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Abstract 

Corrosion is not routinely considered in the assessment of the degradation or the 

lifetime of total hip replacement bearing surfaces.  Biomechanical simulations are 

becoming ever more complex and are taking into account motion cycles that represent 

activities beyond a simple walking gait at 1Hz, marking a departure from the standard 

ISO BS 14242.  However, the degradation is still very often referred to as wear; even 

though the material loss occurs due to a combination of tribological and corrosion 

processes and their interactions.  This paper evaluates how, by incorporating real-time 

corrosion measurements in total hip replacement simulations, pre-clinical evaluations 

and research studies can both yield much more information and accelerate the process 

towards improved implants.    

Introduction  

Total hip replacement is undoubtedly one of the most successful medical interventions 

with in the order of 200,000 and 80,000 procedures performed annually in the US and 

UK respectively [1].  Since the pioneering work in the development of total hip 

replacements, by McKee and Farrar and Sir John Charnley  in the 1950-60ǯs [2] there 

have been many developments and ǲgenerationsǳ of designsǤ  First generation 

polymer/metal combinations were replaced by metal-on-metal replacements after 

recognition of polymer debris causing osteolysis [3].  First generation metal-on-metal 

implants had their own limitations linked to manufacturing issues associated with 

surface finish quality and tolerances.  Improvements to metal-on-metal devices were 

achieved by improving manufacturing and increasing the femoral head size to promote 

full film lubrication [3].  Recently, there has been controversy around certain metal-on-

metal devices due to incidences of pseudo-tumours and their association with high rates 

of metal debris and ions [4] to the extent that implantation of metal-on-metal implants 

has declined.  Hard-on-hard bearings are still being implanted where either the femoral 

or acetabular component is ceramic; as such there are still metallic interfaces which can 

be subjected to tribocorrosion in the bearing surfaces and in other important interfaces.        

mailto:a.neville@leeds.ac.uk
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The history and evolution of total hip replacements is covered more comprehensively 

elsewhere [3]; this paper focuses on how in-vitro simulations can assist in (a) the 

development of optimum materials and designs (as a research tool) and (b) prediction 

of in-vivo performance (pre-clinical evaluation).   Hip joint simulators have developed 

alongside total hip replacements.  An impressive, early development was the Stanmore 

Hip Joint Simulator, described by Duff-Barclay and Spillman, [5], which provided both 

wear rates and friction for simulated motion and loading cycles. Values of wear factors 

and friction coefficients for polymeric materials and rubbers were reported by Walker 

et al [6] from tests on a pin-on-plate apparatus. The same authors reported satisfactory 

initial results on a Charnley Prosthesis [7] for more representative motion and loading 

cycles.  While the limitations of such simulators were recognized, the ability to compare 

friction and wear measurements on real implants was of major importance and key aspects remain in todayǯs simulatorsǤ The paper by Affatato et al. [8] reviews the 

attributes of current simulators and they conclude that further development is needed 

to ensure better correlation between in-vitro and in-vivo results.  In the paper the focus is on wear mechanisms ǲThe elements of a wear system include the contact surfaces, 

lubricant, load, articulating surfaces speed and relative position, motions, surface roughnessǡ and temperatureǤǳ  There is no acknowledgement in the paper that even a 

proportion of the material damage in current hip joint constructions may be associated 

with corrosion.   

Affatato et al.[8] reported for 10 different wear rate evaluations (by mass loss 

evaluations) in different laboratories and simulators that there was a difference of 

nearly one order of magnitude; the inconsistency of the data being attributed to 

laboratories not completely following the ISO standard.  In addition, there are internal 

protocols for surface cleaning and bacterial management which involve removing 

tribofilms from surfaces during the test and addition of biocidal chemicals; these will 

undoubtedly influence the surface chemical interactions and the mass loss.  In [8] and in 

the ISO standard [9] it is acknowledged that it is currently still a major challenge to 

predict the in-vivo performance from in-vitro data.  This will remain the case if 

simulations are not adequately capturing the realistic conditions that exist in-vivo.   

Across the field of tribology there are numerous instances where complex systems have 

to be simulated in the laboratory to inform subsequent field trials.  Across industrial 

sectors including automotive internal combustion engines, aero gas turbines and others 

there are instances where laboratory simulations have to be simplified enough to 

enable meaningful parametric testing but still ensure that the real processes that occur 

in operation can be represented. Ensuring the simulations are ǲrealisticǳ is in most cases 
a challenge and the simulation of hip joints is no exception.  There are multiple factors 

that will affect how the hip joint would perform in-vivo and understanding the 

importance of each of these and their interactions is crucial if the goal of the simulation 

is to be able to predict in-vivo performance.  Table 1 summarises some of the key factors 

that are important in hip joint simulations and the authorsǯ assessment of whether 
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these are adequately covered routinely in the current ISO and British Standards for hip 

joint testing and/or are covered in bespoke testing in some specialised laboratories.   

Lubricant factors Current 
standards 

Loading factors Current 
standards 

Mechanisms of 
degradation 

Current 
standards 

Viscosity *** 
(specified but 
does not 
accurately mimic 
synovial fluid) 

Walking 
biomechanics 

*** Wear *** 

Conductivity *** 
(as above) 

ǲEvery dayǳ 
motion cycles 

* Production 
of debris 

** 

Pressure-
viscosity 
characteristics 

* Intermittent 
motion/rest 

* Corrosion * 

pH *   Tribofilm 
formation  

* 

Temperature *** 
(control is 
insufficient in 
some 
laboratories) 

    

Protein/organic 
composition 

*** 
(specified but 
differs to 
synovial fluid) 

    

  Table 1.  Factors in hip joint simulation that are important and the adequacy of current 

standards (***included in ISO/British standard (BS ISO 14242-1:2014), ** considered in 

most laboratory tests but not included in standards, * considered in bespoke specialised 

tests, - not normally considered) 

The focus of the current paper is corrosion; the term describes the degradation of a 

material through interaction with its environment.  In the context of hip joints, 

corrosion is an electrochemical process in which the metal (either the hip joint or the 

debris it produces), because of being immersed in an electrolytic solution at elevated 

temperature has the propensity to dissolve.  Dissolution sees the metal (as a solid) 

become metal ions (in solution).  In hip joints the term tribocorrosion is often used; the 

tribo prefix is extremely important as it changes the kinetics and mechanisms of 

dissolution.  Tribological factors represent the motion between surfaces in hip joint 

components and the potential for the rubbing surfaces to degrade.  The corrosion 

processes that occur at hip joint surfaces are incredibly slow if the passive film on the 

CoCrMo alloys remains intact. Passivity of CoCrMo alloys occurs in the same way that 

stainless steels are referred to as ǲstainlessǳ ȏͳͲ].  The passive film comprises Cr2O3 but 

it is a complex mix of oxides/hydroxides of predominantly Cr but also Fe.  This layer 

(even though <10nm thick in biological solutions) offers unparalleled resistance to 

charge transfer [11].   Tribological contact can continuously remove the passive film 

leaving no physical barrier to charge transfer and a significantly higher corrosion rate 

ensues.  Hence the term tribocorrosion (and sometimes wear-corrosion) refers to that 

interaction between tribology and corrosion.    
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It is worth looking in more detail at tribocorrosion; a degradation term that has 

applicability across various industrial as well as medical components.  In the previous 

paragraph we describe how the rubbing of surfaces can enhance corrosion but it is 

important to realise that there are further physical interactions between wear and 

corrosion that lead to the tribocorrosion damage in engineering systems being more 

than would be predicted by an independent assessment of corrosion and wear.   

In a tribocorrosion system, the total surface degradation (T) can be attributed to three 

main mechanisms. These are: degradation due to pure corrosion reactions (C), 

degradation due to pure mechanical wear (W), and the change in the level of 

degradation caused by the synergism (S) between corrosive damage and mechanical 

damage. The synergism term can further be divided into two sub-categories: the change 

in corrosion rate as a result of mechanical wear (Cw), and the change in mechanical wear 

rate as a result of corrosion (Wc). This is demonstrated in Equations 1 and 2. 

 

 ܶ ൌ ܥ ൅ ܹ ൅ ܵ (1) 

 

 ܵ ൌ ௪ܥ  ൅ ௖ܹ  (2) 

Modelling tribocorrosion in this way has been implemented with reasonable success in 

both erosion-corrosion and sliding contact systems. Electrochemical testing in the 

absence of wear gives C.  For passive alloys C is always extremely small.  Measurement 

of the corrosion rate by conventional electrochemical techniques in a triblogical system, 

(such as a pin-on-reciprocating plate tribometer) [12] enables the corrosion rate in-situ 

to be measured which is essentially C + Cw.  To obtain the level of pure mechanical wear, 

a cathodic potential is usually applied to the sample during testing or tests can be done 

in a fluid that is non-corrosive; in some tests diesel or other solvents have been used.  

For tribology it is important that the rheology of the fluid is comparable.  If the anodic 

dissolution of the alloy is adequately suppressed, material degradation is exclusively 

caused by mechanical interactions (W). By subtraction of C, Cw and W from the total 

degradation under normal conditions, the contribution from Wc and Cw can be obtained. 

Amongst the research community in academia and in the research laboratories of the 

major joint manufacturers there have been varying focus areas over the last 2-3 

decades: new materials [13], new geometries [14], new surface finishes and 

manufacturing tolerances [15], changes in modularity and effects of surgical procedures 

that affect implantation angle [16]. Without doubt one of the key areas which has been 

neglected in simulation studies is the effect of corrosion. In this paper the powerful 

information which can be gleaned from instrumentation of simulators to extract real-

time corrosion information is described.   
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That tribocorrosion is important in hip joints is generally accepted by the clinical and 

engineering community.  Undoubtedly it has become more prominent in the last 5 years 

as discussions on fretting/crevice corrosion at modular taper junctions has come to the 

fore. It would appear that engineers and the clinical community are much less 

convinced that corrosion is, or potentially could be, an important factor at bearing 

surfaces.  Figure 1 summarises some of the areas in a total hip replacement that can be 

affected by corrosion and tribocorrosion.  It is clear from the literature spanning the last 

2-3 decades that there have been numerous studies of the bearing surfaces in a variety 

of laboratory based simulations and in the vast majority of these the damage is measured gravimetrically and is referred to as a ǲwearǳ process ȏ8].  Reducing wear 

rates in the running-in and steady state phases of hip joint life has become a major focus 

of much current research work.  

The international definition of corrosive wear [17],  published by the Organisation for 

Economic Co-operation and Development  (OECD) in 1969, was simply ǥǳA wear 
process in which chemical or electrochemical reaction with the environment 

predominatesǳ Ǥ Additional notes indicated that it was usuallyǥǤǳ a mild form of wearǡ but 

it may become very seriousǡ especially at high temperatures or in moist environmentsǳǤ Furthermoreǡ in some casesǥǳchemical reactions take place first, followed by the removal 

of  corrosion products by mechanical actionǳ  or ǲby the formation of very small debris 
which subsequently is chemically transformed; the phenomena may be mutually 

enhancingǳǤ  

The clinical and well simulated laboratory environments are clearly consistent with 

these situations.  

To challenge the current convention in reporting hip joint degradation it is important to 

understand the origins by which metal is lost at functioning bearing surfaces.  Although 

the surfaces of the femoral head and acetabular cup are manufactured to give smooth 

surfaces (with roughness values of 5-20nm Ra) to try to ensure that for most of the cycle 

there is an elastohydrodynamic film, there is no doubt that asperity-asperity contact 

occurs.  This contact leads to a local and repeated removal of the passive film which 

provides an effective barrier to charge transfer in static conditions.  As such the 

corrosion regime is then one of active dissolution at these local points.  Dissolution of 

metal and the associated production of ions is not a purely mechanical wear process; 

wear should be reserved as a description of processes where the removal of material is 

via mechanical processes such as ploughing of surfaces, work hardening, removal of 

hardened material, fracture, fatigue etc.  Why is this important and is it just semantics?  

Actually, it is important for two reasons.  Firstly, if the goal of measuring damage is to 

make better and more resilient hip joints then it is absolutely crucial to understand the 

origins of the damage. Making a hip joint to resist material loss through depassivation 

and production of metal ions requires a very different solution to one where fracture 

and removal of local wear particles is the dominant mechanism.  Secondly, the end point 

of in-vitro simulation has to be accurate prediction of damage for pre-clinical 
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evaluation.  If as a community we are fitting wear models to a damage mechanism that 

is actually tribocorrosion then it can only ever, at best, be empirical and not capturing 

the full physics relating to material loss.  

 

Figure 1. Potential tribocorrosion areas in a total hip joint.  Blue dotted lines represent 

the taper and stem interfaces where a combination of triblogical loading and surfaces in 

relative motion in an electrolytic solution can lead to a combined wear-corrosion 

process.  Such processes also occur at the bearing surface. 

The focus of the rest of this paper is to demonstrate how capturing real-time corrosion 

measurements in hip joint simulations and, in some cases, using these measurements in 

conjunction with other analytical techniques post-test can provide very valuable 

information on the mechanisms of degradation of hip joints.  This all contributes to the 

community then being able to more intelligently develop the next generation of designs 

and materials with better tribocorrosion resistance. 

Corrosion: Integration of Real-Time Measurements into Simulators 

The hardware and methodologies to instrument modern day hip joint simulators is not 

covered in much detail here.  Figure 2 shows how the electrochemical cell is integrated 

into the simulator to enable real-time assessment of corrosion at the femoral 

head/acetabular cup components.    Other papers [18] have covered this and have 

explained how a conventional three-electrode electrochemical cell can be successfully 

integrated with the biomechanical simulation to provide real-time electrochemical data 

[19].  This paper covers the details of what can be measured and how this contributes to 

our understanding of hip joint lubrication, wear and damage.    
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Figure 2.  (a) Photo of the single station hip simulator set up (Simsol)  (b) Schematic 

diagram showing the key components of the single station simulator and the 

loading/motion control [19] 

 

What measurement of electrochemical corrosion parameters can tell us 

Real-time corrosion measurements are valuable; they enable information to be accessed 

relating to the surface and interface processes that hitherto have been largely ignored.  

In the following discussion five examples of the information that can be gathered and 

how that complements the gravimetric information routinely collected according to the 

ISO standards are presented.    

(I) Mechanistic information of the passive state of the bearing materials and the 

lubrication regime 

CoCrMo alloys, predominantly the alloys used in bearing surfaces (femoral/acetabular) 

components in hip joints are classified as passive alloys.  Passivity, in relation to 

CoCrMo and other alloys (e.g titanium, stainless steel) has been widely studied across 

industrial and medical sectors.  Passivity from an electrochemical point of view is 

manifested in very low (<10-7-10-8A/cm2) corrosion currents [10].  Corrosion of such 

alloys, if it does occur, is normally associated with localised breaches of the passive film 

and the formation of pits or crevice corrosion.  In the case of hip joint bearing surfaces 

electrochemical monitoring opens up the opportunity to assess whether or not passivity 

is maintained when motion occurs.  If passivity is maintained then it would be a strong 

sign that no gross contact between the surfaces occurs and that the elastohydrodynamic 

lubrication regime prevails.  Any metal-metal contact would lead to local removal of the 

passive film and associated increase in the transfer of charge/corrosion rate.  In 

tribometer studies of the tribocorrosion phenomenon it is widely reported that the 

depassivation of alloys caused by the contact between loaded interfaces leads to a shift 

 

(a) 

 

(b) 



8 
 

in the active (negative) direction of the open circuit potential.  Figure 3 shows this 

phenomenon for CoCrMo alloys in contact with an alumina ball in tribometer studies 

using serum as a lubricant at 37°C [12].     

Figure 3 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  (a) Active shift in open circuit potential (OCP) at the start of sliding (x) for an 

Al2O3 ball loaded against a (C CoCrMo plate in ͷͲΨ serum ȋbȌ Evansǯ diagram showing 
how depolarisation of the anodic reaction leads to a shift in potential (c) Active shift of 

the OCP when motion/loading starts in the instrumented simulator.      

The potential shift occurs because of the depolarisation of the anodic reaction (Co-

Co2++2e-Ȍ andǡ as shown in Figure ͵b the Evansǯ diagram clearly indicates why the 
changed kinetics of the anodic reaction can lead to a negative shift in potential.  In the 

work conducted by Yan et al [12] and Yan [20] represented in Figure 3a the sliding 

motion is from a reciprocating pin-on-plate simulation and the loads (Hertzian contact 

pressures) were higher than would be expected on a hip joint bearing surface.  As such, 

gross metal-metal contact is expected and electrochemical measurements of the open 

circuit potential confirm this.  Figure 3c shows how, on introducing motion to the 

femoral head/acetabular cup couple in the instrumented hip simulator, a comparable 

behaviour was observed albeit with the active shift in potential being slightly smaller.   )n general terms the ȟOCP in the hip simulator is less than in the tribometer which 
suggests the extent of contact is less.  Modelling of the lubrication regime in the hip joint 

bearing surface has demonstrated it is in the mixed lubrication regime [21] and the 

(b) 

x 

(a) 

(c) 
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measurements of OCP would tend to confirm this; there is metal-metal contact but the 

change in OCP is less than in systems in the tribometer where Lambda ratio ȋɉȌδδͳǤ   
OCP is a semi-quantitative measure of the corrosion behaviour of a system; it is a 

balance between anodic and cathodic reactions and a shift of the kinetics of either one 

can shift the potential.  There is no universal relationship between the OCP and 

corrosion rate and instead OCP shifts are useful to show changes in the controlling 

reactions in corrosion as shown in the previous paragraphs.  So, whilst OCP is a good 

and simple measure to assess changes in a system behaviour alternative, and normally 

more complex, electrochemical measures are needed to fully characterise the corrosion 

of the system.   

To investigate the corrosion kinetics as a function of the loading cycle and the complex 

combination of internal and external rotation, adduction-abduction and flexion-

extension the DC potentiostatic method was chosen.  This involves applying a modest 

anodic overpotential of 100mV to the working electrode (the tribocouple) and the 

resulting changes in current were measured at 20 points/second.  For the first time the 

tribological cycle can be mapped onto the corrosion cycle.  Figure 4 shows some typical 

current snapshots collected throughout the simulator test.   

In some instances there is clear periodicity in the current suggesting there is a link 

between the loading parameters and the current (perhaps due to the extent of metal-

metal contact) (Figure 4a).  It is hypothesised that the combination of sliding/contact at 

the interface depassivates the metallic components at the contact points and the 

magnitude of the current is determined by a number of factors.  The important 

tribological factors were assumed to be sliding speed, load and the minimum film 

thickness and from this a ǲseverity factorǳ was determinedǤ  Assessing the correlation 
between the minimum film thickness, lambda ratio, sliding speed and load as single 

factors against the potentiostatic current proved that multifactorial effects determine 

the current.   In Figure 4b the severity factor is plotted against the current and in Figure 

4c a modified severity factor is plotted which adds to the current decay term a single 

time constant decay term according to the repassivation kinetics work done by Sun et al 

[22].   

 

 

where U is the linear sliding velocity (m/s), W is the load (N) and hmin is the minimum 

film thickness (m).   It is likely that each of the dominant terms in [3] will carry different 

powers, but this will have to be considered further as more experimental results 

become available. The minimum film thickness term could also be represented by the 

lambda ratio (h/Ra ), which is known to offer a good indication of the mode of 

lubrication in highly loaded contacts such as gears and rolling element bearings. 

Furthermore, the load term (W) has a relatively modest influence on theoretical film 

Severity Factor = U W / hmin       --------------- ȋ͵Ȍ 
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thickness, but is likely to be more influential upon surface damage as far as 

tribocorrosion is concerned.  For the severity factor terms it is possible to see that there 

is a correlation with the current response suggesting that some of the appropriate 

physics is captured and progress towards a mechanistic  understanding of what causes 

current transport in tribocorrosion interfaces is being made.  Figure 4d shows the 

modified severity factor plotted against another set of periodic data from another 

timeframe of the test and it can be seen that three severity peaks and three current 

peaks are identified.  However, achieving a universal model for current from simulator 

studies is not trivial and it should appreciated that this work is a step forward but that 

much remains to be done.   

In using this new form of Severity Factor, it should be noted that the simple steady-state 

equation for film thickness was used at each time step considered. This neglects the 

important squeeze-film action and hence the angular location of the mimimum and 

maximum film thickness. Furthermore, the highly non-Newtonian characteristics of the 

serum used as lubricant have not been considered.  It appears to be necessary to 

embrace these features of a complex tribological and tribocorrosion process in future 

analysis. 

 

 

 

 

 

(a) 

 

 

 

(b) 

(c) 

(d) 
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Figure 4 (a) Typical current versus time snapshots from a simulator test with 25% 

serum at 37°C showing regions of periodicity and no periodicity (b) Current transient 

mapped against the severity factor (not including repassivation) (c) Current transient 

mapped against severity factor (including repassivation) (d) Different current transient 

mapped against the severity factor (including repassivation) [19] 

Where there is no periodicity there can be a few reasons for this: 

(a) From subsequent contact and protein/nascent metal interactions a tribofilm is formed and that tribofilm is ǲprotectiveǳ and prevents metal ion release across 
the loading cycles in the tribometer. 

(b) The metal is not depassivated because the lubrication regime is EHL and no 

significant metal-metal contact is occurring.  This will be discussed later in the 

paper.   

 

(II) Synergies between wear and corrosion 

From tribocorrosion studies of passive materials, performed mainly in relation to 

engineering applications of materials in corrosive environments it has been shown that 

wear and corrosion interactions can be significant.  In many industries pumps, valves 

and other slurry handling equipment can be affected by tribocorrosion.  In the early 

2000s whether corrosion played an important part of the degradation in hip joints was 

largely unknown but appreciation of the tribocorrosion process pointed towards it 

being significant. Immersing a system of passive metals in a corrosive fluid at 37°C with 

the potential for fretting contact and/or tribological sliding would suggest that 

tribocorrosion would be an important degradation mechanism.  Simulations of sliding 

wear of an alumina ball on a CoCrMo plate in work by Yan et al [12, 20] in various 

biologically relevant solutions showed that corrosion related damage could account for 

up to 50% of the total material loss.  This was the first hint that tribocorrosion should 

perhaps be given more respect as an important damage mechanism.   

Hesketh [19] adapted the tribometer cell with incorporated electrochemical 

measurements to consider a CoCrMo ball on a CoCrMo plate at more realistic loads.  In 

his study the initial Hertzian contact pressure was of the order of 200MPa and dropped 

as the wear on the ball occurred to reach values of 20MPa by the end of the test.  The 

lubricant was 25% foetal bovine serum at 37°C.  In these less extreme conditions the 

same depassivation of the tribocouple occurred, shown by an active shift in OCP and 

calculation of the proportions of wear and the associated interactions with corrosion 

were comparable to the more severe conditions as shown in Figure 5a.  Corrosion 

accounted for >40% of the total damage occurring in the tribocorrosion contact.   

It has been shown previously that in the simulator the OCP shift associated with 

depassivation was recorded but the change in OCP was less than in the tribometer 

pointing to the fact that the loads and the extent of depassivation may be less [19].  

Figure 5b shows the proportions of damage associated with corrosion and wear for the 
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(b) 

simulator for a simple walking cycle at 1Hz run for a million cycles.  This data hides 

changes in these proportions which may occur at different points in the test (i.e. in 

running-in and steady-state) but still illustrates that 20% of damage can be associated 

with corrosion.  Later in the paper the importance of deviations from this simple cycle 

are shown and how departures from the ISO loading cycle can lead to large changes in 

the current measured at the tribocorrosion interface.   

 

(a) 

Figure 5 (a) Proportions of damage in the pin-on-reciprocating plate tribometer in 25% 

serum at 37°C with maximum Hertzian pressure of 200MPa (b) Proportions in the 

simulator with a walking cycle with a swing phase load of 2800N and at 1Hz for 1 

million cycles [19].   

(III) Debris and ions; material balance 

There has been much controversy and discussion around the production of metallic 

debris and ions; their links to the formation of pseudotumours, acute lymphocyte-

dominant vasculitis-associated lesion (ALVAL) have been confirmed in many cases. 

Adverse Reaction to Metal Debris (ARMD) [23] captures the many different 

problematic instances that have arisen due to implantation of metal-containing 

implants.  Discussion of the link between the rate of debris/ion production and the 

patient symptoms and clinical outcomes is beyond the scope of this paper but the 

discussion here relates to how in-situ, real-time electrochemical measurements can 

be used, in conjunction with other analysis (e.g ICP, AES) to establish the origins of 

metallic ions and their rate of production.   

Figure 6 shows a schematic representation of the pathway for the production of 

wear debris and metallic ions from the bearing surface couple in the hip joint.  Only 

the bearing surface is considered in Figure 6 but analogous processes occur at the 

stem/cement and taper junction interfaces.   
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Figure 6.  Pathway for debris and ion production at the bearing surface showing how 

asperity contact can produce debris or ions from wear-enhanced corrosion.  Debris 

can either reside as solid particles or can dissolve and further enhance the ion 

content.   

 

An important aspect of Figure 6 is the demonstration that ions that are released into 

the fluid in the joint capsule can come from two major sources; from dissolution of 

preformed debris from mechanical wear processes and from metal dissolution 

enhanced by the removal of the passive film at the surface.  Incorporating 

electrochemical measurements with measurements of ions (by ICP) enables these 

ratios to be determined.  Also, the balance of alloying elements as dissolved ions can 

be calculated.   

In Figure 7a the balance of ions recorded in the simulator in a 1million cycle test is 

presented for three time periods and three repeat tests.  There is no major 

difference in the ratios apart from the noticeable smaller amount of Mo at the end of 

the test.  Also, the total amount of ions decreases as time progresses (as shown 

later).  There is a strong Co-enrichment which is in agreement with the alloy content 

but at odds with the reported Cr-enrichment in particles detected as reported by 

many authors and discussed here in section V.  Figure 7b shows how the balance of 

ions coming from depassivation of the surface and the dissolution of debris changes 

for the test for 330,000, 660,000 and 1 million cycles.  The ions released from 

depassivation of the surface are calculated from in-situ corrosion measurements and 

assuming all of the current measured goes into producing Co2+/Cr3+/Mo3+ ions in 

solution around the joint space.  Interestingly the proportion of ions coming from 

the surface increases even though, as shown in Figure 7c the corrosion mass loss 

reaches a plateau at around 660,000 cycles.   
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(a) 

 

Figure 7.  (a) Ion release (Mo/Cr/Co) from a simulator test on the bearing surface at 

330,000, 666,000 and 1 million cycles (b) proportion of ions released from the surface 

(wear-enhanced corrosion) and from the dissolution of debris particles (c) cumulative 

mass loss due to corrosion calculated from electrochemical measurements (d) 

cumulative ions measured from ICP [19] 

(IV) Effects of misalignment and real-life cycles 

The importance of surgical technique has been discussed in detail, especially in relation 

to the inclination angle of the acetabular cup and the potential for microseparation to 

occur.  Micro-separation describes the process whereby the acetabular cup and femoral 

head physically separate during abduction-adduction leg lift manoeuvres and during 

normal gait.  Fluoroscopy studies have reported the extent to which this occurs [24] and 

simulator studies including effects of separation and the resulting impingement of the 

head and cup when they come together have replicated wear patterns seen in retrievals 

where a high inclination angle was observed.  In the normal hip joint, the femoral head 

is retained within the acetabulum by numerous supporting structures, including the 

fibrous capsule; the acetabulum labrum; the ligament of the head of the femur; and the 

iliofemoral, ischiofemoral, pubofemoral, and transverse acetabular ligaments [25]. 

During hip joint replacement, the ligament of the head of the femur 

 

(b) 

(c) 
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commonly is found to be disrupted or degenerative and is removed surgically. A portion 

of the remaining supportive structures is transected and resected to facilitate surgical 

exposure.  This means that separation is common and should be considered in simulator 

studies.  

Williams et al.[26] reported a non-statistically significant increase in wear rate from 

2.03 (±2.60) to 2.70 (±2.20) mm3/Mcycle for 28 mm bearings subjected to 

microseparation over the first million cycles. Beyond the bedding-in phase however, 

overall wear volume after five million cycles was shown to increase from approximately 

3 to 8 mm3. Leslie et al.[16] reported on the combination of a high cup inclination angle 

(55°) and microseparation for a 39 mm surface replacement device. During the first 

million cycles wear rates increased from approximately 2.5 to 7.0 mm3/Mcycle. Al-

Hajjar et al.[27] reported an increase from approximately 1.2 to 4.62 mm3/Mcycle for 

28 mm MoM bearings subjected to microseparation over the first two million cycles of 

articulation. Previous studies with metal-on-metal have demonstrated increased wear 

with increased cup angle both in vitro  and in vivo [28]. However, clinical studies 

suggest a larger variation in wear rates and also generally a greater increase in wear 

than found in vitro. This implies other variables may be playing a large role in 

determining wear rates in vivo.   

Real-time corrosion measurements are providing evidence that one factor that is radically affected by misalignment is the ǲwear enhanced corrosionǡ CwǳǤ   
In work by Beadling et al [29] a standard twin-peak loading cycle was used at a 

frequency of 1 Hz. The loading cycle comprised 3 kN and 300 N peak and swing-phase 

loads respectively, +30° -15° Flexion / Extension and ±10° Internal / External rotation 

in part reference to ISO-14242 Part One [9]. Bearings were tested under either standard 

walking cycle conditions or subjected to 0.8 mm microseparation. The microseparation 

was effected by applying a negative load during the swing phase to separate the head 

and cup.  Figure 8a shows the stark difference between the cumulative volume loss 

calculated from in-situ corrosion measurements under standard gait and with 

microseparation.  The current measurements demonstrate that the wear-enhanced 

material loss rate is an order of magnitude greater when microseparation is present and 

is double what would be considered acceptable for a well performing bearing.   

Assessing the current transients for standard gait and for microseparation in Figure 8b 

it is clear that there is a very prominent peak current which is ten times greater than the 

corresponding standard gait peak; this occurs at the point of ǲtoe-offǳ and the start of 
the swing phase [30].      
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Figure 8 (a) Cumulative volumetric loss of material  from calculations of the Faradaic 

charge transfer and the assumption that all charge transfer contributes to a ǲcorrosionǳ 
mass loss. (b) Large variations in current transients associated with the motion cycle 

when microseparation is introduced.  The current values suggest an order of magnitude 

greater corrosion for microseparation. [29] 

(V) Protein and tribofilm effects when coupled with advanced microscopy 

The interaction between a nascent CoCrMo surface and proteins in synovial fluid/serum 

has been reported from several authors including the authors of this paper in both 

tribometers and in simulators [19, 31].  The tribofilms formed at rubbing surfaces 

where tribocorrosion occurs are complex but access to the most advanced electron 

(transmission and scanning) microscopy enables the structures to be defined and their 

formation understood.   

Figure 9 shows cross sectional Transmission Electron Microscopy images of the 

tribofilms formed on the bearing surfaces of simulator tests; in other publications the 

similarities in terms of tribofilms from simulators and retrieved hip implants has been 
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demonstrated [20].  Two features are of particular interest; the apparent non-uniform 

thickness of the film (Fig 9a) and the presence of embedded particles in the tribofilm 

(dark regions in the intermediate layer in Figure 9b).  EDX mapping provides very 

useful information on the nature of the particles; they are Co rich and are a combination 

of Co metal and Co3S4 as determined by electron diffraction.  This shows definitively 

that there are constituents of the protein (sulphur) in the tribofilm; something that has 

been doubted in many publications where it was presented as a purely mechanically ǲworkedǳ layer.   

The effect of the tribofilm on subsequent corrosion rates is still very much a subject of 

debate.  In work by Yan et al [31] he reported very low currents at periods in tribometer 

and simulator tests and associated these with periods when the tribofilm offered charge transfer resistanceǤ  This was referred to as a ǲwear-induced passivationǳǤ Schymura et 

al [32Ȑ also reported a ǲpassivationǳ effect of the tribofilmǤ  Others have not seen this 

effect and rather just a steady decrease in the corrosion rate in simulator tests as time 

passes [19, 29]. 

 

Figure 9 (a) Non-uniform thickness of the tribofilm formed after 1 million cycles 

using a standard walking cycle (scale bar 500nm) (b) Embedded particles evident in 

the tribofilm (scale bar 100nm) 

The tribofilm is important for three main reasons 

(i) It can potentially reduce the charge transfer at the interface and have an 

impact on the corrosion-related damage  

(ii) It affects the mechanics of the interface; the film has different modulus and 

hardness to the base metal and will have different wetting and shear 

characteristics 

(iii) The production of debris in many cases is postulated to be from the tribofilm 

since the debris size is generally less than the thickness 

Wear particles have been extracted from simulator tests of metal-on-metal implants in 

many studies and consistently their size is estimated to be in the range from 50-80nm 

[33].  From volumetric wear calculations it has been estimated that in excess of 6.7 x 

1012 particles can be produced per year.  Notwithstanding the inevitable errors in 
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(b) 



18 
 

assuming a uniform size for the particles, it is clear that for every step taken >1.5 million 

particles are produced.  The nature of the particles is complex; many reports show the 

absence or very low levels of Co compared to the bulk alloy.  The particles are typically 

rich in Cr; primarily oxidised Cr species. Some authors postulate that the debris is 

derived from the passive film on the alloys.  However, it would seem unlikely that all 

particles are derived from the virgin passivefilm; it is much more likely that it is derived 

from the partial removal of the tribofilm.  Wimmer et al [34] and Yan [20] reported the 

incorporation of proteins into tribofilms with no detail on exactly how these proteins 

interacted with the metallic species.  Hesketh [19] reported Co3S4 particles; definitive 

evidence of protein/Co interactions.    Goode et al [35] did report varying levels of Co in 

wear particles.  It is feasible that the Co ions in tissue in-vivo and found in the serum 

solution in simulator studies could have been derived from preferential of Cr and Co 

containing particles. 

Measurements of real-time corrosion rates in simulators cannot directly assist in the 

determination of wear particle or tribofilm composition but assessing changes in the 

charge transfer at the bearing surface, coupled with advanced microscopy, the kinetics 

of tribofilm formation can be followed. 

Outlook: Prediction/management of degradation 

It is acknowledged across the literature that it is very difficult, and in some instances 

impossible, to predict in-vivo performance from in-vitro simulator tests.  Whilst there 

are great efforts in trying to make the simulations more realistic through incorporation 

of realistic motion cycles [36], understanding stop/start effects in simulations and 

stratifying simulations [37], this paper has shown how incorporation of real-time 

corrosion measurements can enable information relating to the tribocorrosion 

processes at hip joint surfaces to be accessed that cannot be revealed in other ways. We 

find that there is strong evidence that corrosion and corrosion-related damage can 

account for anywhere from 40%-50% of damage in the running-in phase to lower 

values of ca. 20-30% in steady state in a normal walking cycle.  This is increased 

significantly in adverse loading there is no real rationale for advocating that we can 

proceed with simulations that do not quantify corrosion effects.   

Two final points are discussed here (a) how modelling can be anything other than 

empirical if corrosion is not incorporated and (b) how simulations that approximate 1 

million cycles to be equivalent  to one year of implantation in patients fundamentally 

miss some of the subtle effects of corrosion. 

 

Modelling tribocorrosion 

There have been many recent attempts at modelling the tribocorrosion damage in 

CoCrMo alloys in relation to hip joints.  Most of the work has used electrochemical data 
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fused with gravimetric data collected from tribometers in a pin-on-reciprocating plate 

mode [38].  Whilst the depassivation  and repassivation events associated with 

tribocorrosion can be properly represented and controlled with such a set up it is 

important to note that the complexities that arise in a hip joint simulator due to the 6-

axis loading system and the complex lubrication regimes are not captured.  However,  

such models enable an understanding of how corrosion and wear interact and also mass 

balances to be completed which account for all the modes of material damage in a 

tribocorrosion contact.  In some of our recent work we have also modelled the 

repassivation kinetics of CoCrMo alloys in sliding contacts and shown that the lubricant 

and the sliding conditions affect the repassivation kinetics [39].  Translating this to a hip 

joint simulator is now possible and will be done in due course.  In the hip joint simulator 

depassivation is not a simple process; the combination of flexion-extension, adduction-

abduction mean that the depassivation and repassivation are continuously occurring 

across the contact patch of the femoral components.   

Cao et al. [40] have used a composite model approach to model the mechanical and 

chemical aspects of tribocorrosion damage and have reported good fits to experimental 

data (shows within 20% of the experimental values).  Uhlig [in 41] was the first to split 

tribocorrosion damage into two components as in (4) 

vtot = vchem + vmech                -----------------------------------------(4) 

The volumetric chemical damage (vchem) and volumetric mechanical damage (vmech) are 

isolated.  Mechanistically this seems like a good approach but it should be appreciated 

that if the definitions of corrosion and wear effects are used as in (1) and (2) previously 

the interactions between the process are captured.  It should be noted that a portion of 

vmech is the wear that is enhanced by the presence of corrosion; the question arises 

whether this is corrosion or wear damage and in fact it is an interaction.   

The composite model in (5) represents an important advance in the prediction of  the 

total tribocorrosion damage.  However, the model relies on imposition of a potential on 

the tribocorrosion sample to determine the charge Q and no account is taken of what 

that shift from equilibrium does to the subsequent wear processes.  The first term in the 

right hand side is an Archard type modification for wear which takes account of the 

boundary lubrication regime.  The second term is the corrosion term and uses the 

minimum film thickness and the associated charge transfer to determine Vchem.   

 

   ---------(5) 

 

Where km is a proportionality factor linking mechanical wear to an Archard type 

expression ሺv୫ୣୡ୦ ൌ k୫  ୊౤ୌ LሻǤ  k0 is a proportionality factor for effective load.  Fn is 
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normal load.  Hmin is minimum film thickness.  H is hardness. kc is a proportionality 

factor.  QP is the passivation charge density.  M is atomic mass, vs is sliding velocity, n is oxidation valenceǡ F is Faradayǯs constant and ɏ is densityǤ  Full explanation of the terms 
can be found in [40].  

The authors of this paper believe that in order for the model to be fully predictive then 

the proportionality factors need defined; currently they are empirical.  There needs to 

be a more precise linking between the tribological factors (hmin, hc, instantaneous real 

contact area) and the corrosion currents occurring at the open circuit potential.  Studies 

in tribometers and in simulators measuring corrosion rates in-situ and linking these to 

the changing tribological conditions will ensure progress is made.   

Limitations of simulations when 1 million cycles equates to one year 

In simulator studies one million cycles is equated to one year of total hip joint 

replacement implantation. Two aspects of this should be considered if there is an 

expectation that real lifetime of bearing surfaces can be predicted.   

(a) What happens to wear, corrosion and their interactions when there is no 

motion? In simulator studies the assumption is made that wear occurs during the 

walking cycle and then no material loss occurs during the rest of the time when 

the patient is stationary.  If corrosion measurements from simulators are 

considered then it can be deduced that corrosion is not zero when there is no 

motion.  There are 31.5 million seconds in a year and so the static corrosion rates 

should be accounted for in the prediction of degradation (production of 

ions/wear etc).  In the work by Hesketh [19] depending on the static corrosion 

rate adopted the increase in mass loss could be between 0.3 and 1.2mg against 

the total over a million cycles of ca. 3.5mg.   

(b)   Wear-enhanced corrosion represents the depassivation that occurs when the 

passive film protection is removed.  For periods when motion ceases in a real hip 

joints the current remains high; the repassivation kinetics have been the subject 

of much debate and have been found to follow first order or bi-exponential 

decay.  The simulator tests with one million cycles will normally be stopped 

every 300,000 cycles and so the additional current (corrosion) associated with 

the period after motion is ceased is not accounted for except for in 3 discrete 

periods.  For a full year of hip joint implantation the number of ǲstopsǳ could 
reach thousands of seconds and so the current decay characteristics are likely to 

be important.  Without knowing exactly how the repassivation of the bearing surface occurs and the proportion of ǲactiveǳ area as a function of time it is hard 

to accurately estimate what this effect might be but there is evidence in the 

literature [42] that in tribocorrosion having more rest periods and the same 

number of cycles significantly increased the tribocorrosion material loss,  In 

addition Hadley [43Ȑ found that increased ǲstopȀstartǳ cycles in simulators 
increased the total damage; the mechanism for this was not fully elucidated.     
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Conclusions 

This paper has presented an appraisal of electrochemical techniques and their potential 

in hip joint simulation; the focus has been on bearing surfaces but the same potential 

exists for their use in other important interfaces in hip joints such as the taper junction 

and stem/cement interface.  Several areas where they can provide access to information 

additional to conventional gravimetric analysis are presented.  The greatest benefit 

from inclusion of in-situ corrosion measurements in hip joint simulation is in pushing 

forward the mechanistic understanding of a complex plethora of processes occurring at 

the bearing surfaces and on debris.   
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