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Abstract

We analytically derive a compatible family of effective field theories that
uniquely describe topological superconductors in 3D, their 2D boundary and
their 1D defect lines. We start by deriving the topological field theory of
a 3D topological superconductor in class DIII, which is consistent with its
symmetries. Then we identify the effective theory of a 2D topological su-
perconductor in class D living on the gapped boundary of the 3D system.
By employing the holographic correspondence we derive the effective chiral
conformal field theory that describes the gapless modes living on the defect
lines or effective boundary of the class D topological superconductor. We
demonstrate that the chiral central charge is given in terms of the 3D wind-
ing number of the bulk which by its turn is equal to the Chern number of its
gapped boundary.

Keywords: Topological superconductors, Chern-Simons theory, Majorana
fermions, Holography, Cartan geometry

1. Introduction

Topological phases of matter are characterised by topological invariants
in the bulk and topological protected gapless edge states Fradkin (2013);
Bernevig (2013). This bulk-edge correspondence in systems supporting frac-
tional quantum Hall states can be nicely described by the CS2+1/CFT1+1

correspondence Witten (1989). There, the Chern-Simons (CS) theory that
defines the properties of the bulk ground state is in correspondence to the
conformal field theory (CFT) that characterises the edge modes. Many of

Preprint submitted to Annals of Physics May 7, 2016



the bulk properties, such as the statistics and fusion of the anyonic quasi-
particles, can be derived by simply studying the CFT at the boundary. At
the same time, analytically tractable free fermion models, like topological
superconductors (TSC) Ryu (2010), exhibit fascinating physics. They can
support localised Majorana fermions in vortex cores Jackiw (1981) with non-
Abelian anyonic statistics Read (2000); Ivanov (2001) that play a central
role in topological quantum computation Pachos (2012). Moreover, in two
dimensions they exhibit gapless Majorana edge modes at their boundary that
correspond to CFT with semi-integer central charges, where each Majorana
mode contributes 1/2 to their value. Nevertheless, a rigorous holographic
correspondence describing the relation between the effective theories of the
bulk and the boundary of 2D TSC is still missing.

The goal of this paper is to present a holographic correspondence for
TSC of the form TFT3+1/TFT2+1/CFT1+1, where the topological field theo-
ries (TFTs) are directly derived from the fermion model of the TSC. We start
by considering 3D TSC in the class DIII and show that the corresponding
Dirac mass is invariant under global SO(3, 2) anti-de Sitter (AdS) transfor-
mations. The topological effective theory is then derived by gauging this
global symmetry, i.e. by coupling the Dirac fermions to a SO(3, 2) Cartan
connection Wise (2010); Randono (2010); Westman (2013), and then inte-
grating out the fermion fields in the corresponding partition function. At
this point, we gap the surface states, e.g. by introducing an external Zeeman
field, such that the 2D boundary behaves like a 2D TSC in class D Finch
(2015). The corresponding TFT2+1 can be derived from the (3+1)-D one by
applying the Stokes theorem. This effective theory is formally equivalent to
the exotic AdS gravity Witten (1988) which defines an AdS2+1 spacetime.
By employing the AdS2+1/CFT1+1 correspondence Brown (1986); Balasubra-
manian (1999); Blagojevic (2003); Klemm (2008), we can derive an effective
CFT with a chiral central charge c which is compatible with 1D Majorana
zero modes trapped by defect lines or effective boundaries. These defect lines
can be created in several different ways, see e.g. Wang (2011). Importantly,
the central charge c is given in terms of the winding number, ν3D, that char-
acterises the topological phase of the 3D TSC which is equal to the Chern
number, ν2D, of its gapped boundary Finch (2015) and its value is not a priori
assumed as in Wang (2011). This implies that ν3D is directly related to the
thermal Hall conductance Cappelli (2002); Stone (2012), which represents a
physical observable associated with the defect lines of the system.
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2. 3D topological superconductor and AdS symmetry

We start by considering a 3D TSC in class DIII, with Hamiltonian H =∑
p
ψ†

p
h(p)ψ

p
, where p ∈ [0, 2π)×[0, 2π)×[0, 2π). The model possesses both

particle-hole and time-reversal symmetries such that the kernel Hamiltonian
h(p) satisfy the following identities

C†
PHh

∗(p)CPH = −h(−p),

C†
TRh

∗(p)CTR = h(−p), (1)

where CPH and CTR are matrices such that CT
PH = CPH and CT

TR = −CTR.
Due to these symmetries the continuum Hamiltonian in the real space can
be brought in the off-diagonal form Ryu (2010); Beri (2010) given by

H =

∫
d3x ψ†(iαj∂j + i βγ5m)ψ, (2)

where j = 1, 2, 3, αj = σ1 ⊗ σj, β = σ3 ⊗ I2×2, γ
5 = −i α1α2α3, I2×2 is the

identity matrix, and σj are the Pauli matrices. The spinor ψ corresponds
to a transformed version of a Nambu spinor from the particle-hole basis to
the off-diagonal basis Finch (2015). In this basis the identities (1), for the
Hamiltonian density hD(p) in (2) in the momentum space, hold for

CPH = σ2 ⊗ σ2 and CTR = σ1 ⊗ σ2, (3)

where the Pauli matrices act on the spin and particle-hole indices that appear
inside the spinor Ryu (2010). These symmetries are important because they
allow us to define the three-dimensional winding number Ryu (2010).

The action of the system can be written as

S3D[ψ, ψ] =

∫
d4x ψ (iΓµ∂µ −m)ψ, (4)

where µ = 0, 1, 2, 3, ψ = ψ†Γ0, Γ0 = iβγ5 and Γj = Γ0αj. We show be-
low that the Dirac mass in (4) has a global SO(3, 2) AdS symmetry. This
symmetry is manifested by the invariance under the transformation

ψ → e
i
2
θABJ

AB

ψ and ψ† → ψ†e−
i
2
θABJ

AB

, (5)
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with A,B = 0, 1, 2, 3, 4, where θAB is an anti-symmetric parameter and

JAB =
(
JAB

)†
are the generators of the AdS algebra. These generators

satisfy the commutation relations

[
JAB, JCD

]
=

− i
(
ηACJBD − ηADJBC − ηBCJAD + ηBDJAC

)
, (6)

where ηAB = diag(−1,+1,+1,+1,−1). Let us consider the matrices ΓA =
(Γµ, γ5), satisfying the Clifford algebra {ΓA,ΓB} = −2 ηABI4×4. The genera-
tors JAB = −i [ΓA,ΓB]/4 belong to the Clifford representation of Spin(3, 2),
which is the double covering of SO(3, 2) Randono (2010); Westman (2013).
With this representation, one can easily show that the transformations (5)
are the only non-trivial orthogonal ones that leave invariant the Dirac mass
in action (4), namely

mψψ = mψ†iβγ5ψ →

m

(
ψ† −

i

2
θABψ†J†

AB

)
(iβγ5)

(
ψ +

i

2
θABJABψ

)
=

mψ̄ψ +m
i

2
θABψ†[(iβγ5)JAB − J†

AB(iβγ5)]ψ = mψψ,

where we have employed the infinitesimal version of transformations (5) and
the last equality holds because (iβγ5)JAB = J†

AB(iβγ5). Note also that due
to the AdS invariance, the adjoint spinor ψ assumes a different form than
the more familiar Lorentz-invariant one (i.e. ψ = ψ†β) Westman (2013).

In order to derive the topological effective theory that describes the 3D
DIII TSC in the low-energy regime, we first gauge the global SO(3, 2) sym-
metry. In other words, we introduce the tetrads eµA and replace the standard
derivative with a covariant derivative

Dµ = ∂µ + Aµ, (7)

where Aµ = (i/2)AABµ JAB is the connection that takes values in the AdS
algebra Randono (2010); Westman (2013). On a Lorentzian curved spacetime
the corresponding gauged action is given by

S3D[ψ, ψ,Aµ] =

∫
d4x |e|ψ (i Γ̂µDµ −m)ψ, (8)
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where |e| is the determinant of eµA, Γ̂
µ = eµAΓ

A with Γ4 = γ5 Westman (2013).
Clearly, in the flat limit, |e| = 1, Aµ = 0 and eµAΓ

A = δµAΓ
A = Γµ, we recover

(4).
To derive the above action we have used a generalisation of Riemannian

geometry called Cartan geometry Wise (2010); Randono (2010), with Aµ
called Cartan connection, where the tangent space is isomorphic to the AdS
space, a manifold with a globally constant negative curvature. It has been
shown that the AdS tangent space is compatible with the existence of Majo-
rana fermions Chamseddine (2013). Moreover, in this geometric framework,
spin connection and tetrads are independent variables, implying a non-zero
torsion at the level of field action Hehl (1976), as we shall see in the following.

3. Effective topological field theory

To find the TFT3+1 that corresponds to the 3D TSC we have to integrate
out the fermion field in the partition function of S3D[ψ, ψ,Aµ]. The resulting
effective action S3D

eff [Aµ] defined by

eiS
3D

eff
[Aµ] =

∫
DψDψ eiS

3D[ψ,ψ,Aµ], (9)

can be divided in a topological and a non-topological part. The topological
part, S3D

top[Aµ], is dominant at low energy and describes the large distance
physics of the ground state. As mentioned in the previous section, in our
case the AdS Cartan connection implies a non-zero torsion in the effective
spacetime. Thus, the Lorentzian action S3D

top[Aµ] is proportional to a 3+1-
dimensional topological invariant Eguchi (1980) which has to contain a topo-
logical torsion term Zanelli (1997) as we will see below in Eq. (16). Moreover,
its coefficient of proportionality can be fixed by physical motivations as shown
in Wang (2012). As a result we have

S3D
top[Aµ] = k

∫
d4x ǫµναβ trFµνFαβ, (10)

with
k =

ν3D
192π

, (11)

where ν3D is the 3D winding number, i.e. the topological index that char-
acterises the bulk of 3D TSC Ryu (2010). Moreover, Fµν = [Dµ, Dν ] is the
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curvature tensor of the Cartan connection Aµ, and the trace is taken over
the gauge index.

Similarly to Riemannian geometry, in Cartan geometry the Cartan con-
nection gives a prescription for parallel transport from one tangent space
to another along a path defined on a curved spacetime. These transports
can be decomposed in moves that do not change the point of contact (spin-
ning around the point of contact without rolling) and moves that change the
point of contact (rolling without slipping) Wise (2010); Randono (2010). At
algebraic level, this means that the Lie algebra g = so(3, 2) can decompose
into the Lorentz sub-algebra h = so(3, 1) ⊂ so(3, 2) and its complement
p = so(3, 2)/so(3, 1), i.e. there exists a Killing-orthogonal splitting such that
Wise (2010); Randono (2010)

g = h⊕ p. (12)

This implies that the connection Aµ can be written in terms of spin connec-
tion ωabµ and the tetrads eaµ (a, b = 0, 1, 2, 3) where the former is related to the
local SO(3, 1) Lorentz transformations and the latter to the local spacetime
translations. Explicitly, we have that

Aµ = ωµ +
1

l
eµ =

i

4
[γa, γb]ω

ab
µ +

i

2 l
γa e

a
µ, (13)

where l is a dimensionful real parameter as the tetrads are dimensionless. The
specific value of l is related to curvature radius of the AdS tangent space
and thus not relevant here as we are only concerned with the topological
characteristics of the AdS space. In (13) the 4 × 4 Dirac matrices γa =
(iγ5Γ0, iγ

5Γj) are related to the Clifford algebra representation of Spin(3, 1),
namely the double covering of SO(3, 1) and satisfy the anti-commutation
condition {γa, γb} = −2 ηab I4×4. In this way, the corresponding curvature
tensor Fµν is given by

Fµν = Rµν −
1

4 l2
(eaµe

b
ν − eaνe

b
µ)[γa, γb] +

1

l
Tµν , (14)

with Rµν = Rab
µν i [γa, γb]/4 and Tµν =

i
2
γaT

a
µν , where

Rab
µν = ∂µω

ab
ν − ∂νω

ab
µ + ωaµ cω

cb
ν − ωaν cω

cb
µ ,

T aµν = ∂µe
a
ν − ∂νe

a
µ + ωaµ be

b
ν − ωaν be

b
µ, (15)
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represent the Riemann and the torsion tensors, respectively. We can now
rewrite the topological action as follows Zanelli (1997)

S3D
top[ωµ, eµ] =

k

∫
d4x ǫµναβ tr

[
RµνRαβ +

1

l2

(
TµνTαβ −Rµνeαeβ

)]
. (16)

Note that the first term is proportional to the Pontryagin invariant Eguchi
(1980) while the second term is proportional to the Nieh-Yan topological
term Nieh (1982).

In order to have a 2D topological phase on the boundary of the 3D sys-
tem, we initially consider a 3D bulk topological equivalent to a three-torus
and introduce the boundary created by breaking the periodicity in one of
the spacial dimensions. In this way, there appear two disconnected surfaces
that support gapless helical Majorana modes. We can gap them, e.g. by
introducing a Zeeman field, such that the gapped boundary comprising of
both surfaces behaves like a 2D TSC in the class D Finch (2015). Note that
we choose a suitable time-reversal-breaking external field such that the Ma-
jorana gapped modes share the same mass sign. Then a Z winding number
can be defined that classifies the topological phase of the 2D boundary. This
Z number is in agreement with the 3D winding number that classifies the
3D TSC. In this way, the Z2 ambiguity of the 3D winding number is avoided
Wang (2011); Finch (2015).

As S3D
top is a total derivative we can employ the Stokes theorem to find the

effective theory that describes its boundary. The corresponding topological
effective action S2D

top,k on each disconnected surface is given by

S2D
top,k[ωµ, eµ] =

k

∫
d3x ǫµνλtr

(
ωµ∂νωλ +

2

3
ωµωνωλ+

1

l2
Tµνeλ

)
=

k

2

(
CS[A+

µ ] + CS[A−
µ ]
)
, (17)

i.e. it is equivalent to a double CS theory, with

CS[A±
µ ] =

∫
d3x ǫµνλtr

(
A±
µ ∂νA

±
λ +

2

3
A±
µA

±
ν A

±
λ

)
. (18)

Each Cartan connection A±
µ = ωµ ± 1

l
eµ (µ = 0, 1, 2) takes values in the

(2+1)-D Lorentz algebra so(2, 1) Wise (2009), such that so(2, 1)× so(2, 1) ≃
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so(2, 2), where so(2, 2) is the (2+1)-D AdS algebra. Hence, the action
S2D
top,k[ωµ, eµ] describes the exotic AdS gravity Witten (1988), which is dif-

ferent from the standard Einstein-Hilbert action. In the latter, the torsion
tensor does not appear while the parity invariance is preserved because the
Einstein theory can be written as a difference between two CS theories.

Interestingly, in a purely 2D TSC Hamiltonian in class D, the off-diagonal
basis does not exist due to the lack of the chiral symmetry Ryu (2010). This
has important consequence for the gauging procedure if we were to start from
this 2D system. In that case the corresponding (2+1)-D Dirac action with
a Dirac mass, is invariant with respect to both global SO(2, 1) and SO(2, 2)
transformations. This is due to the fact that SO(2, 2) can be seen as a double
copy of the SO(2, 1) Lorentz group as shown above for the corresponding
algebras. Thus, in that case the choice of the (2+1)-D AdS group would
have not been unique as it is in the 3D case we consider here.

4. Lorentz anomaly and chiral central charge

We now employ the AdS2+1/CFT1+1 correspondence Brown (1986); Bala-
subramanian (1999); Blagojevic (2003); Klemm (2008) to calculate the chiral
central charge, c, corresponding to the total boundary of the 3D TSC in class
DIII. The importance of the central charge is in determining the physics of
the gapless modes emerging at the defect lines of the system. We now show
that the c of TSC indeed corresponds to Majorana fermions.

Before proceeding it is important to note the following. When the 3D
DIII TSC has two gapped disconnected surfaces as a boundary, there exists
a correspondence between the 3D bulk winding number, ν3D, and the 2D
boundary Chern number, ν2D. The latter describes the 2D TSC in class
D of its boundary consisting of both surfaces Finch (2015). Thus, the CS
coefficient of the 2+1-D effective action S2D

top,2k defined on the total boundary
has the double value of the coefficient k defined in the action in (17) for a
single disconnected surface.

One of the main characteristics of AdS2+1 gravity is the existence of
a holographic stress-energy tensor Balasubramanian (1999) defined on the
asymptotic boundary of AdS2+1. Here, we assume that the (2+1)-D manifold
is asymptotically diffeomorphic to Σ2 × R, where Σ2 is the spacetime where
the dual CFT resides. The local coordinates are denoted by xµ = (xi, ρ),
with i = 0, 1 while ρ is the radial coordinate. Note that because Σ2 has zero
torsion Klemm (2008), the (1+1)-D spin connection and the corresponding
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Riemann tensor Ruv
ij (u, v = 0, 1) can be written directly in terms of the

zweibein eiu associated to the geometry of Σ2.
The holographic stress-energy tensor, τui , is defined in the limit ρ → ∞

by varying the exotic gravity action S2D
top,2k on Σ2 with respect to eiu Klemm

(2008)

τui =
2π

|e|

δS2D
top,2k

δeiu

∣∣∣∣∣
ρ→∞

. (19)

This boundary tensor, τuv = τui e
iv, is not symmetric giving rise to the anti-

symmetric part, τ [uv] = τuv − τ vu. From (19) we find that

τ [uv] =
2π k

|e|
ǫij Ruv

ij . (20)

The failure of the stress-energy tensor to be symmetric demonstrates that
on the (1+1)-D asymptotic boundary there is a Lorentz anomaly Jackiw
(1985). This quantum anomaly appears in chiral CFT and is proportional
to the chiral central charge c Cappelli (2002); Stone (2012)

τ
[uv]
CFT =

c

48|e|
ǫij Ruv

ij . (21)

Due to the AdS2+1/CFT1+1 correspondence, relations (20, 21) imply that c =
96π k Blagojevic (2003); Klemm (2008). This reflects the fact that the exotic
AdS gravity breaks parity and time-reversal symmetry, being equivalent to a
sum of two CS theories, as shown in (17). Taking into account (11) we have
that

c =
1

2
ν3D =

1

2
ν2D. (22)

This is the central result of our work. It signifies that the CFT nested at 1D
defect lines has degrees of freedom determined by the winding number of the
TSC. As each Majorana edge mode contributes 1/2 to the central charge,
we deduce that each defect line introduced on the surface of our 3D TSC
can be described by a chiral CFT that supports N = ν2D = ν3D Majorana
zero-modes, in agreement with the bulk boundary correspondence of TSC
Bernevig (2013); Ryu (2010); Beri (2010).
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5. Winding numbers and thermal currents

It is well-known that the existence of a Chern number in the bulk of
quantum Hall states reflects the presence of a quantised and experimentally
measurable charged Hall conductance Thouless (1982). This clear picture is
unsatisfactory in the case of 3D systems described by a 3D winding number
where there is not an equivalent bulk transport property. Moreover, due to
the lack of charge conservation in TSC we do not have quantised charged
currents, but only quantised thermal currents. Nevertheless, these currents
cannot exist in the 3D bulk of TSC nor at their gapped 2D boundary Stone
(2012). In these systems, the thermal Hall conductance κth has been already
analysed from a geometric prospective in Read (2000); Wang (2011); Ryu
(2012) by connecting it to the gravitational SO(2, 1) Chern-Simons theory
Deser (1982).
However, as observed in Stone (2012), κth should be confined to one dimen-
sional defect lines (or edge states), and cannot flow in the 2D bulk. In fact,
in critical 1D systems described by a chiral CFT, there exists a well-defined
κth proportional to c, given by

κth =
π

6
c T, (23)

where T → 0 is the temperature and ~ = kb = 1, where kb is the Boltz-
mann constant. This quantum effect is related to the presence of a (1+1)-D
gravitational (Lorentz) anomaly Cappelli (2002); Stone (2012). Hence, in
our case, the physical interpretation of the 3D winding number, ν3D, of TSC
needs to be addressed.

Our derivation of a compatible family TFT3+1/AdS2+1/CFT1+1 of effec-
tive field theories gives a physical interpretation to ν3D and ν2D in terms of
(22). The emerging gapless phases live along the defect lines created on the
gapped boundary of 3D system. Our relation between the winding numbers
of the TFTs and the central charge of the CFT establishes the interpretation
of ν2D and ν3D in terms of the induced 1D thermal Hall conductance (23).

6. Conclusions

In this paper we have derived the compatible family of effective descrip-
tions of TSC in 3D, 2D and 1D. This consistent approach allowed us to
evaluate the chiral central charge c associated with the thermal current of
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3D TSC directly from its 3D winding number rather than assuming a priori
its value Wang (2011). Our approach is based on the gauging procedure of
the symmetries present in the 3D system. This process uniquely gives rise
to an effective curved spacetime which is described by the Cartan geometry.
This geometry represents the natural framework of the exotic AdS gravity
because of the presence of a non-zero torsion tensor. Note that this tensor
has been employed in the geometric description of lattice deformations and
Hall viscosity Mesaros (2010); de Juan (2010); Hughes (2011, 2013) and in
the context of fractional quantum Hall effect Gromov (2015); Son (2015);
Bradlyn (2015). Our work demonstrates that the torsion tensor is natu-
rally introduced by gauging the symmetries present in the system. Thus,
the AdS2+1/CFT1+1 holographic correspondence can be directly employed
for the study of the defect lines and their associated physical observables.
Note that even if the holographic correspondence has been already applied
in condensed matter as a survey tool in a more abstract way Hartnoll (2009);
McGreevy (2010); Sachdev (2012); Green (2013), in our case it has been
motivated by the properties of the microscopic model.
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