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Abstract: For the correlated color temperature (COT g light source to be
estimated, a nonlinear optimization problem must be solved. In all previous
methods available to compute CCT, the objective function has only been
approximated, and their predictions have achieved limited amcuFer
example, different unacceptab®CT values have been predicted for light
source located on the same isotemperature line. In this paper, we propose
to compute CCT using the Newton method, which requires the fitst an
second derivatives of the objective function. Following the current
recommendation by the International Commission on Illumination (@IE)

the computation of tristimulus values (summations at 1 nm steps 86m 3
nm to 830 nm), the objective function and its first and second alizee

are explicitly given and used in our computatio@®@mprehensive tests
demonstrate that the proposed method, togetheranithitial estimation of

CCT using Robertsan method [J. Opt. Soc. Am. 58, 1528-1535 (1968)],
gives highly accurate predictions below 0.0012 K for light sourcels wit
CCTs ranging from 500 K ta0fK.

©2016 Optical Society of America
OCIScodes: (330.1690) Color; (330.1710) Color, measurement; (3&0) Colorimetry.
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1. Introduction

The spectral power distribution (SPD) of a Planckian radiator [1], dehgtdt(, T), can be
completely determined from its absolute temperature T in Kelvin (K)ubmgxpression:

M(A,T)=cA°(@E?'*" -1)*, 1)
where constant;c= 3.74183220*Wm?and ¢ = 1.4388402 m K. The color temperature T
of a light source is the color temperature of a Planckian radiator which rawtiggion of the
same chromaticity as the light source. When a light source has a chromwiticityis not the
same as the one of the Planckian radiator, the teorrelated color temperatur¢CCT) is
used, defined as the temperature of the Planckian radiator whose chronatitiey one
nearest to that of the light source in a uniform chromaticity scale (UCS) middr&].
Specifically, the UCS diagram recommended by the International Commission
Illumination (CIE) in 1971 for CCT computation is the CIE 1960 Wiiyram [1, 2], where
the chromaticity coordinates are given by:

u=4x/(-2x+12y+ 3), )

v=6y/(-2x+ 12+ 3), o)
and x y are the chromaticity coordinates of the light source in the CIE ¢881inate system
[4, 5] defined in terms of its tristimulus values (T$¥sY, and Z as follows:

x=XI(X+Y +Z), 3

y=Y/(X+Y +2Z). ®)

Since it is a single number, CCT is simpler to communicate ithttre SPD, which led

the lighting industry to accept CCT as a shorthand means of repthrércolor appearance of

"white" light emitted from electric light sources. CCT values are intended bligthting
industry to give a general indication of the apparent "warmth" or "codlrésthe light



emitted by a light source. Also, scientists [6-9] found that CCTheansed to determine the
relative SPD of daylight illuminants. Furthermore, CCT is also usezlatuate the color-
rendering index (CRI)10]. For many lighting applications, in offices, hotels, galleries, the
textile industry, etc., the CCT and CRI are the two most important fagtwarning the
choice of appropriate light sources.

The computation of the CCT based on the given SPD of a light souroéiiiot hasa
long history. Let uv be the chromaticity coordinates of the light sourcef/illuminant, and u(T),
V(T) be the chromaticity coordinates of the Planckian radiator with color tatmperT. Then,
the square of the distance betweenjwand (u(T), v(T) is the function f(T):

) =[u-um]*+v-\(N] 3 4)
and the computation of the CCT is just a minimization of this objectivetiin f(T) with T
Since the TSVs [5] are defined by:

X(T) = kLi“ M (A T)K(A) A,
YO k[ MGy (M, ©

zZ(M) = kf;" M (2,T)Z(A)dA.

It follows from Egs.(1-5) that the computation of the CCT is a problem of non-linear
optimization. Therefore, there is no analytical expression for computing @& scientists
and engineers have long been searching for simple and practical meetloodgoute CCT in
industrial applications.

In the early stage, theo-called isotemperature lines were used to estimate the CCT from
graphs. Judd [11] appears to have been the first gave a table of, GIEEhromaticity
coordinates of the intersections of a series of lines of constant CCTm(motdure lines)
with the Planckian radiator locus. The separation between isotemperature kses w
represented in terms of the unit calledicro-reciprocal degré&eor “reciprocal mega-Kelvin”

[8, page 224]"urd" or "mired") Muq( = 1CP/T) rather than the correlated color temperature T,
in order to achieve greater uniformity in plots in the CIE 196G d@&gram.

The isotemperature lines were by definition perpendicular to the Plarekigtor locus
when plotted in the CIE 1960 UCS diagram. In 1963, Kelly [12)liphed graphs with
isotemperature lines in the w and y v chromaticity diagrams to estimate the CCT. In 1968,
Robertson [13] gave an explicit interpolation formula for computing ®@%ed on the
isotemperature lines. The speed and accuracy of Robarisa@thod depends on how many
isotemperature lines are chosen. That is, the more lines used, the greaterrtiwy aogtialso
the more time sp# for computation.

Another type of estimain of the CCT of a light source is based on the explicit
approximationof the chromaticity coordinates x(T), y(T) or u(T), w(T) of the Planckian
radiator, for less computational cost. Then the bisection method [14] eamsdd for
minimizing the objective function defined by Eq. (4). In 1977-%8handa and Danyi [15]
and Schanda et al. [16] proposed an approximation for x(T),by using up to a'Forder
polynomial of the micro reciprocal degree for color temperatures iratigeerfrom 1700 K to
50000 K. In 1984, Krystek [17] offered an approximation f¢F)wand v(T) using a rational
Chebyshev approximation for the color temperature in the range 6fnhk to 15000 K.

In 2000, Gardner [18] proposed the use of the Newton metljdd tompute the CCT
from the chromaticity coordinates u, v of a light source. Thetbie method is an iterative
method for finding the roots of a differentiable functib{T) (i.e. solutions to the equation
f(T) = 0 in our case), by the use of the equation

Tia=T,-f'(T)/ (), forj=0,1,2..., (6)



wheref (T;) and f'(T) are the first and second derivatives of the function f(T) defineBdpy
(4). 1t should be noted that Gardner [18] did not use the exact fadstemmond derivatives, but
rather approximations based on fitte8-atder polynomial relationships between v(T) and
u(T), and between the inverse color temperature (1/T) and u(Tky, Taudner’s iterative
method depends on the degree of approximation of the formulaeamskdannot provide an
exact solution, as intended in the current paper.

A third type of method to estimate the CCT is based on established functional
relationships between the CCT and the chromaticity coordinates ¥, y of thevlight source
as intended, for example, in the method proposed in 1987 by QjuQiu’s formula for
estimating the CCT,¢J can be expressed by:

To=ad(P, R, B, 6, 6,), )
where the point P has the coordinates u and v of the light source? ie.(u v), P. =
(0.2861884, 0.246725), and P (0.328151, 0.1333451If L;is the line passing through the
points P and P and Lis the line passing through the points P andtRené and & are the
angles formed by the lines land L, respectively, with the negative direction of the u axis.
For the exact function g, please consult the original paper [19]'s Qilethod was
recommended for CCTs ranging from 2500 K to 10000 K.

Later, in 1992 McCamy [20, 21] proposed a simpler formulee&timating Tfrom X, y
chromaticity coordinates, for CCTs ranging from 2000 K to 12500 K:

T,=ar’+ brf+ cn+ d (8)
where, a= 437, b = 3601, ¢ —6861, d = 5514.31, and
Nn=(X-%)/(y-¥s), with x,= 0.3320y .= 0.185 (9)

In 1999, Hernandez-Andséet al. [22] developed another explicit formula valid for
estimating a wider rangef CCTs up to 19K. This formula is given by the equation:

T, = Ab+Ale(—n/t1) +A2e(—n/t2) + Aﬁ(_”/%), (10)
where n is defined da previous Eq. (9), but using two different epicenter coordinatasc
YeWithin two different ranges of CCTs, and the values of the coeftgiari=0,1,2,3) and;t
(7=1,2,3) can be foundn the original paper [22]

Table 1. CCT ranges covered by different methods

Method Designation Valid for CCT range
Robertson [13] AR Any range (up to 1K)
Schanda et al. [15, 16] JS 1700 K to 50000 K
Krystek [17] MK 1000 K to 15000 K
Gardner [18] JG 1000 K to 10000 K
Qiu [19] XQ 2500 K to 10000 K
McCamy [20, 21] M 2000 K to 12500 K
Hernandez-Andés et al. [22] HA 3000 K to 8x18K

Table 1 shows the CCT ranges recommended by the different computatietialds
proposed in the literaturds we can see, most methods cover the range only from 2000 K to
10000 K, which is the most important one in industrial applications.

While CCT is a classical topic in color science, it can be said that the ideal method to
compute CCT currently remains an open question. Thus, in drdft oflfuture CIE
Publication 15, CIE TC B5 [23] has added a newote stating that “computed correlated
colour temperature is highly dependent on specifications of the computing process.... An
agreement about all details of the computing method is necessary itb undesirable
discrepancies between computed correlated colour temperatures.” As will be shown in next



sections, the method proposed in the current paper can be useful t@ acfuerate computed
values of CCT in comparison with methods previously reporteckilitdrature.

2. Predictions of methods currently available for CCT computation

We tesed the performance of all the methods mentioned in Table 1 by usiagpEsamples
(hypothetical light sources) with known CCTs. Specifically, we consideeesiofs5 samples
placed on different isotemperature lines, which by definition must haveathe €CT for a
perfect computational method. Faryaselected color temperature T from 500 K to 25000 K
at 1 K steps, the u(T) and v(T) of the Planckian radiator were comfyatedl SVs (see Egs.
(5), (3), (2) and summations from 360 nm to 830 nm amlsteps) and the associated
isotemperature lines were determined. The slopes of the isotemperatureclinedetermined
from —u'(T)V/'(T) [13] (with u(T) and (T) defined by Eq(15) below) and linear equations of
the isotemperature lines were also defined by the slopes. Then, we coiltiigutezkt five
equi-spaced samples (Sample #1-#5) in each isotemperature linethesitigear equatian
Sample 8 was placed exactly on the Planckian radiator locus in thespace; Samples #1
and #2 were placed above the Planckian locus at distanced®@f &md 2.5402 units in y v
space, respectively; Samples #4 and #5 were placed below the Planckian locus asdaftanc
2.5x10? and 5302 units in y v space, respectively . The distance oflG% units to the
Planckian locus in the,w space was chosen because it is the limit currently established by
CIE [9, 23] in order to apply the concept of CCT. The maxinalosolute difference between
the predicted and exact CCTs of the five aforementioned samples divided byattt value

of the CCT of the isotemperature line will be designated B3 |juax and it can be considered
to be the maximum relative prediction error for the isotemperature line.

Figure 1 shows the maximum relative prediction er(($/T|uax) for each of the seven
methods indicated in Table AR (solid black line) JS(dotted black line), MK (solid red line),
JG (dotted red line), XQ (solid blue line), JM (dotted blue)liaad HA (solid green line) for
CCTs ranging from 2000 K to 1000R. Figure 1 shows that no method gives perfect
predictions over the entire CCT range testacbur computations for the JS method, the AR
method was used for the initial CCT estimation, considering 30 intervals Jle.
isotemperature lines) between 500 K and 25000 K. From Fig. 1, theb#tsemethods appear
to beJS AR, and XQ (in that orderBearing in mind that the predictions of the AR method
were the initial guess for the JS methag expected the JS method to perform better than the
AR method.
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Fig. 1. Maximum relative prediction errof@\T/T|wax) for the seven methods mentioned in
Table 1 forCCTs ranging from 2000 K to 1000Q



Figure 1 also shows that some methods can be very good fois@Eifs. For example,
the HA method is very accurate for CCTs around 7400 K. This dspamthe training data
employed for deriving the formulae. Figure 2 shows the performafnaie seven methods for
CCTs ranging from 10000 K to 25000 K (note that the y-axes soalégs. 1 and 2 are
different). In this CCT range the rank of methods from the best to the vgoid$, AR, XQ,
HA, JM, 3G, and MK. Therefore, it can be said that JS, AR, and XQ are the three best
methods (in that order) to compute CCTs from 2000 K to 25000

Fig. 2. Maximum relative prediction error\{jT|wax) for the seven methods mentioned in
Table 1 for CCTs ranging frot0000K to 25000K.

0.1 : : k o ~
S &
— AR30 R K
oo | AR60 s E :’.
— ]G ‘.,' R
----- HA & -
.i
% 0.061 s
= rd
IS
= 2
= 0.04- -
'Q
K
egumrmenens” e,
0.02- ., o T,
“'."n‘e .."‘ua
% 5 3 35 4 4.5 5
CCT

Fig. 3. Maximum relative prediction errord{fT|wax) for the AR (with 30 and 60 intervals)
JS, and HA methods in Table 1 for CCTs ranging from 2506930000K.

Figure 3 shows the performance of the AR, ahd HA methods for CCTs ranging from
25000 K to 50000 K (for this range of high CCTs the remaifong methods shown above in
Figs. 1 and 2 cannot be applied, as indicated in Table 1). For this tdateB@ls (or 31
isotemperature lines) between 500 K and 50000 K were used for theeftivd, which is
called AR30. The results from the AR30 method were wsdditial estimationsof the JS
method. For comparison, the results from the AR method with 60 a@hterfor 61
isotemperature lines) between 500 K and 50000 K were found as wiel are called ARG0.



It can be seen that the results from AR60 are better than those from AR3fight be
expected. However, results from AR60 and JS are roughly the same.

0.02
0.015{

0.01

| AT/T]

0.0054

Fig. 4. Relative prediction errora{J/T|, heights of the bars) for the different methodsdish
Table 1 to predict five test samples ('Sample #1 ($3¢1Fample #5 (S#5)" in the order from
top downward in v spacgplaced on the isotemperature line with T=8600

All the tested methods often gave different CCT predictions for itlee Samples we
considered oreachisotemperature line, as shown in Fig. 4 for the isotemperature line with
T=8000 K (similar results were found for other lines). The heightthefbars in Fig. 4
represent relative prediction errorsST/T|. Samples #4 and #5 are located below the Planckian
locus at distances of 2.562 and 5402 units in y v space, respectively. Similarly, Samples
#2 and #1 are locad above the Planckian locus at distances of Z0%xand 5:.02 units in y
Vv space, respectively. Thus, in Fig. 4 the same color bars represprediation errors by the
different methods for the same test sample. In general, for all meti®gsedictions for the
five samples located on an isotemperature line were different. Spegjfitadl prediction
errors increased with the distance to the Planckian radiator locus, andsincases the
maximum prediction errors were found for Sample #5, which is tleefarthest below the
Planckian radiator locus. On the other hand, as expectedeth€but non-null) prediction
errors were found for the Sample #3, lechbn the Planckian radiator locus. This was
expected, because each method litseswn approximation formulae, which depend on the
development data.

3. The proposed method

In this paper, the Newton method defiriacEq. (6) is proposed for computing the CCT. The
problem with available methods that either the function f(T) defined by Eq.(4) itself or its
first and second derivatives with the color temperature T have not beeurately
provided/used. Here we have used the exact formulae foif {{I), and f'(T), as well as the
current CIE recommendation for computation of tristimulus values (¥ 88sg wavelengths
from 360 nm to 830 nm at 1 nm steps [9]. Z3oordinates u, v of the test light source (or
illuminant) must also be computed from accurate TSVs using CIE reendation
(summations from 360 nm to 830 nm at 1 nm steps). Sombod®e have been recently
proposed [24, 25] for accurate TSVs computations in the case available sp&etrate not
as required by CIE. For the function f(T), the exact u(T) and v€Thaeded, which depend on
the TSVs X(T), Y(T) and Z(T) (see Egs. (5), (3), and.(3)hce we do not know the analytical



expressions for the color-matching functiotsl) , y(4), and Z(1) , 1 nm summation
formulae recommended by CIE][@ere used, i.e.

X(T) =kj;"|v| (AT)R(A) A =kz‘j‘:|v| (4 TRG)),
Y(T) =k I:M AT AR2 =K M T (), (11)

n _ 471 _
Z(T) = kLﬂ M (2,T)Z(2)dA = kzj:OM (2 T2(3)),

where 1= 360 nm,1,= 830 nm,4j+1-4;= 1 nm, and the function M is given in Eq. (1). The
scaling factor k in Eq. ()lis not important, since it will be canceled when the chromaticity
coordinates u(T) and v{re computed via X(T) and y({see Egs.(3) and (2)). Next, from Eq.
(4) it follows that:
f/(T) =—2u —u(M]u(T) -2 v— DIV, (12)
and
f(T) =2’ (T))* = 2u—u(MHU' (T)+ 2(V (T)Y - 2(v— vV (T).  (13)
Note that u(T) and v(T) can be represented in terms of TSVs X(T), &d Z(T). In fact,
it can be shown from Egs. (2) and (3) that
u(m) =4xX@)/[XT)+15r T)+Z T )], (14)
V(T) =6Y(T)/[X(T)+15¢ T )+ Z T )].
Thus, we have

_AXMIXMAY T+ Z DX K T)H)+I5 T 2 T )]

u'(T) s
[X(T)+15Y T )+Z T)] 5)

V,(T):GY’CF)[X(T)+15((I')+3Z( - & TOK T)+15 T 3+ 3 X )]
[X(T)+15Y (T )+ Z T )

Let us design the numerators in previous Eq. (15) as:
P(M=4X'M[XM+15v¥ )+ Z T)-XT)X'T)+15"T + Z2'T )L (16)
QT) =6Y'(M[X(T)+15¢ T )+ Z T )]~ & T )X T )+15 T )+ 2T )],

so that
P(M=4X"MIXM)+15Y¥ )+ Z T)-X T )X"T)+15"T )+ 2"T ), a7
Q(M=6Y"MIXM)+15T)+Z T)-& T )X "T)+1¥ "T )+ 3 "T )I,

and therefore,
u(T) = P'(MIX(T)+15Y(T)+3Z (M)]-2P(M)[X'(T)+15Y" T )+ Z'T )],

[X(M)+15Y [T )+Z T)F (18)
VI(T) = QMIX(T) +15Y (M) +3Z (M)]- R M)[X' (M) +1'T )+ Z'T)]
[X(M)+15Y ([T )+&Z T)F
From Eq. (1) we also have:
M/(AT) = a'v'éf_’ 1) e, ()45 (€9 1) /0D with ¢ (T) = 5%, 19
" PMAT) (M) 6, i 2 0T S e/l 41
M"(A,T)= oz T A0 —1y2e?! )[Em—z]v (20)

and therefore, similar to the computations of the TSVs X(T), Y(TY, &), the first and
second derivatives of them can be computed by the summations:



X'(T) = kj; M (TR A =KD M (4, TR (,),
Y'(T):ijM ATITENZ=KEM (2T (), 1)

Z'(T) = kj; M(A,T)Z(A)dA = kZ M'(4,, T)Z(4),

and
471

X"(T) = kj; M “(ATIR(Z =k M (2, TR()

471

Y'(T) =k L M"(A T A = kZM ", TWA), (22)

471

n A" n > " —
Z (T):kL0 M (/I,T)z(l)dﬂ:kéM (4,,T)Z(4,).
Thus, the Newton method defined by Eq. (6) is well defined now, irwén be
summarized as follows:
Inputs of the proposed method:

ITMAX: Integer, maximum number of iterations allowelvalue of 10 is suggested,;

Tol: Real, small number for the convergence tolerance. A vall@ K is suggested:;

TO: Initial guess for the CCT. The value provided by AR methadggested;

u,v. Computed or measured CIE 1960 UCS coordinates for the givensligince or
illuminant.

Output of the proposed method:
TL: the predicted CCT of the light source.
Procedures of the proposed method:

T=TO0;
IT=1;
Step 1: Compute X(TY(T), Z(T) using summations in E¢L1);
Step 2: Compute u}Tv(T) using Eq.(1%
Step 3: Compute X§TY(T), Z'(T) using Eq. 19) and summations in E1);
Step 4: Compute'XT), Y'(T), Z'(T) using Eq. (20) and summations in E2p);
Step 5: Compute u'(T), V/(T) using E45);
Step 6: Compute P(JQ(T) using Eq.(16);
Step 7: Compute P'(;T'(T) using Eq(17);
Step 8: Compute'i(T), v"'(T) using Eq(18);
Step 8: Compute f(T) using E@L2);
Step 9:  Computé'(T) using Eq(13);
Step 10DT=f (T)/f'(T);
Step 11T1=T-DT;
Step 12: If absolute value BT is less than Tol

AcceptT1 as an estimate of the CCT and stop.

else
T=T1;
IT=1T+1;
end if

Step 13:11T is less than ITMAX



Goto Step 1
else

Do not converge within an allowed number of iterations and stop.
end if

Note that the method proposed above needs an initial guess of thé8€42ihg in mind
the results in the previous sections showing that AR method pertbmsecond best overall;
we suggest that the initial guessclin be determined using this method.

The MATLAB software to compute the CCT of a light source usimg @ the methods
mentioned in this paper is available frasfirst author.

4. Performance of the proposed method

To test the performance of the proposed method, we first generatedhipltssan the same
way as above. For each color temperature T, five sammesgenerated from the associated
isotemperature line as mentioned in Section 2. The color temperature T vane800 K to
10PK at intervals of 1 Kmeaning that we used287,505 samples §99,501 isotemperature
lines x 5 samples per line). The testing was run on a PC (CPUigadéB0 with 3.0 GHz,
RAM: 8.0 GB and Windows 10: 64 bits) using MATLAB software eTfroposed method is
compared with Robersanmethod with 30/60 intervals (or 31/61 isotemperature lines), and
HA method, respectivg] since they are the only two methods which are also valid for this
wide CCT range (see Table 1). The results are listed in Table 2, whesaniples on each
isotemperature line, we provide the maximum prediction ef®jsdx and the maximum
relative prediction erronA[l/Tjuax for each method.In the last column of Table 2 the CPU
time in seconds per sample is given for each method. It sheulehbembered that the initial
guesses for the method proposed in the current paper were proyittel AR30 method, and
the time employed to perform such initial guesses have been indlutlesl values shown in
the first row of Table 2.

Table 2. Performance of the proposed method together with ARBB0 (AR method with 30
and 60 intervals), and HA methods for CCTs ranging fromic@® 1K at 1 K steps

M ethod Maximum of Maximum of CPU time (seconds)
[AT [max(K) [AT/T|max per sample
Proposed methoc 0.0012 1.2327X40° 0.0162
AR30 72570 0.2487 0.0018
ARG60 40739 0.1231 0.0034
HA 814590 0.8301 0.0016

From Table 2we see that the maximuof |AT|uax for the proposed method was 0.0012

K, meaning almosno errors at all In fact, for CCT less than 5000 K, the maximuh
|ATjuax for the proposed method was found to be less tharl@5K. However, when the
CCT increased, the maximum &fT|uax also increased, as reflectedFiy. 5. Note that for
each CCTin horizontal axis of Fig. 5, there is only one corresponding value |[AT|uax in the
vertical axis. It looks there are many points in a particular vertical line becaurseatie too
many vertical lines overlapping (at 1 K steps). Similar performance phenoneragound

for |AT/T|max. While for the AR method with 31 and 61 isotemperature Jitress maximum
valuesof |AT|wax were72570K and 40739 K, respectively, for the HA method, the maximum
value of ATjuax was 81459 K. Thus, we can conclude that the method proposed in the
current paper is the best one available, providing almost exact CCT valwesy base, it
should be considered that our proposed method provides highfadatig results because it
is based on an initial guess based on the AR method, which was ore ladsthmethods
available in the literature (see Section 2). However, for the proposed metadadiahCPU



time per sample was 0.0162 seconds, which is ab@tald longer than the time used in HA
and AR methods.

In the above test, any possible light source/illuminant around Planckiatoragithin a
distance of +5x18 units in y v space ranging from 500 K to A& was enumerated and
tested at 1 K step#t can be seen that for a real light source, which does not deviate from the
Planckian locus far than £5x2@inits in y v space, the proposed algorithm should work well.

x10°

1.2

CCT x10°

Fig. 5. Maximum absolute prediction erroraTuax) for the proposed method for CCTs
ranging from 500 K td(0°K. The AR method with 31 isotemperature lines providedinitial
guess for the proposed method.

Figure 6 shows the maximum number of iterations for convergendbeirproposed
method using a fixed tolerance of 0.001 For CCTs between 500 K and 48, it takes 9
iterations for convergence in the worst case. About 5 iterations are argcfessconvergence
with CCTs lower than 15000 K, and 7 iterations €@€Ts lower than 50000 K, using the
aforementioned tolerance limit

J I
8;

Maximum number of iterations
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Fig. 6. Maximum number of iterations for the prombsmethod and test samples on
isotemperature lines with CCTs varying from 500 KLE6K and a tolerance limit of 0.001 K.

It is important to note that the method proposed in this paper usdééethiton method,
which converges locally. This means that the convergence ofrtipeged method needs
good initial guess. It was found that the proposed method works wéllddis ranging from
500K to 1C° K with the initial guess provided by the AR method. It was alsaddhat, using



the initial guess provided by the XQ method, the proposed method wetkfor CCTs less
than 25000 Kbut it may not converge for CCTs larger than 25000 K

It is also worth mentioning that CIE [9, 23] recommended the Summation should be
used for computing TSVs in Eq. (11). That is why the 1 omreations were used here for
anything related to tristimulus integratidfi.sampling rate is changed from 1 nm intervals to
5 nm, 10 nm or 20 nm intervals, the proposed method may amnvaster, butusng
sampling rates larger than 1 nm intervals in Egs. (11),48d)(22), the functionis Egs. (4),
(6), (12), and (13) are only approximated rather than exact. Heecacthracy of the method
proposed in the current paper may decrease when TSVs are computedunsingtions at
steps larger than 1 nrBpecifically, the proposed method has been tested@@ffs ranging
from 2000 K to 10000 K at 1 K steps using sampling rates of ,122nnm, 5 nm and 16m,
and the maximum absolute errotd|uax found were 1.6%0°, 0.0708, 0.3303, and 22.4599
K, respectively. Perhaps for most practical purposes we may usesupntosampling rate in
the proposed method for CCTs ranging from 2000 K to 10Q0®ut anyway, we still
recommend using the 1 nm sampling rate for two main reasws:nm sampling rate is the
recommendation made by the CIE [9, 23], and it gives most accuraietipresifor a wider
CCT range.

5. Conclusions

In this paper, we consider CCT prediction for a given light sourcéluoninant. In the
literature, all available methods give CCT predictions with some lack of accuvhigh
increases with the distance of the light source to the Planckian radiater Incan initial
stage, simple methods were proposed for approximating the CCH ,as plots provided by
Kelly’s isotemperature lines [12], Robertson’s interpolation method [13] based on the
isotemperature lines, or explicit formulae from Qiu [19], McCamy [2], and Hernandez-
Andrés et al. [22]. With the increase in computational power, iterative methods vwaresed
for a better prediction of CCT, such as those suggested by SchanBamnd15], Krystek
[17], and Gardner [18]. However, e methods used approximated functions f, or
approximated first and second derivativiesestimated u(T) and v(T), rather than exact)u(T
and v(T) functions. In this paper, the Newton method is propasedoimputing the CCT.
This method finds color temperature T satisfying

f'(T)=0, (23)
using the iterative formula definéd Eq. (6). Examining Eq. (6), we note that it needs the first
and second derivatives of the function f. In this paper, the functimmdfits first and second
derivatives are accurately defined and computed following the currente€CéEmendations
[9] for computation of TSVs using 1nm summations. Thus,ptoposed method gives CCT
predictions with an accuracy of below 0.0012 K, so long as tsente between the
chromaticity of a test light source and the Planckian radiator spectral lotoisgeeater than
5.0x107in the CIE 1960 UCS diagraras required by the CIE [9, 23]. The performance test
shows that the proposed method converges with no more than niagoiterwithin a
tolerance of 0.001 K for CCTs ranging from 500 K1 K. Thus, the proposed method can
also be considered to be a direct method.
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