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Abstract—A fast and reliable detection scheme is essential in
several wireless applications such as radar and cognitive radio
systems. Energy detection is such a method as it does not require
a priori information of the received signal while it exhibits low
implementation complexity and costs. Since the detection capabil-
ity of ED is largely affected by the effects of multipath fading, this
paper is devoted to a thorough analysis of energy detection based
spectrum sensing over generalized fading conditions. To this end,
analytical expressions are firstly derived using the area under
the receiver operating characteristic curve (AUC) under additive
white Gaussian noise. This analysis is subsequently extended to
the case of generalized fading conditions characterized by κ−µ
and η−µ fading distributions. The offered results are novel and
are employed in analyzing the corresponding performance. It is
shown that fading phenomena result to detrimental effects on
the performance of spectrum sensing since the deviation between
severe and non-severe conditions is rather substantial.

I. INTRODUCTION

Signal detection is the basic and essential mechanism in
numerous wireless applications and has for long attracted
significant interest by both academic and industrial sectors.
For instance, realization of a cognitive radio system, as an
intelligent radio that can sense and exploit the spectral gaps,
has become a notable topic of research over the past decade.
Among various detection schemes such as matched filter,
cyclostationary or feature detection, energy detection (ED) has
been considered a simple and efficient detection method [2],
[3] as its blind (non-coherent) structure does not require any
prior knowledge about the signal under test (SUT) [4]–[7].

Detection performance of the ED based sensing method
is classically characterized by two key measurement metrics:
probability of detection (Pd) and probability of false alarm
(Pfa). The receiver operating characteristics (ROC) curve,
Pd versus Pfa, can be used to illustrate and quantify the
detection capability of energy detectors. By also recalling that
information signals are largely distorted by fading phenomena
[8]–[21], the performance of detection methods is also largely
affected when the SUT is dominated by multipath fading and
time varying conditions of channels. Based on this, several
studies have been devoted to the analysis of ED based sensing

over different fading channels in terms of the ROC curves, e.g.
see [22]–[29], and the references therein. However, although
the ROC curves can provide an adequate indication of ED
performance, it is a relatively restrictive approach as it holds
only for specific values of Pfa. Hence, a single figure of
merit that provides a better insight on the overall detection
performance is undoubtedly useful. To this end, a single-
parameter measure that has been used widely in applications
relating to natural sciences and engineering is the area under
the ROC curve (AUC) [30]. The value of AUC varies between
0.5 and 1, with values between 0.8 and 1 denoting acceptable
detection performance [30]–[33]. The distinct characteristic
of AUC is that when its value is unity, the performance of
the detector is perfect not only for specific values. This is in
fact the limitation of the ROC curves since any determined
probability of detection is valid for specific Pfa values; the
reason is that AUC is fundamentally based on prior averaging
over all values of Pfa. This measure was firstly introduced
in the context of wireless communications in, see e.g. [30],
[34]. Based on this, the authors in [35] analyzed the AUC
by means of the semi-analytic MGF approach for the case of
Nakagami−m and η−µ fading channels while similar analyses
based on the MGF approach were reported in [36], [37].

It is also recalled that the κ−µ and η−µ distributions are
generic fading models which have been recently proposed in
[38] to provide a better modeling of small-scale variations of
the fading signal in line-of-sight (LOS) and non-line-of-sight
(NLOS) conditions, respectively. Furthermore, the κ−µ distri-
bution includes the Rice (Nakagami-n) and the Nakagami-m
distributions, while the η−µ distribution comprises both the
Hoyt and the Nakagami-m as, special cases [38]. Motivated
by this, the present work is devoted to the analysis of AUC
based energy detection over generalized fading channels. To
this end and unlike most reported analyses, novel closed-
form expressions are derived for arbitrary values of the time-
bandwidth product, u in terms of the generalized Lauricella
hypergeometric functions and they are subsequently employed
in analyzing the ED performance over various fading scenarios.
As expected, the detection behaviour of the ED is highly
dependent upon the value and variations of the involved fading



parameters. This allows accurate quantification of the effect of
fading on the system performance for various scenarios which
can enable the determination of the required power levels for
ensuring robust and efficient performance of energy detectors.

II. PRELIMINARIES

A. System Model and Detection

The problem of detecting the presence of unknown wireless
signals can be modeled as a binary hypothesis-testing problem,
where hypotheses H0 and H1 correspond to the cases when
the SUT is absent or present, respectively. The received signal
for the binary hypothesis can be given as

y (t) =

{
n (t) : H0

hx (t) + n (t) : H1
(1)

where h and n (t) denote the wireless channel gain and
zero-mean complex additive white Gaussian noise (AWGN)
with single-sided power spectral density N0 at the receiver,
respectively, and x (t) is the transmitted signal with average
power Ex. Based on this, the received signal is firstly filtered
with a band-pass filter in bandwidth W (Hz) to remove the
noise and adjacent interference. Then, the output of this filter
is squared and integrated over time duration T to produce the
test statistic Y which can be represented as [23]

Y ∼
{

χ2
2u : H0

χ2
2u (2γ) : H1

(2)

where χ2
2u denotes a central chi-square distribution with 2u

degrees of freedom, where u is the time-bandwidth product.
Furthermore, χ2

2u (2γ) is a non-central chi-square distribution
with the same degrees of freedom and a non-centrality param-
eter 2γ, where γ (γ ≥ 0) is the received instantaneous SNR

of the target signal given as γ = |h|2Ex/N0. Finally, the test
statistic Y is compared to a predefined threshold λ to determine
the absence or presence of the SUT. In the AWGN case, where
the channel gain h is deterministic, the probabilities of false
alarm (Pfa) and detection (Pd) are given by [23]

Pfa = Pr (Y > λ|H0) = Q

(

u,
λ

2

)

(3)

and

Pd = Pr (Y > λ|H1) = Qu

(√

2γ,
√
λ
)

(4)

where Q (., .) is the regularized Gamma function and Qu (a, b)
is the generalized Marcum Q-function [39].

B. Generalized Fading Channels

1) The κ−µ Distribution: The κ−µ fading model con-
siders a signal composed of clusters of multipath waves,
propagating in a non-homogeneous environment. The clusters
of multipath waves are assumed to have scattered waves with
identical powers, but each cluster includes a dominant compo-
nent, which presents an arbitrary power [38]. The parameter κ
denotes the ratio between the total power of the dominant com-
ponents and the total power of the scattered waves, whereas
the parameter µ is related to the number of multipath clusters.

The corresponding PDF of the instantaneous SNR per symbol,
γ, is given by [38, eq. (10)], namely

fγ (γ) =
µ(1 + κ)

µ+1
2

κ
µ−1
2 exp (κµ)

γ
µ−1
2 Iµ−1

(

2µ
√

κ(1+κ)γ
γ̄

)

γ̄
µ+1
2 exp

(
µ(1+κ)γ

γ̄

) (5)

where γ̄ represents the average SNR per symbol, and In (.) is
the nth order modified Bessel function of the first kind [40].
Notably, the κ−µ distribution includes as special case the Rice
distribution for µ = 1, the Nakagami−m distribution for κ →
0, the Rayleigh distribution for µ = 1 and κ → 0 and the
One-Sided Gaussian for µ = 0.5 and κ → 0, [38].

2) The η−µ Distribution: The physical interpretation of
the η−µ fading distribution is based on considering a signal
composed of clusters of multipath waves propagating in a non-
homogeneous environment. This model consists of two formats
with µ denoting the number of multipath clusters [38]. In
Format I, 0 < η < ∞ denotes the ratio between the in-phase
and quadrature components of the signal in each cluster. These
components are assumed to be statistically independent to each
other and have different powers. In Format II, −1 < η < 1
denotes the correlation between the powers of the in-phase and
quadrature scattered waves in each multipath cluster.

The η−µ SNR distribution is expressed as [38, eq. (26)]

fγ (γ) =
2
√
πhµµµ+ 1

2 γµ− 1
2 Iµ−1

(
2µH
γ̄

γ
)

Γ (µ)Hµ− 1
2 γ̄µ+ 1

2 exp
(

2µh
γ̄

γ
) (6)

where h =
(
2 + η−1 + η

)
/4, H =

(
η−1 − η

)
/4, in Format

I and h = 1/
(
1− η2

)
, H = η/

(
1− η2

)
in Format II. It is

also recalled that the η−µ distribution reduces to Nakagami−q
(Hoyt) distribution for µ = 0.5 and to Nakagami−m distribu-
tion for η → 0, η → ∞, and η → ±1, [38].

III. AREA UNDER ROC CURVE (AUC) ANALYSIS

Closed-form expressions are derived for the average AUC
over generalized fading channels. To this end, it is firstly
essential to derive an exact closed-form expression for the
AUC under AWGN for arbitrary values of u that can act as a
benchmark for all future analyses in cognitive radio systems.

A. The AUC under Non-Fading Channels

The AUC is the area covered by the ROC curve of Pd

versus Pf and is defined as [30]

A =

∫ 1

0

Pd (γ, λ) dPfa (λ). (7)

Based on this, the average AUC (AUC) under different fading
conditions is determined as follows

AUC =

∫ ∞

0

A (γ) fγ (γ) dγ. (8)

It is recalled that the AUC under AWGN for the case of
arbitrary values of u is given by [36, eq. (8)], namely

A (γ) =

∞∑

l=0

(l + u)uγ
l

l!2l+2ueγ
2F̃1

(

1, l + 2u; 1 + u;
1

2

)

(9)



where (x)n and 2F̃1 (·, ·; ·; ·) denote the Pochhammer symbol,
and the regularized confluent hypergeometric function, respec-
tively [41]. hence. by expanding the above series one obtains

A(γ) =
∞∑

l=0

∞∑

i=0

(l + u)u(1)i(l + 2u)i
l!2l+2u(1 + u)iΓ(1 + u)

γle−γ (10)

and by recalling the standard Pochhammer symbol identities
along with the Legendre duplication formula yields

A (γ) =
Γ
(
u+ 1

2

)

2u!
√
πeγ

∞∑

l=0

∞∑

i=0

(2u)l+i(1)l
(1 + u)l(u)i

1

l!2l
γi

i!2i
. (11)

Importantly, for γ, u ∈ R
+, the following closed-form expres-

sions are deduced for the AUC under AWGN case:

A (γ) =
Γ
(
u+ 1

2

)
Ψ1

(
2u, 1, 1 + u, u; 1

2 ,
γ
2

)

2u!
√
πeγ

(12)

=
Γ
(
u+ 1

2

)
F2

(
2u, 1,−, 1 + u, u; 1

2 ,
γ
2

)

2u!
√
πeγ

(13)

where Ψ1 (.) and F2 (.) denote the Humbert and Appell special
functions, respectively [41].

B. Average AUC over κ−µ Fading Channels

The average AUC over κ−µ fading channels when u ∈ R
+

can be evaluated by substituting (5) in (8) yielding

AUC =
e−κµζ

µ+1
2

(κµ)
µ−1
2

∞∑

l=0

(l + u)u
l!2l+2u 2F̃1

(

1, l + 2u; 1 + u;
1

2

)

(14)

×
∫ ∞

0

γ
µ−1
2 +le−(1+ζ)γIµ−1

(

2
√

κµζγ
)

dγ

︸ ︷︷ ︸

I1

where ζ = µ (1 + κ)/γ̄. Notably, the above integral is identical
to [40, eq. (6.643.2)] and thus, it can be expressed in terms as

I1 =
(µ)l√
κµζ

(
1

1 + ζ

)l+µ
2

e
κµζ

2(1+ζ)M
−(l+µ

2 ),
µ−1
2

(
κµζ

1 + ζ

)

.

(15)
Also, with the aid of [40, eq. (9.220.2)], it follows that

I1 =
(µ)l(κµζ)

µ−1
2

(1 + ζ)
l+µ 1F1

(

µ+ l;µ;
κµζ

1 + ζ

)

(16)

where 1F1(., .; .) is the Kummer’s confluent hypergeometric
function [41]. Thus, by substituting (16) into (14) one obtains

AUC =
∞∑

l=0

ζµe−κµΓ (l + µ) Γ (l + 2u)

4uΓ (l + u) l!2l(1 + ζ)
µ+l

× 2F̃1

(

1, l + 2u; 1 + u;
1

2

)

1F̃1

(

µ+ l;µ;
κµζ

1 + ζ

)

.

(17)

Expanding the regularized confluent hypergeometric functions,
expressing each gamma function in terms of the Pochhammer
function, using the Legendre duplication formula and u carry-
ing out long but basic algebraic manipulations yields

AUC =
∞∑

l=0

∞∑

i=0

∞∑

j=0

(2u)l+i(µ)l+j(1)i
(u)l(1 + u)i(µ)j

(
1

2(1+ζ)

)l

c−1
1 l!

(
1
2

)i

i!

(
κµζ
1+ζ

)j

j!

(18)

where

c1 =
e−κµΓ

(
u+ 1

2

)

2
√
πΓ (u+ 1)

(
ζ

1 + ζ

)µ

. (19)

To this effect, the average AUC over κ−µ fading channels
can be computed in closed-form according to (20), at the top

of the next page, where FA:B′;...;B(n)

C:D′;...;D(n) denotes the Lauricella

hypergeometric function in n variables [42].

C. The Average AUC under η−µ Fading Channels

By averaging (9) over the fading statistics in (6) one obtains

AUC =

∞∑

l=0

2
√
πHµµ+ 1

2hµ(l + u)u

Γ (µ)Hµl!2l+2uγ
µ+ 1

2
2F̃1

(

1, l + 2u; 1 + u;
1

2

)

×
∫ ∞

0

γµ+l− 1
2 e−(1+

2µh
γ̄ )γIµ− 1

2

(
2µH

γ̄
γ

)

dγ

︸ ︷︷ ︸

I2

.

(21)

By also utilizing [43, eq. (03.02.06.0038.01)] and [40, eq.
(7.525.1)], it follows that

I2 =

(
µH
γ̄

)µ− 1
2

Γ (l + 2µ)
(

1 + 2µh
γ̄

)l+2µ

× 2F̃1

(

l + 2µ

2
,
l + 2µ+ 1

2
;
2µ+ 1

2
;

(
2µH

γ̄ + 2µh

)2
)

.

(22)

By substituting I2 in (21) and expanding the involved hyper-
geometric functions one obtains

AUC =

√
π

22u−1

(

µ
√
h

γ̄ + 2µh

)2µ
Γ (2u) Γ (2µ)

Γ (u) Γ (1 + u) Γ (µ) Γ
(
µ+ 1

2

)

(23)

×

∞
∑

l=0

∞
∑

i=0

∞
∑

j=0

22j−i−lγ̄l(µH)2j(2u)
l+i

(µ) l
2
+j

(

µ+ 1
2

)

l
2
+j

(2µ)
l

l!j!(γ̄ + 2µh)l+2j(u)
l
(µ) l

2

(

µ+ 1
2

)

l
2
(1 + u)

i

(

µ+ 1
2

)

j

.

With the aid of the Pochhammer symbol identity (x)2n =
22n(x2 )n(

x+1
2 )n, it follows that (2µ)l = 2l(µ) l

2
(µ+ 1

2 ) l
2

and

(µ) l
2+j(µ+ 1

2 ) l
2+j = 2−(l+2j)(2µ)l+2j . Thus, (23) becomes

AUC =

√
π

22u−1

(

µ
√
h

γ̄ + 2µh

)2µ
Γ (2u) Γ (2µ)

Γ (u) Γ (1 + u) Γ (µ) Γ
(
µ+ 1

2

)

(24)

×

∞
∑

l=0

∞
∑

i=0

∞
∑

j=0

(2µ)
l+2j(2u)l+i

(1)
i

(u)
l
(1 + u)

i

(

µ+ 1
2

)

j

(

γ̄

2(γ̄+2µh)

)l

l!

(

1
2

)i

i!

(

µH

γ̄+2µh

)2j

j!
.

Based on this and after basic algebraic manipulations the
average AUC over η−µ fading channels for γ, µ, h,H, u ∈ R

+

can be expressed in closed-form as in (26) given at the top of
the next page, where X17(·) denotes the Exton function and

c2 =
(2µ

√
h)2µ

2u(γ + 2µh)2µB(u, 1/2)
(25)

with B (·, ·) denoting the Beta function [44].



AUC
κ−µ

u∈R+ = c1F
2:0;0;1
0:1;1;1

[
(2u : 1, 0, 1) , (µ : 1, 1, 0) : −;−; (1 : 1)
− : (u : 1) ; (µ : 1) ; (1 + u : 1)

∣
∣
∣
∣

1

2(1 + ζ)
,
κµζ

1 + ζ
,
1

2

]

(20)

AUC
η−µ

u∈R+ = c2X17

(

2µ, 2u, 1;u, 1 + u, µ+
1

2
;

γ̄

2 (γ̄ + 2µh)
,
1

2
,

µ2H2

(γ + 2µh)2

)

(26)
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Fig. 1. Average AUC versus average SNR for κ−µ fading channels
with u = 2, and different values of κ and µ.
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IV. NUMERICAL RESULTS

This Section is devoted to the analysis of the behavior of
ED over κ−µ and η−µ fading channels. The corresponding
performance is evaluated for different scenarios of interest
through A versus γ curves. In addition, the effect of the fading
parameters κ, η, and µ on the value of AUC is numerically
quantified. To this end, Fig. 1 presents the AUC curves for
the κ−µ fading channel model for different κ and µ values
with u = 2. As can be seen, the energy detector shows
better detection capability for both larger values of κ and µ.
This is because the detector shows better detection capability
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Fig. 3. Average AUC versus µ for κ−µ fading with u = 1.5, κ = 0.1,
and different values of γ.

for higher κ (with fixed µ) because the receiver receives
more power through dominant components. On the contrary,
µ plays a more important role in determining the detection
performance due to the non-negligible effects of multipath
fading. For example, for the case of γ = 10dB and µ = 0.3
(fixed), the Ā for κ = 10 is 5.6% higher than for the case of
κ = 5. Likewise, when κ = 0.3 (fixed), the A for µ = 2 is
nearly 5% higher than for µ = 1. In Fig. 1, the case in which
κ → 0 (µ = 0.3) coincides with that for Nakagami-m with
m = 0.3, where m is the Nakagami parameter. In addition,
the case that κ = 0.3 (µ = 1) coincides with that for Rice
with K = 0.3, where K is the Rice parameter, or equivalently
with that of Nakagami-n with n2 = 0.3.

It is also important to quantify the effect of the fading
parameters on the system performance explicitly. To this end,
Fig. 2 presents the behavior of A versus κ for u = 1.5,
µ = 0.1, and different values of γ. One can observe the
significant deviation of A even for small variations of κ and/or
γ. Clearly, for γ = 5dB, it is shown that A = 0.67 and
A = 0.72 for κ = 4 and κ = 8, respectively. In addition,
for κ = 12, one obtains A = 0.75 for γ = 5dB, and A = 0.82
for γ = 10dB. Likewise, the behaviour of A versus µ is
shown in Fig. 3 for u = 1.5, κ = 0.1, and different values
of γ. It is clearly shown that the A is very sensitive as even
slight variations of µ change its value rapidly. For example,
for γ = 5dB, it is shown that A = 0.66 and A = 0.72 for
µ = 0.2 and µ = 0.4, respectively. Furthermore, for µ = 1.5,
A = 0.81 for γ = 5dB, and A = 0.94 for γ = 10dB. On
a basis of comparing the two fading parameters on detection
capability of the energy detector, it is evident that the effect
of κ is significant for its larger values and the impact of µ is



0 5 10 15 20 25 30
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Average SNR (dB)

A
v
e
ra

g
e
 A

U
C

 

 

η = 0.25, µ = 0.10

η = 0.50, µ = 0.10

η → 1,    µ = 0.10

η = 0.10, µ = 0.25

η = 0.10, µ = 0.50

η = 0.10, µ = 2.00

Hoyt

Nakagami

Fig. 4. Average AUC versus average SNR for η−µ fading channels
with u = 3, and different values of η and µ.

0.5 1 1.5 2 2.5 3 3.5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

η

A
v
e
ra

g
e
 A

U
C

 

 

γ = 0dB

γ = 5dB

γ = 10dB

γ = 15dB

Fig. 5. Average AUC versus η for η−µ fading with u = 0.75,
µ = 0.3, and different values of γ.

0.5 1 1.5 2 2.5 3 3.5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

µ

A
v
e
ra

g
e
 A

U
C

 

 

γ = 0dB

γ = 5dB

γ = 10dB

γ = 15dB

Fig. 6. Average AUC versus µ for η−µ fading with u = 0.75,
η = 0.3, and different values of γ.

noteworthy for its lower values. This also demonstrates that the

effect of severe fading on the system performance is stronger
as the average SNR increases.

Fig. 4 shows the AUC curves for the η−µ fading channel
model for different η and µ values with u = 3 under Format I.
It can be seen that the energy detector shows better detection
capability for higher µ (with fixed η) due to the advantage of
multipath effect. Meanwhile, the energy detector shows better
performance for higher η ( 0 < η ≤ 1 and with fixed µ)
because the receiver receives more power through in-phase
components. For example, for the case of γ̄ = 10dB and
µ = 0.1 (fixed), the Ā for η = 0.5 is nearly 1.6% higher
than for η = 0.25. In the same context, when η = 0.1 (fixed),
the Ā for µ = 0.5 is 8.6% higher than for the case of µ = 0.25.
Fig. 4 illustrates the case in which η → 1 (µ = 0.1) and the
case in which µ = 0.5 (η = 0.1) coincides with that for Hoyt
with b = 0.82, where b is the Hoyt parameter, or equivalently
with that of Nakagami-q with q2 = 0.1.

Finally, Figs. 5−6 depict the effect of the fading parameters
on the sensing performance of energy detection based method
over η−µ fading channels. Fig. 5 shows the behavior of A
versus η curves for u = 0.75, µ = 0.5, and different values of
γ. One can clearly notice that the value of A changes gradually
at variations of η in the area 0 < η ≤ 1. Note that, since the
distribution is symmetrical around η = 1, within 0 < η−1 ≤ 1
the energy detector shows better performance for lower η. In
the same context, Fig. 6 demonstrates the behavior of A versus
µ curves for u = 0.75, µ = 0.3, and different values of γ. It
is clearly shown that the A is very sensitive as even slight
variations of µ creates detrimental effects in A.

V. CONCLUDING REMARKS

Exact analytic expressions are derived for the average AUC
in energy detection based spectrum sensing over AWGN, κ−µ,
and η−µ fading channels. These expressions are represented
in closed-form in terms of known generalized hypergeomteric
functions and also account for fractional values of the involved
time-bandwidth product. The offered results show that the
detection capability for κ−µ fading increases when the ratio
between the total power of the dominant components and the
total power of the scattered waves increase and this also holds
for the η−µ when more power is received due to the in-phase
components. It is anticipated that the offered results will be
useful in future analyses and design of cognitive radio systems.
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