ேିଵݑ െ ேሻݑ െߣ ௗ௨ಿௗ௧ ߜሺܪ     ேሻ                                                             (1-c)ݑ

    In Eq. 1, ݑଵǡ ଶǡݑ ǡ	ଷݑ ǥ ǡ ݑ  are the displacements of the 

center of spheres under the input displacement ݑ  from the 

boundary, and ݉  is the mass of each sphere. The linear 

damping coefficient λ is used to model the inherent 

dissipation of the particles as they vibrate within a resonant 

chain. The damping force is in effect when the spheres are in 

contact, so the Heaviside function H on the relative 

displacement of spheres is incorporated into the equations [7]. 

The material property-related values are given by equations:                                                                                   

     
ଵఏ ൌ ଵିఔమா  ଵିఔೞమாೞ ߠ    ൌ ாೞଵିఔೞమ     ଵఏೝ ൌ ଵିఔೝమாೝ  ଵିఔೞమாೞ            (2)                                            

where ܧ௦ and ߥ௦	are the Young�s modulus and Poisson ratio of 

spheres; ܧ  and ߥ  are that of the left transducer, and ܧ  and ߥ	 are that of the right fixed end. The initially relative 

displacements under the static force ܨ are given by ߜ ൌ ሺ ଷிబସξோఏሻଶ ଷൗ ߜ      ൌ ሺ ଷிబξଶோఏሻଶ ଷൗ ߜ    ൌ ሺ ଷிబସξோఏೝሻଶ ଷൗ        (3)    

                                              

 
Fig. 1. Illustration of generation of an acoustic propagation in finite-length 

chains of spheres. 

III. A VELOCITY VERLET ALGORITHM OF SOLVING DISCRETE DYNAMIC 

EQUATIONS OF PARTICLES 

    Molecular dynamics simulation is an effective numerical 

tool to calculate how positions, velocities, and orientations of 

particles in chains change over time. The integration algorithm 

is based on the basic relationships between force, acceleration, 

velocity and position as follows: 

റ=݉ܨ     റܽ    റܽ ൌ റݒ݀ ൗݐ݀ റݒ      ൌ റݎ݀ ൗݐ݀                             (4) 

    The Velocity Verlet algorithm is a generally used integrator 

which has improved accuracy compared to the standard Verlet 

algorithm [6], since it is derived from expansions of both 

position and velocity. In order to solve Eq. (1), a numerical 

method based on Velocity Verlet algorithm has been 

developed. Here, ݔǡ ݒ ǡ ܽ and ܨ	 are used to represent  

position, velocity, acceleration and the force acting on the i
th

 

sphere respectively in the transmission of a wave in a chain of ܰ spheres at time ݆ݐߜ .ݐߜ is time step, ݅	and ݆	are the order of 

spheres in the chain and time count respectively. Here, ݅ ൌ ͳǡ ʹǡ ڮ ܰǡ and ௧ܰ  is the maximum time count, where ݆ ൌ Ͳǡ ͳǡ ʹǡ ڮ ǡ ௧ܰ. 

    In the first step, the initial positions of the spheres (ݔ) and 

the transducer needs to be determined. This work starts from 

the last sphere since it is assumed to contact with the fixed 

end. As shown in Fig.1, the position of the contact point 

between the last sphere and the fixed end is assumed to be   ݔ ൌ ܮ  ʹܴܰ. Then, the initial positions of the spheres are 

calculated one by one from this end, using the relative 

displacements which are given in Eq. (3), until the position of 

the first sphere as well as that of the front wall of the actuating 

transducer (ݔ) are determined.  

    In the second step, a time loop is established so as to solve 

Eq. (1), using the Velocity Verlet algorithm. This proceeds in 

a logical sequence. At each integration cycle, the algorithm 

evaluates the motion of each sphere in the following order 

(steps A-D): 

 ଵݔ

 

 ܨ

X O ܮ 

 ݔ ଶݔ

Transducer A chain of spheres Fixed end 
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A. Calculate the particle velocities of the spheres at time-step ݆  ଵଶ: 

ାభమݒ         ൌ ݒ  ଵଶ ܽݐߜ    

B. Calculate positions of the spheres at time-step ݆  ͳ: 

ାଵݔ        ൌ ݔ   ݐߜାభమݒ

C. Calculate the acting forces and accelerations of the 

spheres at time-step ݆  ͳ: 

For the first sphere: 

ߜ       ାଵݑ െ ଵାଵݑ ൌ ܴ െ ሺݔଵାଵ െ  ,ାଵሻݔ

where, if ( ܴ െ ሺݔଵାଵ െ ାଵሻሻݔ ൏ Ͳ  (i.e. separation between 

the first sphere and the transducer appears), then: 

ߜ       ାଵݑ െ ଵାଵݑ ൌ Ͳǡ and  ܨଵାଵ ൌ Ͳ; otherwise 

ଵାଵܨ      ൌ ସఏξோଷ ሺܴ െ ሺݔଵାଵ െ ାଵሻሻଷݔ ଶൗ  ାభమݒሺߣ െ  ଵାభమሻݒ

ߜ       ଵାଵݑ െ ଶାଵݑ ൌ ʹܴ െ ሺݔଶାଵ െ  .ଵାଵሻݔ

Also, if ( ʹܴ െ ሺݔଶାଵ െ ଵାଵሻሻݔ ൏ Ͳ  (i.e. separation between 

the first and the second sphere occurs), then: 

ߜ	     ଵାଵݑ െ ଶାଵݑ ൌ Ͳ and  ܨଵଶାଵ ൌ Ͳ; otherwise 

ଵଶାଵܨ	    ൌ ξଶோఏଷ ሺʹܴ െ ሺݔଶାଵ െ ଵାଵሻሻଷݔ ଶൗ  ଵାభమݒሺߣ െ  ଶାభమሻݒ

ଵାଵܨ    
ଵାଵܨ= െ ଵଶାଵܨ

 and  ܽଵାଵ ൌ ଵାଵܨ ݉ൗ  

For the second sphere to the penultimate one: 

ߜ      ିଵାଵݑ െ ାଵݑ ൌ ʹܴ െ ሺݔାଵ െ  ,ିଵାଵሻݔ

where, if (ʹܴ െ ሺݔାଵ െ ିଵାଵሻሻݔ ൏ Ͳ (i.e. separation between 

the ith sphere and its left sphere appears), then: 

ߜ      ିଵାଵݑ െ ାଵݑ ൌ Ͳ and  ܨሺିଵሻାଵ ൌ ͲǢ otherwise 

ሺିଵሻାଵܨ	    ൌ ξଶோఏଷ ሺʹܴ െ ሺݔାଵ െ ିଵାଵሻሻଷݔ ଶൗ  ିଵାభమݒሺߣ െ  ାభమሻݒ

ߜ      ାଵݑ െ ାଵାଵݑ ൌ ʹܴ െ ሺݔାଵାଵ െ  .ାଵሻݔ

Also, if ( ʹܴ െ ሺݔାଵାଵ െ ାଵሻሻݔ ൏ Ͳ  (i.e. separation between 

the ith sphere and its right sphere appears), then: 

ߜ	     ାଵݑ െ ାଵାଵݑ ൌ Ͳ and  ܨሺାଵሻାଵ ൌ Ͳ; otherwise 

ሺାଵሻାଵܨ		   ൌ ξଶோఏଷ ሺʹܴ െ ሺݔାଵାଵ െ ାଵሻሻଷݔ ଶൗ  ାభమݒሺߣ െ  ାଵାభమሻݒ

ାଵܨ    
ሺିଵሻାଵܨ= െ ሺାଵሻାଵܨ

 and ܽାଵ ൌ ାଵܨ ݉ൗ  

Finally, for the last sphere: 

ߜ      ேିଵାଵݑ െ ேାଵݑ ൌ ʹܴ െ ሺݔேାଵ െ ேିଵାଵݔ ሻ, 

where if ሺʹܴ െ ሺݔேାଵ െ ேିଵାଵݔ ሻሻ ൏ Ͳ (i.e. separation between 

the last sphere and the penultimate one appears), then 

ߜ	     ேିଵାଵݑ െ ேାଵݑ ൌ Ͳ and  ܨேሺேିଵሻାଵ ൌ ͲǢ otherwise 

ேሺேିଵሻାଵܨ  ൌ ξଶோఏଷ ሺʹܴ െ ሺݔேାଵ െ ேିଵାଵݔ ሻሻଷ ଶൗ  ேିଵାభమݒሺߣ െݒேାభమሻ 

ߜ      ேାଵݑ ൌ ܴ െ ሺݔ െ  ேାଵሻݔ

Also, if ܴ െ ൫ݔ െ ேାଵ൯ݔ ൏ Ͳ (i.e. separation between the last 

sphere and the fixed end appears), then: 

ߜ	     ݑேାଵ ൌ Ͳ and  ܨேାଵ ൌ Ͳ; otherwise 

ேାଵܨ     ൌ ସఏೝξோଷ ሺܴ െ ሺݔ െ ேାଵሻሻଷݔ ଶൗ   ேାభమݒߣ

ேାଵܨ    
ேሺேିଵሻାଵܨ= െ ேାଵܨ

 and  ܽேାଵ ൌ ேାଵൗ݉ܨ  

D. Update the particle velocities of the spheres: 

ାଵݒ     ൌ ାభమݒ  ଵଶ ܽାଵݐߜ 

E.  Update Time and Repeat A-D Steps. 

    Based on the above algorithm, a C++ program was 

developed to solve the position, particle velocity and 

acceleration of individual particles at a time while the chain is 

excited, and hence the acoustic propagation can also be 

simulated.   

IV. ANALYSIS OF SIMUALTION RESULTS 

    Using the developed simulation tool, we will present two 

examples of the predicted results. Firstly, we will simulate the 

propagation of ultrasonic signals in a chain using a sinusoidal 

tone-burst input of finite duration and constant amplitude; in 

addition, we will directly use the measured input waveform 

that we have used in actual experiments to predict the resultant 

impulses. As shown in Fig.1, we assume that the spheres are 

made of chrome steel, and the properties of the spheres are: ܴ=0.5 mm; ܧ௦ ൌ	201 GPa; ߥ௦  = 0.3 and the density is ߩ௦	= 

7833 Kg/m
3
. The material parameters for the actuating 

transducer (to the left of Fig. 1) are ܧ ൌ	201 GPa and ߥ  = 

0.3, and for the fixed end (at the right) are ܧ	= 2.45 GPa and ߥ	 = 0.35 (acrylic polymer). ߣ  = 0.32 Nsm
-1

 is used. In 

addition, a static pre-compression force of the order of 0.01 N 

is assumed to exist in the chain to generate the solitary wave 

impulses. 

A. Simulation of the propagation of the ultrasonic signal 

    For a finite-length chain containing 6 spheres, a sinusoidal 

tone-burst containing 20-cycles at 73 kHz is used as the input 

signal, with the displacement amplitude of the input being 1.0   Ɋm ݐߜ .  =10
-8 

s is used. The velocity waveform and the 

spectrum of the first sphere, the fourth sphere and the last 

sphere are illustrated in Fig. 2 and Fig. 3 respectively. As seen 

in Fig. 2, the solitary wave impulses can be generated under 

such an input condition and chain construction. The 

propagation of the solitary wave is represented by the red 

arrow, and the transmission of the wave reflected from the 

right-hand wall is indicated by the blue arrow. Due to the 

action of the excitation and the reflected wave, solitary wave 

impulses with a characteristic period are formed, and the 

nonlinear normal mode (NNM) that results is characterized by 

the appearance of both harmonics and sub-harmonics of the 

input frequency, as shown in Fig. 3. The waveform of the last 

sphere has a longer time duration, and accordingly a narrower 

frequency bandwidth. This can be attributed to the fact that the 

reflected wall is made of a softer material (acrylic polymer) 

with respect to the steel spheres, which results in higher 
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percentage of sub-harmonic content in the output impulses 

present at the last sphere.    

 

 

Fig. 2. Simulation of the propogation of a nonlinear wave in a 6-sphere 

chain, showing particle velocity waveforms for (a) the first sphere, (b) the 

fourth sphere and (c) the last sphere.  

 

Fig. 3. Spectrum of the particle velocity waveforms shown in Fig. 2, for (a) 

the first sphere; (b) the fourth sphere and (c) the last sphere. 

B. Simulations to compare to experimental results 

    In addition, we simulate the ultrasound evolution based on 

the experimental conditions outlined in [5]. The first sphere 

was excited harmonically by a longitudinal ultrasonic horn at 

73 kHz and a tone-burst length of 45 cycles was used. In the 

experiments, the last sphere was positioned against an acrylic 

aperture, so that the particle velocity signal of the ultrasonic 

horn and that of the last sphere in the chain were both 

recorded using a laser vibrometer, and are referred to as the 

input and output signals of the granular chain. Both the 

measured velocity waveform of the horn and the 

corresponding displacement by integration are used as input 

signals in the simulation to calculate the signals that would be 

output by the last sphere. Note that, experimentally, the output 

from the horn was not a tone-burst of constant amplitude, but 

had a longer rise and fall time, as well as an increased time 

duration, as the input voltage was increased.  

In order to observe experimentally the evolution of the 

ultrasonic wave along the chain with an increase of the input 

amplitude, the output of the horn was increased, and three 

velocity waveforms (at peak-peak maximum particle velocity 

amplitudes of 675 mm/s, 864 mm/s and 1081 mm/s 

respectively) were recorded in experiments. These were then 

used as an input for the simulation. The simulation results are 

shown in Fig. 4. With the increase of the input particle 

velocity amplitude, the resultant waveform of the last sphere 

gradually changes from a weakly non-linear to a strongly non-

linear behavior, and the solitary wave impulses are generated 

once the input signals rises above a specific threshold value. 

The results presented in Fig. 4 are also observed in our 

experimental results [5] to which they correspond well.  

 
Fig. 4. Simulation of the particle velocity waveforms of the last sphere, using 

selected pk-pk particle velocity input amplitudes. The evolution of solitary 

wave impulses is clearly seen. 

V. CONCLUSIONS 

In order to simulate acoustic wave propagation in granular 
chains, a mathematical model has been used to describe the 
dynamics of particles in a chain of finite length. A Velocity 
Verlet Algorithm has been developed to solve the equations of 
an N-sphere system. This method provides a highly-effective 
tool to study the propagation of nonlinear wave, and the 
generation of solitary wave impulses.  
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