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Abstract— Humanoid robots have been used in a wide range of 

applications including entertainment, healthcare, and assistive 
living. In these applications, the robots are expected to perform a 
range of natural body motions, which can be either pre-
programmed or learnt from human demonstration. This paper 
proposes a strategy for imitating dynamic walking gait for a 
humanoid robot by formulating the problem as an optimization 
process.  The human motion data is recorded with an inertial 
sensor based motion tracking system (Biomotion+). Joint angle 
trajectories are obtained from the transformation of the 
estimated posture. Key locomotion frames corresponding to gait 
events are chosen from the trajectories. Due to differences in 
joint structures of the human and robot, the joint angles at these 
frames need to be optimized to satisfy the physical constraints of 
the robot whilst preserving robot stability. Interpolation among 
the optimized angles is needed to generate continuous angle 
trajectories. The method is validated using a NAO humanoid 
robot, with results demonstrating the effectiveness of the 
proposed strategy for dynamic walking.   

 
Index Terms—Balance Control, Body Sensor Network, 

Dynamic Walking, Human Motion Imitation, Humanoid Robot, 
Wearable Sensors.  
 

I. INTRODUCTION 

UMANOID robots have been used in a wide range of 
applications that require human-robot interaction 

including entertainment [1, 2, 3], healthcare [4, 5], and 
assistive living [6]. They have also been used for assisting 
children with learning difficulties [7] to encourage social 
interaction [8, 9] and provide verbal and/or physical 
encouragement [10]. One of the challenges for such 
applications is how to make the humanoid robots perform 
different human movements naturally. In practice, the 
imitation of upper limb movement is relatively simple, since 
robot stability is easy to control if light weight arms are used 
[11]. For whole body movements, however, motion imitation 
is more challenging. Dynamic walking, for example, is 
difficult for the humanoids to imitate, as existing robots lack a 
human’s complex set of autonomic sensorimotor balance and 
control.   

Thus far, human walking reproduction on humanoid robots 
has been mainly conducted through motion generation. For 
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example, Gouaillier et al.[12] generated an omni-directional 
walking motion for NAO robot based on a preview controller. 
Massah et al.[13] introduced a method for planning the robot’s 
walking on slopes. Czarnetski et al.[14] controlled NAO 
robot’s walking by using the preview controller and closed 
loop control with sensor feedback. Li et al.[15] generated 
walking patterns for COMAN, a compliant humanoid robot, 
by controlling the center of mass. However, these methods 
involve computation of joint trajectories for robot’s motion by 
imposing stability constraints, but the resulting movement 
may not be natural or human-like because not all degrees of 
freedom (DOFs) are used. Furthermore, generating 
sophisticated motion sequences is challenging due to the large 
number of DOFs involved. 

To overcome these problems, motion imitation, which 
employs human motion capture to acquire motion data and 
joint angle trajectories directly, has been explored recently. 
However, one-to-one direct mapping of joint angle of a human 
to a humanoid robot is not practical because of significant 
differences in joint configurations between human and a 
humanoid robot. Moreover, instability and motion beyond the 
physical capability of the robot need to be considered when a 
humanoid performs the mapped motion. Desirable robot 
motion must have intrinsic resemblance to human movement 
while maintaining the balance of the robot and respecting its 
mechanical constraints. To this end, several solutions have 
been proposed. For instance, gesture replication by Gaertner et 
al.[16] employed non-linear optimization to satisfy 
mechanical limits of the robot and desired hand positions and 
maximize angular similarity between human and a robot. 
Pollard et al.[17] scaled each joint’s angular trajectory locally 
in order to satisfy joint limits of the robot. Ott et al.[18] 
achieved motion imitation by using Cartesian tracking. In this 
method, a set of control points on the humanoid robot were 
virtually linked to measured marker positions on a subject’s 
body via springs. Dariush et al.[19] enabled upper-body 
motion replication by a humanoid robot by tracking motion 
descriptors defined in Cartesian space while fulfilling the 
required constraints. Suleiman et al.[20] represented 
mechanical limits by minimizing differences in joint angles of 
human and robot based on recursive dynamics. Jingru et 
al.[21] converted human motion into a robot’s motion through 
minimization of time and angular differences between 
trajectories of a human subject and a robot. All of the above 
methods dealt with only upper body movements, and they did 
not consider robot stability due to the exclusion of lower body 
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movements.  
For imitation of full body human motion, the main focus of 

existing methods is on balance maintenance. Two stability 
criteria which are used in these studies include Zero Moment 
Point (ZMP) [22] and Center of Mass (CoM). The general 
pipeline of balance maintenance involves designing ZMP 
trajectory for a humanoid robot, computing reference CoM 
trajectory from the ZMP trajectory, and constraining a 
humanoid robot to follow the reference CoM trajectory. Kim 
et al.[23] proposed a method for imitating full body dance 
movements. The ZMP trajectory of the robot was generated 
based on the support region and used to compute reference 
CoM trajectory by recursive equations. Under this scheme, the 
robot’s pelvis was forced to follow the reference CoM to 
maintain balance. Hu et al.[24] used human walking data to 
allow walking replication by a humanoid robot. The robot’s 
ZMP trajectory was designed by projecting pelvis position 
according to support area then reference CoM trajectory was 
obtained by a preview controller. Closed loop inverse 
kinematics was applied to follow human end-effector 
positions. Koenemann and Bennewitz [25] performed whole 
body motion imitation by finding valid foot positions and 
applying inverse kinematics to compute lower body joint 
angles. However, the method was validated by using results 
from standing on one leg motion, not walking motion. It 
considered only static stability, not dynamic stability. Boutin 
et al.[26] imitated human walking. The ZMP trajectory of the 
robot was derived based on foot trajectories; and the CoM 
trajectory was also generated by a preview controller. The 
optimization algorithm for inverse kinematics was employed 
to find the joint angles that satisfy constraints on the swing 
foot and the reference CoM. However, these methods are all 
based on optical motion tracking, such as BTS [27] and Vicon 
[28]. Despite the highly accurate results they can provide, the 
use of optical tracking involves expensive cost and complex 
installation, limiting them to laboratory environment only. In 
addition, the use of optical motion data complicates the 
process of motion imitation because marker locations acquired 
from the optical motion tracker has to be scaled to fit to a 
humanoid robot before transformed into joint angles by 
inverse kinematics [29, 30]. Furthermore, all of these 
approaches require complex computations of the stability 
criteria and consideration of all motion frames in order to 
generate robot motion, which involves extensive computation 
load in practice. To this end, several methods which 
performed optimization to minimize error between movements 
of human and a humanoid robot and interpolation between 
discrete time points have been proposed [16, 19, 20, 21]. For 
example, Kim et al.[23] optimized joint angle trajectories to 
minimize error between movements of human and a humanoid 
robot; then applied spline interpolation to smooth angle 
trajectories of upper body. Boutin et al.[26] formulated inverse 
kinematics as an optimization problem to find joint angles for 
walking that satisfy motion constraints. However, these 
methods applied optimization and interpolation to upper body 
joint angles only.  

In this paper, we applied wearable inertial sensor-based 

systems to acquire human motion, which can offer a similar 
tracking accuracy of optical system, but overcomes the 
limitation on cost and usability.  We further extends our initial 
results reported in [11], and focus on dynamic walking motion 
production by performing optimization and interpolation to 
lower body joint angles. The main contribution of this paper 
includes: 1) the task of dynamic walking imitation is deemed 
an optimization process that seeks for joint configurations. 
Owing to inconsistencies in the joint structures of human and 
a humanoid robot, a cost function for minimizing angular 
differences between human trajectories and robot trajectories 
is proposed; 2) To maintain the robot balance during dynamic 
waking, the centre of mass (CoM) can be outside the support 
area for a short duration rather than keeping its projection 
inside the foot support area throughout the motion. A novel 
and simple CoM trajectory scheme is thus designed to make 
the robot walking imitation dynamically stable; 3) To simplify 
replication of walking, key motion frames in a gait cycle are 
selected and the proposed optimization approach is applied to 
these key frames only.  Interpolation among the key frames is 
then employed to generate continuous angle trajectories. The 
method is validated using a NAO humanoid robot, with results 
demonstrating the effectiveness of the proposed strategy for 
walking imitation.   
 

 
Fig. 1.  Kinematic representation of the joints of a humanoid robot NAO H25 

II. DYNAMIC WALKING IMITATION METHOD 

A. Biomotion+ and NAO Robot 

For motion capture, the Biomotion+ platform developed by 
the Hamlyn Centre has been used. It is an inertial sensor based 
motion tracking system involving sensor calibration, sensor to 
body segment alignment and body segment orientation 
estimation [31, 32, 33]. Capturing full body movement 
requires the placement of nine sensor nodes on the sternum, 
upper arms, forearms, thighs, and shanks of the subject. Each 
wearable node includes a tri-axis magnetometer, tri-axis 
accelerometer and gyroscope. The locations and the 
measurements of each node enable the estimation of 
segmental orientation. The orientations of all segments allow 
the reconstruction of full body motion. The humanoid robot 
used for this study is a NAO H25 robot. The NAO robot has a 
height of 58 cm and the kinematic representation of the joints 
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of NAO H25 is illustrated in Fig. 1. More specifically, the 
neck of the robot has 2 DOFs. Each arm has 5 DOFs: 2 DOFs, 
2 DOFs, and 1 DOF at the shoulder, elbow, and wrist, 
respectively. Each leg has 5 DOFs: 2 DOFs, 1 DOF, and 2 
DOFs at the hip, knee, and ankle, respectively. The NAO 
robot contains a total of 23 DOFs and the kinematic model of 
the robot, however, contains 22 DOFs due to the exclusion of 
Hip Yaw Pitch joint axis [34]. 

 

B. Generation of Joint Angle Trajectory 

For the Biomotion+ platform, quaternion with respect to the 
global reference frame is used to represent orientations of the 
segments, which are converted into joint angles. The 
conversion of the orientations into joint angles requires 
orientation difference between any two adjacent body 
segments. 

Given any two quaternion ݍ and ݍ, the orientation 
difference ݍᇱ from ݍ to ݍ is defined as: 

ᇱݍ  ൌ ݍ ٔ  ିଵ (1)ݍ

where ٔ  is the quaternion multiplication [35]. The conversion 
of orientation difference ݍᇱ into the rotational angles requires 
the Direction Cosine Matrix (DCM) representation ܥሺݍᇱሻ:  

ᇱሻݍሺܥ  ൌ ሺݍସଶ െ ݁݁ሻܫଷൈଷ  ʹ݁݁ െ ݁ہସݍʹ ൈ(2) ۂ 

where ݁  and ݍସ are the vector and the scalar component of the 
quaternion ݍᇱ, and ݁ہ ൈۂ is an operator for cross product. The 
transformation of the rotation matrix into Euler angles is 
specific to each joint. The angles of shoulder, elbow, hip, and 
knee joints can be computed from the motion capture data. 
The rotation sequence for computing the angles of shoulder, 
hip, and knee is XZY. The sequence XZY defines rotations of a 
rotating reference frame about its Z-axis, Y-axis, and X-axis, 
respectively. Shoulder Pitch and Shoulder Roll, axes of a 
shoulder joint, are set to align with the X and Z axes of the 
reference frame. Hip Pitch and Hip Roll, axes of a hip joint, 
align with the X and Z axes. Knee Pitch of a knee joint aligns 
with the X axis. Additionally, YZX and YZY are the rotation 
sequences for computing elbow angles. To acquire the angles 
of Elbow Yaw and Elbow Roll joint axes, Y-axis angle of YZX 
and Z-axis angle of YZY are computed. 
 

C. Walking Motion Imitation 

1) Formulation of Walking Imitation Task as an Optimization 
Problem  

The task of motion imitation is deemed an optimization 
process that seeks for joint configurations. Maintaining 
resemblance between robot motion and human motion is the 
key objective of motion imitation. Therefore, the estimations 
of robot joint angles vector ߚመ௧  at time ݐ should satisfy: 

መ௧ߚ  ൌ argminఉ  ௧ሻ (3)ߚሺܮ

where 

௧ሻߚሺܮ  ൌ ԡߚ௧ െ  ௧ԡଶ (4)ߙ

and ߚ௧ and ߙ௧ are the humanoid robot’s and a human 
demonstrator’s joint angle configurations at  time ݐ, 

respectively. Several constraints, including mechanical 
constraint and stability constraints should be satisfied as well 
during the optimization process. The required constraints are 
shown in Fig. 2.  In the rest of this section, we will explain 
these constraints in detail. 

  
Fig. 2.  The constraints of the humanoid robot required in the proposed 
framework for human walking imitation. 

 
Fig. 3.  The development of reference CoM position in y-axis. The four dots 
represent reference CoM positions in y-axis at the four key locomotion 
frames. L is left foot and R is right foot. 

2) Balance Constraint 
To maintain the robot balance during static walking - a topic 

focused by our previous work [11] -  the projection of centre 
of mass (CoM) on the ground should be inside the foot support 
area. However, for dynamic walking robots, the CoM can be 
outside the support area, which mainly happens when the 
support leg changes from left to right or from right to left. 
Therefore, a simple CoM y-axis trajectory scheme for a gait 
cycle is designed as shown in Fig. 3. In this figure, each gait 
cycle is segmented into 4 phases: left-to-right transition, right 
foot support, right-to-left transition, and left foot support.  The 
gait segment is based on four key locomotion frames, ݐிଵ, ݐிଶ, ݐிଷ, ݐிସ, detected from human hip flexion angle and 
shank angular velocity. To take the walking dynamics into 
consideration, the right-to-left (or left-to-right) transition 
should start before the left (or right) heel touches the ground. 
In our implementation, ݐிଵ and ݐிଷ are taken as the time 
points when maximum right and left hip flexion angles exist, 
as shown in Fig. 4. Meanwhile, the right-to-left (or left-to-
right) transition should end before the right (or left) toe leaves 
the ground. Here, we choose the left and right toe off points as 
the key frame ݐிଶ and ݐிସ, respectively. As opposed to the 
point when a foot is flat, toe off point is selected as a frame 
boundary because it represents the actual ending of left foot 
support or right foot support and it allows more time for the 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

4 

transition of the CoM. Heel strike is selected as a frame 
boundary because it represents the beginning of the left foot 
support or right foot support. The derivation of the y-axis of 
reference CoM point ݕ௧ǡ is shown in Fig. 3. Because ݐிଵ 
and ݐிଷ are the moment prior to right heel strike and left heel 
strike, respectively, ݕ௧ǡ is transferred from the left to the 
right foot during the period between ݐிଵ and ݐிଶ; and vice 
versa during the period between ݐிଷ and ݐிସ. Thus, the y-
axis of reference CoM point can be written as: 

 

௧ǡݕ

ൌ
ەۖۖ
۔ۖ
௧ݕۓۖ  ௧ݕ െ ݐ௧ݕ െ ிଵݐ ǡ if  ݐிଵ ൏ ݐ ൏ ௧ݕிଶݐ ǡ              if  ݐிଶ  ݐ  ௧ݕிଷݐ  ௧ݕ െ ݐ௧ݕ െ ிଷݐ ǡ if  ݐிଷ ൏ ݐ ൏ ௧ݕிସݐ ǡ              if  ݐிସ  ݐ  ிଵᇱݐ

 
(5) 

where ݕ௧ and ݕ௧ are the y-coordinates of the center of the 
left foot and the right foot, respectively, at time ݐ .ݐிଵᇱ  is the 
first key frame of the next gait cycle. According to Fig. 4, ݐிଵ 
and ݐிଷ are taken as the time points when maximum right and 
left hip flexion angles exist. These are the time points after the 
mid-swing phase and before a heel-strike event. The mid-
swing phase is characterized by positive peak of shank angular 
velocity [36]. ݐிଶ and ݐிସ are detected from shank angular 
velocity. Terminal contact (TC) or toe-off event is 
characterized by a negative peak of shank angular velocity 
[36]. 

The reference CoM position of the x-axis is also chosen 
based on the four phases. For the left foot support or the right 
foot support phase, the reference CoM x-axis position ݔ௧ǡ 
can be taken as the support foot’s center:  

௧ǡݔ  ൌ ͳͶ  ௧௦ǡସݔ
ୀଵ  (6) 

where ݔ௧௦ǡ is the ݇ th corner position of the support foot at 

time ݐ. As shown in Fig. 5, during the transition periods, ݔ௧ǡ 
can be written as: 

 

௧ǡݔ
ൌ ۔ۖەۖ

௧ݔۓ  ௧ݔ െ ݐ௧ݔ െ ிଵݐ if  ݐிଵ ൏ ݐ ൏ ௧ݔிଶݐ  ௧ݔ െ ݐ௧ݔ െ ிଷݐ if  ݐிଷ ൏ ݐ ൏  ிସݐ
(7) 

where the center position of the left foot ݔ௧ and the center 

position of the right foot ݔ௧ are defined as: 

 

௧ݔ ൌ  ௧ǡ௨ସݔ
௨ୀଵݔ௧ ൌ  ௧ǡ௩ସݔ
௩ୀଵ

 (8) 

where ݔ௧ǡ௨ is the ݑth corner position of the left foot and ݔ௧ǡ௩ 
is the ݒth corner position of the right foot.  

 

 
Fig. 4.  Criteria for selection of four key locomotion frames ࡲࡷ࢚, ࡲࡷ࢚, ࡲࡷ࢚, ࡲࡷ࢚. Left/Right hip flexion angles in degrees derived from the wearable 
inertial motion capture system (upper) and left/right shank angular velocity 
around x-axis in radians/second (lower) measured directly by the gyroscope in 
a gait cycle. The angles and angular velocity of left and right leg are 
represented by the normal lines and the dashed lines, respectively. The 
horizontal axes of both plots represent the frame index of motion. Heel strikes 
of left and right feet are represented by diamond-shaped points. 

 
Fig. 5.  The development of x-axis reference CoM position. The dots represent 
the reference CoM positions at the key locomotion frames. L is left foot and R 
is right foot. 
 

In our implementation, we use the trunk or torso position as 

the CoM since it contains the majority of the robot’s mass. 
The actual torso position is computed by forward kinematics 
of the robot: 

௧  ൌ Trans൫ܨሺߚ௧ ǡ ͲǡͲሻ൯ (9) 

where Transሺήሻ is an operator for obtaining the translational 
part of a transformation matrix and ܨሺήሻ is the forward 
kinematics function, which can be written as: 

ǡߙሺܨ  ଵǡݓ ଶሻݓ ൌ ෑ ܶିଵ ᇱ൫ߙ൯௪మ
ୀ௪భ  (10) 
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where ݓଵ is the index of a base frame, ݓଶ is the index of an 
end-effector frame , ܶିଵ ᇱ is a transformation matrix from the ݆th link frame to the ሺ݆ െ ͳሻth link frame of the robot’s 
kinematic model, and ߙ is the angle of the ݆th joint. The 
stability constraint can thus be written as: 

 ฮ௧ െ ௧ǡฮ    (11)ߝ

where ߝ is a small threshold. 
 

3) Foot Constraints 
To make the robot walk more stably, the swing foot should 

not be lower than the ground or lifted too high. Therefore, the 
height of the swing foot ௭ǡ௧௦௪ሺߚ௧ሻ must satisfy: 

 Ͳ  ௧ሻߚ௭ǡ௧௦௪ሺ   ௭௦௪ǡ௫ (12)

where ௭௦௪ǡ௫ is the maximum swing foot height which is an 
empirically chosen parameter. It is based on the default value 
of the parameter used in the walking controller of the NAO 
robot [37]. Actual swing foot height can be computed by 
forward kinematics of a kinematic model of the robot: 

௧ሻߚ௧௦௪ሺ  ൌ Trans൫ܨሺߚ௧ ǡ ܾଵǡ ܾଶሻ൯ (13) 

where ߚ௧ is the robot’s joint angle configuration at time ݐ,  and ܾଵ and ܾ ଶ are the base frame index and the swing foot frame 
index of the robot’s model. According to Fig. 1, ܾଵ and ܾ ଶ are 
1 and 5 for the left foot; and 6 and 10 for the right foot. 
 

4) Mechanical Constraints 
The joint angles of the robot have to be within its 

mechanical limits particularly the limits of joint angles. Thus, ߚ௧ must satisfy: 

minߚ   ௧ߚ   max (14)ߚ

where ߚmin and ߚmax are minimal and maximal angle 
configurations of the robot’s joint.  

 

5) Artificial Constraints 
In addition to mechanical constraints, several artificial 

constraints can also be considered to make the robot walk 
more naturally and improve balance maintenance. Since 
significant changes in KneePitch angles between two motion 
frames can pose an abrupt change in torso height and thus 
instability; therefore, KneePitch angle ߚǡ௧ must satisfy: 

 ฮߚǡ௧ െ ฮߛ    (15)ߝ

where ߛ denote a desired KneePitch angle and ߝ denote a 
threshold for Knee Pitch angle error In the real 
implementation, ߛ and ߝ are set to 0.95 and 0.05 radians 
empirically. Furthermore, to limit the robot’s body sway 
motion, the torso is controlled to align with the global frame; 
thus an actual orientation ܽ௧ of the torso must satisfy: 

 ԡܽ௧ԡ    (16)ߝ

where ߝ is a threshold for orientation error of the torso and ܽ௧  
is an actual torso orientation that can be computed by forward 
kinematics: 

 ܽ௧ ൌ Rot൫ܨሺߚ௧ ǡ ͲǡͲሻ൯ (17) 

where Rotሺήሻ is an operator for obtaining the rotational part of 
a transformation matrix. Forcing the alignment of the swing 
foot with the ground plane is also considered to prevent 

stumbling of the robot. Thus, the swing foot’s real orientation ܽ௧௦௪
 must satisfy: 

 ԡܽ௧௦௪ԡ   ௦௪ (18)ߝ

where ߝ௦௪ is a threshold for orientation deviation of the swing 
foot. Real orientation of the swing foot can be computed by 
forward kinematics: 

 ܽ௧௦௪ ൌ Rot൫ܨሺߚ௧ ǡ ܾଵǡ ܾଶሻ൯Ǥ (19) 

Finally, the Sequential Quadratic Programming (SQP) can be 
applied to solve the formulated optimization problem with 
non-linear cost function and constraints for each frame 
separately [38, 39].  For the ease computation, only the four 
key frames are sent to the proposed optimization framework to 
obtain the robot’s optimal joint configurations at these frames. 
Interpolation based on Piecewise Cubic Hermite Interpolating 
Polynomial (PCHIP) [40] is applied to the joint configurations 
in order to obtain intermediate joint angles among these 
frames and to complete a gait cycle of the robot.  

 
TABLE I 

THE SPECIFIED VALUES OF THE CONSTRAINTS 
Threshold The values of the constraints ߝ௦௪ (m) [5x10-3   5x10-3   5x10-3]T ߝ௦௪ (degree) [2   0.5   4]T ߝ (m) [1x10-2   1x10-3   3x10-2]T ߝ (degree) [13   3   10]T 

 
TABLE II  

MEAN AND STANDARD DEVIATION OF ANGULAR ERRORS (IN DEGREES) OF 

HUMAN JOINT ANGLES AND OPTIMIZED ANGLES OF THE ROBOT’S JOINTS IN 

WALKING MOTION 
Joints Mean SD 
Left hip roll  4.0682 4.4602 
Left hip pitch 6.1685 3.6835 
Left knee pitch 13.3663 6.9338 
Right hip roll 3.6242 4.4084 
Right hip pitch 7.8396 5.7270 
Right knee pitch 7.1109 2.1900 

 

III.  EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. Experimental Setup 

Human walking was used for validating the proposed 
framework for motion imitation. To produce robot motion, the 
proposed framework was employed to adapt the captured 
human motion data by using the constraints listed in TABLE I. 

B. Experimental Results 

To examine whether the humanoid robot is able to perform 
the generated movement, the optimized joint angles were 
transmitted to NAO robot for joint rotations. The successful 
imitation of human gait by the robot is illustrated in Fig. 6(b). 
The robot was able to perform similar postures compared to 
human and follow three gait cycles in the sagittal plane by 
executing repetitions of the generated movement. Moreover, 
the balance of the robot was maintained throughout the period 
of motion. 

The proposed dynamic walking imitation framework can be 
readily generalized to any generic motion capture systems. 
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Fig. 7(b) shows the imitation results of walking data captured 
with Vicon, the optical motion capture platform, which is the  

 
Fig. 6.  (a) Human walking gait acquired from the Biomotion+ platform and 
(b) the robot walking reproduced from the Biomotion+ data. 
 
dataset of subject 7 (trial 2) from Carnegie Mellon University 
(CMU) motion capture database. It is evident that the dynamic 
walking can also be imitated by the Nao robot. The proposed 
framework was also applied to other nine walking datasets of 
different subjects and similar results were obtained. The mean 
and standard deviation of CoM velocity of 10 CMU datasets 
were ͳǤͳʹͳʹ േ ͲǤ͵ʹͻͷ m/s. The CoM velocity was estimated 
from the displacement of the centroid of four hip markers over 
time. 

In Fig. 6 and Fig. 7, it can be observed that the left knee 
angles of the robot did not appear to match to those of the 
reference skeleton, e.g., during toe off. There are two causes to 
this difference: 1) the constraint on KneePitch angle, in (15), 
and 2) the constraint on swing foot positions, in (12). The 
former limits the change of KneePitch angle within a 
predefined range while the latter limits a swing foot height to 
be between the ground level and maximum swing foot height. 
These constraints are imposed so that the robot can detach the 
foot from the ground without considerable changes in angle of 
knee joint of the swing foot. The considerable changes should 
be prevented because the robot’s actuator speed will not be 
able to return to the angle that creates a stepping stance. 

C. Quantitative Assessment 

Three requirements selected to assess the effectiveness of 
the proposed strategy for motion imitation include: similarity 
between movements of human and robot, motion feasibility, 
and the balance of the robot during motion. 
1) Similarity between Human Motion and Robot Motion  

The main indicator for accomplishing motion imitation is 
that the robot motion must bear a close resemblance to human 
motion. In this work, similarity between the two movements is 
enforced by the cost function of the proposed framework that 
maximizes similarity between human angle trajectories and 
robot trajectories as described in (3) and (4). Thus, the 
similarity between the angle trajectories of human and robot is 
examined in order to assess the similarity between the 
motions. As shown in Fig. 8(a) and Fig. 8(b), the Hip Pitch 
angles interpolated among optimized key frame angles have 

the corresponding trend to human angles of the same joints. 
Despite the similarity observed through visual inspection,  

 
Fig. 7.  (a) Human walking gait acquired from the optical motion tracker and 
(b) the robot walking reproduced from the optical data. 
 
quantification of the similarity between human and robot 
walking requires inspection of mean angle errors as listed in 
TABLE II . These values are the errors between human and 
optimized angles at the key frames. The errors of both Knee 
Pitch joints are, however, less than 14ι due to the artificial 
constraint which maintains Knee Pitch angles at specific 
values in order to avoid immediate change in the robot’s torso 
height. The errors of both Hip Roll joints are relatively small 
as these errors are less than 4.5ι. The errors of left and right 
Hip Pitch joints are lower than 8ι which is acceptable. 
Although the differences in Knee Pitch joints are relatively 
large, Hip Pitch joints have a greater effect on foot positions 
than Knee Pitch joints because positions of the former joints 
are higher than those of the latter joints. Moreover, the mean 
error of all Hip Pitch, Hip Roll and Knee Pitch joints is 
7.0296ι. Therefore, the optimization framework is able to 
reproduce robot walking that is similar to human walking.  

The mean values of joint angle errors of human and the 
robot for each of the ten datasets from the CMU database are 
shown in TABLE III . The overall mean errors of all joints are 
similar to the mean errors of the dataset 10 of which imitation 
result is shown in Fig. 7. Moreover, the trend of the mean 
errors of the optical data is corresponding to the trend of mean 
errors of the inertial sensor data. The errors of Knee Pitch 
joints are larger than the errors of Hip Pitch joints due to the 
use of the constraint limiting Knee Pitch angles. The mean 
errors of Knee Pitch angles are lower than 4.5ι and the mean 
errors of Hip Pitch angles are lower than 2ι The relative low 
mean errors in Hip Pitch and Knee Pitch angles also 
demonstrate the similarity between human motions and robot 
motions. The mean values of the left and right Ankle Pitch 
angle error are 10.6430ι and 9.5763ι, respectively, which are 
relatively large. The trend of human and the robot’s angles of 
Knee Pitch and Ankle Pitch joints are also not similar due to 
the use of two artificial constraints on Knee Pitch angles and 
swing foot orientation. The former maintains Knee Pitch 
angles at the constant desired values; therefore, the robot’s 
knee during toe off is not flexed backwards as much as that of 
human. The latter constrains swing foot orientation to align 
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with the ground; therefore, during toe off, the robot’s foot is 
not tilted downwards and its ankle is not extended as much as 
that of human. 

The main metric for motion similarity in this paper is mean 
joint angle error. The mean values of the hip pitch angle error 
can indicate similarity between the movements of a human 
subject and the robot because the knee pitch angles were 
constrained to be within a predefined range by one of the 
artificial constraints in (15). Therefore, without significant 
changes in the knee pitch angles, leg movements were mainly 
affected by the changes in the hip pitch angles. As shown in 
TABLE III , the mean values of the hip pitch joint angle errors 
were lower than 2 degrees. This demonstrated similar trends 
of hip pitch joint angles of both human and the robot and thus 
the similar movements. 

The criteria used in motion imitation other than motion 
similarity in terms of joint angles [16] include minimum 
consumed energy (MCE) [41, 42, 43], minimum torque 
change (MTC) [44], maximum motion velocity (MMV) [45] 
and minimum joint velocities (MJV) [46]. The advantages of 
MCE criterion are that the generated motion was relatively 
similar to that of human; and battery life or operation time is 
long. The advantage of MTC criterion is that smooth variation 
in link acceleration and torque results in more stable generated 
motion [44]. MMV criterion was reported to produce gaits 
with increased speed but also required an additional constraint 
on foot impacts; and MJV criterion was reported to produce 
unnatural and non-smooth gaits with backward tilting of pelvis 
and fluctuation in pelvis height [46]. In the proposed method, 
motion similarity (MS) in terms of joint angles is used as the 
only criterion in the cost function because the implementation 
of the MS criterion is straightforward due to availability of 
joint angle trajectories; and it does not require derivation of 
forces acted on joints and joint torques as in MCE criterion. 
The proposed method considers only single motion criterion. 
However, human motion is resulted from a weighted 
combination of several motion criteria. The effect of using the 
combination as a cost function could be investigated, and the 
combinations that generate motion with desirable 
characteristics could be found in the future. 
  
2) Feasibility of Motion 

It is feasible for the robot to imitate human motion only if 
the joint angle is within the robot’s joint limits because motion 
can be produced through joint actuation. Therefore, in order to 
satisfy this requirement, the proposed approach includes the 
mechanical constraint defined in (14). To evaluate the 
feasibility of motion, optimized joint trajectories are tested 
whether they are within the mechanical limits. As shown in 
Fig. 8, the trajectories of left Hip Pitch and right Hip Pitch are 
within the robot’s joint limits. Particularly during the period 
from 1 to 1.5 seconds, angles of right Hip Pitch do not go 
beyond the lower limits of the joint due to the optimization 
framework and interpolation method which preserves the 
shape of the trajectory. Thereby, motion feasibility is 
achieved. 

 

3) Robot Balance during Walking Imitation 
The condition that determines the success of walking and 

other whole body movements is the robot balance. The static  

(a)   

 (b)  
Fig. 8.  The joint angle trajectories of (a) left Hip Pitch joint and (b) right Hip 
Pitch joint during a walking cycle. The trajectories include the trajectories of 
human (green) and the trajectories of the robot (black). The robot trajectories 
were interpolated among the optimized angles at the key frames. 
 
equilibrium can be maintained if actual CoM position is inside 
the support area. However, for dynamic stability, CoM 
position can be outside the support region for a short duration 
during walking. Since the robot’s torso position is used to 
approximate the CoM position, actual torso positions were 
computed by using angle trajectories and forward kinematics. 
Angle trajectories were derived by cubic polynomial 
interpolation among optimal angle configurations at the key 
locomotion frames. The robot’s torso trajectories in x-axis and 
y-axis are shown in Fig. 9. The x-axis torso positions are 
within support region for the whole period of walking. The 
majority of y-axis torso positions are within support region. 
However, the parts of y-axis torso positions which account for 
approximately 9.8039% of a gait cycle time are outside of the 
support region. This occurred during transferring the 
projection of mass between two feet. This gait was considered 
dynamically balanced because, by definition, dynamically 
balanced gait occurs even if the floor projection of the CoM is 
outside the support region while the ZMP is within the support 
region [47]. Moreover, torso trajectories in both axes are in 
proximity to the middle positions of the support region 
because the reference torso positions are set to be the center of 
the foot during left foot support and right foot support. This 
trend of the trajectories indicates a relatively high degree of 
stability. If there is any error in controlling the torso position, 
actual torso position close to the middle position will still be 
within the support region compared to the position that is 
close to the boundary of the support region. Accordingly, the 
torso trajectories exhibit the effectiveness of the proposed 
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scheme in maintaining torso position inside the support area 
and preserving the robot balance.  

The threshold on stability criterion, as defined in (11), was 
selected for evaluation because the threshold controls the error 
or displacement between reference and actual CoM positions 
which relates to the stability of the robot. Since the reference 
positions are set to the center of support region, an increase in 
this error increases the chance of the actual position being 
outside the support region; and increases degree of instability. 
In order to investigate the effect of the threshold on stability 
criterion on the robot’s stability, the threshold was set to 
different values and the resulting torso positions during 
walking were inspected. Two groups of parameter settings as 
reported in Fig. 10 were used in this investigation. In Fig. 
10(a), as the x-axis value of the threshold was increased, the 
torso positions in x-axis deviated from the reference positions 
by larger extent, particularly during the period between 0.5 
and 1 second and the period between 1.5 and 2 seconds. In 
Fig. 10(b), as the y-axis value of the threshold was increased, 
the deviation of the torso positions in y-axis from the reference 
positions was larger, especially during the period from 1.5 to 2 
seconds. Therefore, increasing the threshold on stability can 
introduce larger errors between torso positions and reference 
positions which may lead to higher degree of instability. 

Generating dynamically stable gait is one of the 
contributions of this paper. Dynamically stable walk is defined 
as walking motion with the ZMP residing within the support 
region while the projection of the CoM on the floor being 
outside the support region [47]. The experimental results as 
illustrated in Fig. 9 demonstrated that the robot’s gait was 
dynamically stable and the robot does not experience a fall 
even though the projection of CoM was outside of the support 
region for approximate 9.8% of the entire walking period. This 
supports the contribution that the gait is dynamically stable. 
 
4) Importance of Mechanical Constraints and Artificial 
Constraints 

In order to investigate the importance of the mechanical 
constraints on the stability of robot motion, a detailed 
experiment was further conducted. The motion data captured 
with the Biomotion+ was processed twice by the proposed 

framework: with and without mechanical constraints on Ankle 
Roll angles and Hip Roll angles. These constraints were those 
imposed within the optimization framework. Then, the Euler 
angles of torso orientation around x-axis and y-axis of the 
global reference frame were computed by using the robot’s 
kinematic model and shown in Fig. 11. In actual 
implementation, the specified minimal and maximal limits of 
Hip Roll joints are -12ι and 8ι, respectively. The specified 
minimal and maximal limits of Ankle Roll joints are -12ι and 
12ι, respectively. The ranges of these limits are narrower than 
those of the real joints. Constraining Hip Roll and Ankle Roll 
joint angles directly affect the x-torso rotation, which 
represents rotation of the body towards the left or right 
direction. As shown in Fig. 11(b), the variation of x-torso 
rotation angles during a period from 0.75 to 1.25 seconds and 
a period from 1.75 to 2.25 seconds is greater than the variation 
of the angles in Fig. 11(a) during the same periods. The 
greater variation in x-rotation angles signifies more intense 
body sway, which can adversely affect the robot’s stability. 
Therefore, the mechanical constraints on Hip Roll and Ankle 
Roll angles can reduce variation in body sway around x-axis 
and thus improve stability.  

Artificial constraints including the constraints on Knee Pitch 
angles, torso orientation and swing foot orientation were also 
required in our method. Constraining Knee Pitch angle of the 
robot, as described in (15), is needed because human walking 
requires considerable variation in knee angles in order to tilt a 
foot in a toe-off posture and detach the swing foot from the 
ground while the robot walking requires a foot to be flat, i.e. 
aligned with the ground, but does not require toe-off. 
Therefore, for the robot walking, the changes in Knee Pitch 
angle should be kept to be within a predefined range. Forcing 
the torso orientation to be within a predefined range, as 
described in (16), reduces the chance of falling because 
leaning the body too much in any direction would cause the 
CoM to be moved further from the centre of the support 
polygon. Constraining the orientation of swing foot to be 
aligned with the ground, as described in (18), is necessary 
since tilted swing foot would lead to undesirable contact 
between a swing foot and the ground, stumbling, and loss of 
balance. 
 

(a) (b)   

Fig. 9.  Torso positions in (a) x-axis and (b) y-axis of robot walking. The lower and upper borders of the robot’s support region are represented by the two 
external dashed lines. Reference torso trajectories are represented by the middle dashed lines.  
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(a)   (b)  
Fig. 10. Torso positions of robot walking: (a) in x-axis when the x-axis value of the threshold in (11) is altered; and (b) in y-axis when the y-axis value of the 
threshold in (11) is altered. The values of the threshold on stability criterion in (11) are shown in the legends. The lower and upper borders of the robot’s support 
region are represented by the two external dashed lines. Reference torso trajectories are represented by the middle dashed lines. 

(a) (b)  
Fig. 11.  Torso rotation angles (in degrees) during robot walking generated from optimization of the Biomotion+ data: (a) with mechanical constraints on Hip 
Roll and Ankle Roll angles and (b) without the mechanical constraints. Torso rotation angles around x-axis and y-axis are represented by normal lines and dashed 
lines, respectively. 

 
 TABLE III  

MEAN OF ANGULAR ERRORS (IN DEGREES) OF HUMAN JOINT ANGLES AND OPTIMIZED ANGLES OF THE ROBOT’S JOINTS IN WALKING MOTION. THE ANGLES 

WERE OBTAINED FROM CMU MOTION CAPTURE DATABASE. 
                Dataset 
Joints 1 2 3 4 5 6 7 8 9 10 Mean 

Left Hip Roll 4.1611 5.1575 4.5865 3.594 5.837 3.0465 6.2117 3.047 5.5377 4.3447 4.5524 
Left Hip Pitch 1.5959 1.5872 1.7722 1.3432 1.7823 1.9397 1.6997 1.6819 1.6182 2.2668 1.7287 
Left Knee Pitch 3.7369 3.9863 4.7411 3.4713 2.622 4.0583 2.6859 4.7924 4.4905 8.4944 4.3079 
Left Ankle Pitch 9.9745 11.1923 9.9930 8.2771 13.2369 11.7410 13.5317 12.1934 7.3589 8.9315 10.6430 
Right Hip Roll 6.3022 6.0538 8.6326 4.4643 6.0969 3.7428 5.9031 4.9911 8.0758 4.805 5.9068 
Right Hip Pitch 1.5426 1.4943 1.6904 1.3282 1.7506 1.8633 1.6756 1.5786 1.5728 2.3458 1.6842 
Right Knee Pitch 3.1551 2.7022 3.7172 3.2598 2.4389 3.7519 2.3983 2.7052 2.9958 6.6544 3.3779 
Right Ankle Pitch 10.2651 9.7917 8.6809 6.2328 9.9994 9.6142 10.1827 9.2248 10.1855 11.5855 9.5763 

 

IV.  CONCLUSION AND FUTURE WORK 

In this paper, we have presented a method for imitation of 
dynamic human gait by a humanoid robot. We modelled the 
task of dynamic motion imitation as an optimization process 
which minimizes differences between joint angle trajectories 
of human and robot. Constraints to the minimization were also 
considered to maintain the feasibility of the robot imitation. 
To maintain the robot balance, we presented a novel CoM 
trajectory strategy, which did not restrict the projection of the 
CoM within the foot support area, to make the robot imitation 
dynamically stable. Key motion frames in any gait cycle were 
also extracted. Only the angular data of key motion frames 
were optimized and continuous angle trajectories among these 
key frames were generated by interpolation. The method was 
verified by using both the wearable inertial sensor based 

motion data and optical motion data. The experimental results 
have demonstrated the effectiveness of the proposed strategy 
for dynamic walking motion imitation. 

The future work could involve extending the current 
method to deal with fast dynamic motions including running 
and full body movements with an intense angular momentum 
created by arm motion. This could be solved by considering 
ZMP as a stability criterion. The future work could also relate 
to improvement on the speed of walking and consideration of 
self-collision avoidance and higher derivatives of joint limits 
including angular velocity, acceleration and torque. Future 
work could involve considering energy minimization in the 
cost function of the optimization framework; and working on 
stabilization strategy without the artificial constraint on knee 
pitch angles in order to obtain more humanlike motion for a 
humanoid robot.   
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