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Abstract -- This paper proposes a computationally efficient method based on imaging technique, for accurate prediction of 3-
dimensional (3D) eddy current loss in the rotor magnets of interior permanent magnet (IPM) machines. 2D time-stepped finite element 
analysis is employed to generate the radial and the tangential 2D magnetic field information within the magnet for application of the 3D 
imaging technique. The method is validated with 3D time-stepped finite element analysis (FEA) for an 8 pole-18 slot IPM machine 
evaluating its resistance limited magnet loss with increase in axial and tangential segmentation. Magnet loss considering eddy current 
reaction at high frequencies is evaluated from the proposed method by employing the diffusion of the 2D magnetic field variation along 
the axial plane. The loss associated with all the frequencies together in the armature currents is evaluated by considering each of the 
harmonics separately in the proposed method employing the frozen permeability to account for magnetic saturation. The results obtained 
are verified with 3D FEA evaluating the magnet loss at fundamental, 10 and 20 kHz time harmonics in armature currents. 
 

Index Terms— Eddy current loss, finite element, frozen permeability, imaging method, permanent magnets.  

I. INTRODUCTION 

High power density IPM machines are increasingly being 
used in a variety of applications, including high speed 
manufacturing [1], power generation [2], hybrid and electric 
tractions [3-6], aerospace [7] and ship propulsion [8]. These 
machines can be operated over a broad range of speeds when 
compared to surface mounted permanent magnet (SPM) 
machines by employing flux weakening control [9-11].  

On the other hand, at higher speeds IPM machines especially 
with concentrated windings, produce increased electromagnetic 
filed variations which are associated with space harmonics from 
stator winding distribution in addition to slotting and also time 
harmonics from the armature currents [12-15]  . While the pole 
shoes may prevent these harmonics from penetrating in to the 
magnets, the presence of flux barriers and the saturations of the 
silicon steel laminations will allow them eventually entering the 
magnets and cause eddy current loss. The loss in the magnets 
can raise their operating temperature and hence the knee point 
flux density of the magnets, thus making them more vulnerable 
to partial demagnetization in an event of sudden short circuit 
[16], [17]. An accurate estimation of magnet loss enables to 
reduce the loss at the design stage of the machine by devising 
necessary changes in the geometry and also by implementing 
feasible axial / tangential segmentations. 

The highly nonlinear nature of the rotor core and the 
complicated boundary conditions makes a complete analytical 
estimation of the magnet loss almost impossible in IPM 
machines. However a few analytical insight can be derived on 
the magnet loss based on which the design parameters can be 
altered for reducing them [18]. The much simplified theoretical 
estimation of magnet loss proposed to evaluate the eddy 
currents associated with carrier harmonics in IPM machines 
approximates an uniform source  field along the magnets 
[19],[20]. Also another simplified analytical estimation of 
permanent magnet loss proposed in [21-23], ignores the 
saturation effects of silicon steel laminations and neglects any 
filed variation along its radial direction. This approximation 

deviates from the real flux density distribution in magnets 
significantly and results in poor accuracy in loss estimation. 
Hence numerical analysis becomes indispensable in accurately 
estimating the loss in the permanent magnets for such 
machines. 

2D time-stepped finite element analysis (FEA) gives fairly 
good results in eddy current loss evaluation, however its 
accuracy is compromised if the axial length of magnets is 
comparable to their other dimensions since the eddy current 
flow in the magnets may become predominantly 3-dimensional 
(3D) with reduced axial lengths. The highly accurate 3D FEA 
for IPM machines [13], [24] is rather time consuming and 
requires immense memory in storing the results. There are a few 
reduced order 2D-3D numerical methods proposed to overcome 
the computational burden involved in direct 3D finite element 
calculations [25-27]. The method in [26]evaluates the magnet 
loss at each frequency of interest in 3D FEA by employing 
differential permeability derived from 2D FEA calculations. 
Whereas the method proposed in [27]models only the 
permanent magnet in 3D FEA and inputs the magneto-static 
field obtained from 2D FEA for loss evaluation. Although these 
methods may be computationally efficient, they have a varying 
degree of accuracy. Magnet loss evaluation at each frequency 
of concern separately considering average differential 
permeability, may also fail to consider the effective magnetic 
saturation of the silicon steel laminations arising out of all the 
armature harmonics in the machine. To elude the computational 
burden of   3D FEA completely in PM loss evaluation, the 
method proposed in [28] predicts the resistance-limited eddy 
current loss analytically from the magnetic field derived from 
few magneto-static computations. This method approximates 
the 3D end effects of eddy currents by considering rectangular 
loops of varying perimeter along the axial plane, and hence 
predicts the eddy current distribution within the magnets at 
reduced accuracy. Moreover, it fails to assess the contribution 
of magnet loss associated with the tangential component of the 
magnetic field.  

The method of generalized imaging is proposed in[29] to 
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evaluate the resistance limited eddy current distribution which 
satisfies its natural boundary condition for the  magnets in a 
SPM machine neglecting any curvature effects. The method 
establishes the distribution of magnetic field variation with time 
as the sources of the eddy current fields in the form of 3D 
Fourier series in ݔǡ ǡݕ  directions. Ultimately only the ݖ
coefficients for the sines and cosines needed to be evaluated in 
loss computation using Fourier expansion in three dimensions.  
However, the 3D eddy current source distribution applied here 
does not include the eddy current reaction effect which may be 
significant at high frequencies. 

This paper proposes a computationally efficient method 
based on the imaging technique, for accurate prediction of 3-
dimensional (3D) eddy current loss in the rotor magnets of IPM 
machines. The magnetic field variation with time as the source 
of the eddy current field is obtained from 2D FE, and the axial 
field variation at high frequencies due to eddy current reaction 
is incorporated in the 2D FE results based on the solution to 2-
D diffusion equation before being applied in the imaging 
method. Finally, the combined loss evaluation associated with 
fundamental and the carrier frequency harmonics in the 
armature currents is evaluated by employing the frozen 
permeability concept to account for the stator and rotor iron 
core saturation. The method is validated with 3D time-stepped 
finite element analysis (FEA) on an 8-pole, 18-slot IPM 
machine. 

II. IMPLEMENTATION OF PROPOSED METHOD FOR IPM 

MACHINES  

A. Machine Topology and Design Parameters 

The analytical part of the imaging method for predicting 
resistance limited 3D eddy current distribution and the total 
eddy current loss has been presented in [29] .Without loss of 
generality, the imaging method is implemented on the 8-
pole,18-slot IPM machine [30] employing V shaped NdFeB 
magnets with  its cross section as shown in Fig.1. The machine 
topology benefits from low-space harmonics [31] and, hence, 
low eddy current loss, improved reluctance torque and less 
demagnetization risk. The machine is designed for EV traction 
applications and has been optimized for maximum energy 
efficiency over the combined drive cycles of the New European 
Driving cycle (NEDC) and the Artemis Urban Driving Cycle 
(Artemis) while satisfying the machine torque, speed 
specifications as well as volumetric, electrical, thermal and 
mechanical design limits [32-34]. The key specifications and 
geometric parameters of the machine are listed in Table 1. For 
the analysis, the rotor position is defined as 0° when the center 
of magnet ‘1’ and magnet ‘2’ is aligned horizontally, as shown 
in Fig.1. 

B. Extraction of Field Information from 2D FEA  

  To implement loss evaluation in the proposed method, the flux 
density values need to be captured to form a matrix. Unlike the 
case with SPM machines where the magnet field orientations 
are referred w.r.t the global r-ș co-ordinate system, the 
orientation of field associated with each magnet is different for 
the case with IPM machines. Hence the values in each matrix 
should correspond to the source at a location given by the local 

x-y coordinates attached separately to every magnet. Thus the 
magnetic flux density values from the 2D FEA are extracted 
using a mesh grid constructed over the magnets as shown in 
Fig.2. Considering the machine symmetry, only one half of the 
machine needs to be modelled in loss evaluation and hence 
mesh grids are constructed only over the eight magnets. Every 
point of intersection on this mesh forms the x and y coordinates 
of the field information. For the machine under consideration 
without any segmentation in the x-direction, each magnet as 
shown in Fig.2 (a) is discretized into thirty-two divisions along 
the x and y directions. The number of divisions within a magnet 
segment may be modified according to the number of tangential 
(in the x direction) segmentations. For example, the mesh is 
modified as shown in Fig.2 (b) with sixteen divisions along the 
x directions in the analysis for the case with two tangential 
segmentations. 

 
Fig.1. Cross sectional schematic of 8-pole,18-slot IPM machine. 

 
TABLE I 

IPM SPECIFICATIONS AND KEY DIMENSIONS 

Parameter  Unit Value 

Base speed rpm 1350 

Maximum Speed rpm 4500 

Peak torque below and at base speed Nm 70 

Continuous torque below and at base speed Nm 35.5 

Maximum Current Limit A 170 

Nominal DC link voltage  V 120 

Stator outside diameter mm 150 

Stator bore  diameter mm 73.9 

Rotor  outside diameter mm 72.9 

Magnet width mm 3.5 

Magnet  length mm 10 

Stack length mm 118 

Slot opening  mm 2.5 

Shaft diameter mm 40 

Magnet Resistivity ȍ.m ͳǤͺxͳͲି 
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(a) tangential segments =1   (b) tangential segments =2. 
Fig.2. Mesh grids constructed over the magnets and are attached to separate 
coordinate system at ߱ݐ ൌ Ͳ position. 

C. Implementation of 2D FEA Results in the Proposed 

Method.  

However, since the flux density values ሺܤ௫భ ǡ  ௬భሻ capturedܤ
are referred in the stationary  ሺݔଵǡ  ଵሻ coordinates attached toݕ
the magnets at the initial rotor position, the values needed to be 
transformed to the co-ordinate system which rotates with the 
magnets as shown in Fig.3. This ensures the eddy current 
sources [29] ሺܵ௫భ ൌ ௫భܤ߲ Τݐ߲ ǡ ܵ௬భ ൌ ௬భܤ߲ Τݐ߲ ሻ seen by the 
magnets are referred in the rotor coordinate system. Hence the 
flux density values  ሺܤ௫౨భ  ǡ  w.r.t  ݐ߱ ௬౨భሻ at an angular positionܤ
the rotating co-ordinate system ሺݔ୰ଵǡ  ୰ଵሻ attached to theݕ
magnets at time ݐ can be calculated as, 

௫౨భܤ  ൌ ௫భܤ cosሺ߱ݐሻ െ ௬భܤ sinሺ߱ݐሻ (1) ܤ௬౨భ ൌ ௫భܤ sinሺ߱ݐሻ  ௬భܤ cosሺ߱ݐሻ (2) 

 
Fig.3. Rotor coordinate system ሺݔ୰ଵǡ  w.r.t the ݐ߱ ୰ଵሻ displaced at an angleݕ
stationary systemሺݔଵǡ  .ଵሻݕ

 
The eddy current sources ሺܵ௫ ൌ ௫ܤ߲ Τݐ߲  ǡ ܵ௬ ൌ ௬ܤ߲ Τݐ߲ ሻ  are 

evaluated from flux density values obtained from two 
consecutive time intervals. The source values are discretized 
together with their images in three dimensions in each magnet 
bounded by (2ܮ௫ ǡ ௬ܮʹ ǡ  ௭ሻ. The number of discretization in theܮʹ
z- direction should be sufficiently large to ensure high accuracy. 
For the machine under consideration 32 divisions are 
considered for the unsegmented magnet length (ܮ௭) along the 
axial direction. 3D FFT is performed to evaluate the source 
coefficients and hence the eddy current density coefficients 
[29]. The eddy current loss in every magnet is calculated at each 
time step and the analysis are repeated for 1/6th electrical cycle 
to predict the average loss. 

To evaluate the loss variations with number of axial and 
tangential segmentations of the magnet, the losses are evaluated 
for each tangential segment separately and the total magnet loss 
is computed as the sum of these losses multiplied with the 

number of axial segments for the IPM machine. The loss in each 
axial segment is considered identical as the source field is 
treated essentially 2D and hence no variation along the axial 
direction. For example, for the machine  having ݊ tangential 
segments and ݊ axial segments in a magnet as shown in Fig.4, 
eddy current loss is evaluated for each tangential segment 
separately employing its dimensions (ܮ௫௦ǡ ௬ܮ ǡ  ௭௦ሻ in theܮ
imaging method [29]. The total loss per magnet is evaluated as 
the sum of the loss from the ݊  tangential segments multiplied 
with the number of axial segmentation ݊. This way of 
evaluation quantifies the loss in each magnet segment, which 
will enable the designer to optimize the number of magnet 
segments, and hence to control the loss distribution among 
them. 

Since the calculations are performed in 3-dimensional space 
for each harmonic, matrix operations are used to facilitate 
efficient calculations. The entire process is implemented in 
Matlab, and it takes around 60 minutes to generate the flux 
density harmonics from 2D FEA and less than 30 seconds to 
compute the total 3D eddy current loss for all the magnets in a 
typical PC. Hence on an average for evaluating the loss 
variation with increase in axial number of segmentation up to 
12, it takes around 5 minutes for each case. In contrast, it takes 
more than 7 days for one 3D FE analysis with no axial 
segmentation on a typical 3.3 GHz, 64GB PC.

 
Fig.4. Segmentation of the magnet in axial and tangential direction. 

III.  3D FINITE ELEMENT VALIDATION  

A 3D FE model of the machine as shown in Fig.5 has been 
built to predict the 3D eddy current distribution and resultant 
eddy current loss induced in the magnets. Since the machine 
employs fractional slot per pole topology, circumferential 
symmetry exits only over 180 mechanical degrees. Thus, a 
quarter of the machine has to be modelled in 3D FEAs. 
Tangential magnetic field boundary condition is imposed on the 
circumferential surface. The meshed coils are extended in axial 
directions to consider the end effect. Tangential boundary 
conditions are imposed on this extended surface. In addition, 
perfect insulation boundaries are applied to the end surfaces of 
the magnets. 

Magnet loss are evaluated at the maximum speed of the 
machine (ܰ ൌ ͶͷͲͲ ݉ݎሻ, when the armature current is 
61.17(RMS), having a flux weakening angle ߛ ൌ ͵Ǥʹ. 
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Under such operating conditions the effect of eddy current 
reaction is negligible and hence the magnet loss is considered 
resistance limited. This is because the skin depth evaluated at 
this operating frequency is comparable with magnet 
dimensions. The predicted loss variations by the 3D imaging 
method, 3D FE and 2D FE with number of axial and tangential 
segments at the peak load conditions are compared in Fig.6 and 
Fig.7. It can be observed that the magnet loss evaluated from 
the 3D imaging method matches very well with the 3D FEA 
results, while significant error occurs with 2D FEA with 
increase in the number of axial segmentations. 

 

 
Fig.5. 3D FE model based on symmetry 

 

 
 
Fig.6. Comparison of eddy current loss variations with axial number of 
segments when the number of tangential segments = 1 
 

 
Fig.7. Comparison of eddy current loss variations with axial number of 
segments when the number of circumferential segments = 2. 

 
 
Fig.8. Comparison of instantaneous loss variation from imaging method and 
3D FEA. 
 

The instantaneous variations of the total magnet loss with 
rotor position predicted by the imaging method and by 3D FEA 
are compared in Fig.8. It is clear from the figure that that the 
loss predicted by the imaging method follows very well with 
the 3D FEA results. The slight difference from the 3D FE 
simulation with the imaging method may be attributed to the 
winding end effect which is neglected in the imaging method. 
 

 
Fig.9. Eddy current density (z- component) distribution predicted by the 
imaging method on the outer surface of Magnet-1 

 
Fig.10.Eddy current density (z- component) distribution predicted by3D FEA 
on the outer surface of Magnet-1 
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Fig.11.Eddy current density (x- component) distribution predicted by the 
imaging method on the outer surface of Magnet-1. 

 
 

Fig.12.Eddy current density (x- component) distribution predicted by 3D FEA 
on the outer surface of Magnet-1. 
 

 
 
Fig.13. Variations of   x and z -components of eddy current density predicted 
from 3D FEA and imaging method along x position at t = 12o, y = 0.5Ly and 
z = 0.85Lz. 
 

The   ‘z’ component of eddy current density evaluated from 
the imaging method is compared with that obtained from 3D 
FEA along the middle surface of the magnet – 1 defined by 

y=1.75mm for the case with eight axial segments and no 
tangential segmentation in Fig.9 and Fig.10 at ߱ݐ ൌ  ͳʹ. 
While Fig.11 and Fig.12 compare the ‘x’ component of the 
eddy current density evaluated from the imaging method with 
that obtained from 3D FEA under the same conditions. Fig.13 
compares the variation of z and x components of the current 
density along the x- position predicted from the imaging 
method and 3D FEA at z= 0.85Lz under previously stated 
conditions. It can be observed that the eddy current density 
distribution evaluated from the imaging method matches with 
the 3D FEA results. This ensures the accuracy of the proposed 
method. 

It should be noted that the proposed method does not 
consider the z-component of the armature reaction fields due to 
the winding end effect. Detailed 3D magnetic field analysis has 
been performed with due account of the end-winding geometry, 
and the results shown that z-component of flux density close to 
the rotor end region is less than 5%. Since the eddy current loss 
in the rotor magnets is proportional to the flux density square, 
the resultant error is negligible. 

IV.  LOSS AT HIGH FREQUENCY CONSIDERING EDDY CURRENT 

REACTION EFFECT 

To predict the magnet loss due to high frequency harmonics 
in the armature current where the effect of eddy current reaction 
becomes significant, 2D FEA results which account the reaction 
effect is employed in the imaging method. However, it is 
observed that the field variations employed in the imaging 
method from 2D FEA overestimates the eddy current reaction 
effect when the axial length of a magnet segment is relatively 
larger and hence the magnet loss evaluated will be lower than 
the actual. This is because the reaction field obtained from the 
2D FEA does not account the axial variation of eddy current 
sources due to skin effect. Skin effect forces the eddy current to 
be concentrated around the magnet surfaces and its values are 
reduced at the center of the magnet. 

To circumvent this problem a solution to the diffusion 
equation of the flux density along the axial ሺݔ െ ሻǡݖ ሺݕ െ  ሻݖ
planes are essential. The diffusion of the ‘y’ component of flux 
density  ܤ௬ሺݔǡ  ଵ’ along the ‘x-z’ plane can beݕ‘ ଵሻ  at a givenݕ
expressed as, ߲ଶܤ௬ሺݔǡ ଵǡݕ ଶݔሻ߲ݖ  ߲ଶܤ௬ሺݔǡ ଵǡݕ ଶݖሻ߲ݖ ൌ ǡݔ௬ሺܤߪߤ݆߱ ଵǡݕ  ሻ (3)ݖ

Solution to (3) can be obtained considering magnet being 
exposed in a uniform source filed of ܪ௦ and hence the field 
along its edges will be equal to the applied field. Since ܤ௦ ൌ ܪߤ௦, the variation of flux densityܤ௬ሺݔଵǡ ଵǡݖ  ଵሻ  for anyݕ
segmentation can be evaluated in [19] as, ܤ௬ሺݔͳǡ ͳǡݖ ͳሻݕ  ൌ cosh൫ݔߛͳ൯cosh ቀߛ ʹ௫௦ܮ ቁ ͳǡݔ௬భ൫ܤ ଵ൯ݕ  ͺ ʹ௫௦ܮ ଶߨଶߛ ͳǡݔ௬భ൫ܤ ଵ൯ݕ

ൈ  ሺെͳሻߣcosh ൫ߚݖͳ൯ሺʹ݉  ͳሻଶߚଶ cosh ቀߚ ʹ௭௦ܮ ቁן
ୀଵ cos ൫ߣݔͳ൯ 

(4) 
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where ߛ ൌ  ଵାఋ ߣ , ൌ ሺʹ݉  ͳሻ  గଶߚ , ݏݔܮ ൌ  ටߣʹ   ߜ and  ʹߛ

is the skin depth. 

Also െ ʹݏݖܮ   ଵݖ   ʹݏݖܮ , and െ ʹݏݔܮ   ଵݔ   ʹݏݔܮ . 

A similar variation of  ܤ௫ሺݔଵǡ ଵǡݖ  ଵሻwith axial position z canݕ
be derived. To assess the significance of ܵ௫ at high frequency in 
loss evaluation, its contribution to the magnet loss is predicted 
and compared with the contribution associated with ܵ௬ in 
Fig.14, applying the results from 2D FEA considering eddy 
current reaction. The loss evaluation is conducted at 20 kHz 
harmonics, assuming 5% amplitude of the fundamental current 
considered in section V when the machine operates at 4500 
rpm. At these operating conditions the effect of eddy current 
reactions is significant. The results show that the loss associated 
with ܵ௫   is nearly 3 orders of magnitude lower and negligible. 

Hence, ܵ ௬ሺݔǡ ǡݕ  ሻ  alone forms the source for eddy currentݖ
loss in the permanent magnets. So  ܤ௬ሺݔǡ  ሻ values obtainedݕ
from 2D FEA considering reaction effect is adjusted by the ratio 
given in (4) at a given axial position z for the evaluation of ܵ௬ሺݔǡ ǡݕ   .ሻ before application in the imaging methodݖ
hence for a given ݕଵ, 
ǡݔ௬ሺܤൣ  ଵǡݕ ሻ൧ூಾݖ ൌ ൣܤ௬ሺݔǡ ଵሻ൧ଶிாݕ ൈ ൣܤ௬ሺݔǡ ଵǡݕ ǡݔ௬ሺܤൣ    ሻ൧௦ݖ ଵǡݕ ݖ ൌ ͲǤͷܮ௭ሻ൧௦       (5) 

where, 
ǡݔ௬ሺܤൣ  ଵǡݕ   ሻ൧ூಾ are the adjusted magnetic flux density valuesݖ

for imaging method, ൣܤ௬ሺݔǡ ଵሻ൧ଶிாݕ  are the flux density values 

from 2D FE considering reaction, ൣܤ௬ሺݔǡ ଵݕ ǡ  ሻ൧௦are the fluxݖ

density  values derived from (4) for any segmentation and  ൣܤ௬ሺݔǡ ଵǡݕ ݖ ൌ ͲǤͷܮ௭ሻ൧௦ are the flux density values derived 

from (4) for  (െ ʹݏݔܮ   ଵݔ   ʹݏݔܮ    and at   ݖଵ ൌ Ͳ ) with no 

axial segmentation. The maximum values of the flux density 
along the axial direction after adjustment is limited to values 
from FE without considering eddy current reaction. 

 

 
Fig.14. Comparison of loss variations associated with ܵ௬ and ܵ ௫ at 20 kHz. 

 

Since ܤ௬ሺݔǡ  ሻ  evaluated from the 2D FEA includes itsݕ
variation in the radial direction, the values evaluated with (5) 
also includes the variation along the radial direction, at the 
approximation of same rate as that in the x-z plane. 

The predicted loss variations by the proposed method with 
increase in axial number of segmentations at 20 kHz are 
compared with 3D FEA results, and the results obtained from 
the imaging method based on 2D FEA source data with and 
without accounting eddy current reaction are compared in 
Fig.15 and Fig.16. The results show that the loss evaluated from 
the proposed method has good agreement with 3D FE results. 
It can be observed that there is a slight miss match especially 
when tangential segments=1, at lower axial segmentation 
numbers which can be attributed to the simplifications made in 
solving the diffusion equation (3) as the saturation effect of 
steel laminations is neglected. The difference in loss prediction 
with 3D FE results reduces with increase in axial segmentation 
as with reduction in segment width the source variation tends to 
become more or less uniform and go close to 2D FE source data 
not accounting eddy current reaction. 

 
 
Fig.15. Comparison of loss variations with increase in axial number of 
segmentations, tangential segment =1 (20 kHz). 

 

 
Fig.16.Comparison of loss variations with increase in axial number of 
segmentations, tangential segment =2 (20 kHz). 
 

It is evident that the imaging method which employs 2D FEA 
results without accounting the eddy current reaction 
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overestimates the loss since the resistance limited eddy current 
distribution is no longer true. In contrast, the imaging method 
which employs 2D FEA results accounting the eddy current 
reaction underestimates the loss since the reaction field is not 
as strong as the 2D predictions. As the number of axial 
segmentations increases, the differences between the two 
predictions become less, and they are closer to the 3D 
predictions as will be expected.   

V. COMBINED MAGNET LOSS EVALUATION CONSIDERING 

ALL ARMATURE HARMONICS. 

A. Cause of Discrepancy in Total Magnet Loss and Solution 
by Frozen Permeability Method. 

Magnet losses for an IPM machine associated with the 
fundamental component and high frequency pulse width 
modulation (PWM) harmonics are evaluated separately so far. 
It is intuitive to assume that the total loss can be evaluated as 
the sum of these individual losses associated with each 
harmonic. However, for the IPM machine under the operating 
conditions specified, it is observed that the loss evaluated from 
the summation of harmonic losses predicted separately is lower 
than the actual magnet loss which results with all the harmonics 
together in the supply current. This is caused by core saturation. 
When the high frequency harmonic current is excited 
separately, the core saturation level is much low, and hence the 
magnets buried in the rotor core are better shielded from the 
alternating field of the armature reaction, and the resultant loss 
is lower. Hence, more accurate magnet loss evaluation demands 
all the current harmonics to be treated together. While all the 
lower order harmonics for which the induced eddy current is 
resistance limited may be treated together, the presence of high 
frequency harmonics in the armature currents may result in 
significant eddy current reaction in magnets as explained 
previously and the variation of the associated eddy current 
sources along the axial plane for each of them need to evaluated 
separately. This demands the magnet loss evaluation separately 
for all the higher order source harmonics influenced by skin 
effect. 

The same dilemma exists for 3D FE prediction of eddy 
current loss due to a combination of low and high frequency 
current harmonics. In order to predict high frequency, eddy 
current loss accurately, the mesh size and time step have to be 
sufficiently small whereas the simulation time duration has to 
be sufficiently longer, at least one sixth of the fundamental 
period. Consequently, the computation time and required 
memory size will be enormous. 

The reason for discrepancy in the total magnet loss with the 
summation of the harmonic loss evaluated separately arise from 
the highly nonlinear nature of the interior permanents magnet 
machines [22]. Since the machine laminations are operating 
mainly on the nonlinear region of the B-H curve, as shown in 
Fig.17, its permeability varies with the amplitude of the 
armature current (or field intensity H).It can be seen from 
Fig.17 that the sum of the fundamental excitation ܪௗ   and the 
high frequency harmonic excitation  ܪ will result in an 
increase in flux density from  ܤ to ܤௗ . However the 

flux density associated with combined field, ܤௗ   is not 
equal to the superposition of those associated with the 
fundamental and harmonic excitations. Hence, ܤௗ ൏  ܤௗ   ܤ. Consequently, time-varying flux density 
experienced by the magnets is a non-linear function of the 
excitation current, and hence the principle of superposition is 
no longer valid 

To circumvent this problem the frozen permeability concept 
[35], [36] may be employed. If the apparent relative 
permeability is fixed at a specific value ߤௗ , given by 
slope of the line ‘oeda’ as shown in Fig. 17 , the resultant B-H 
relationship is a straight line with a slope of  ߤௗ . 
Therefore, the working points under the fundamental and 
harmonic excitations are points “d” and “e”, respectively, 
where the flux densities are   ܤௗ̴ி and   ܤ̴ி  Ǥ In this case, ܤௗ ൌ ௗ̴ிܤ     ܤ̴ி Ǥ, which implies the principle of 
superposition is applicable with the frozen permeability 
concept. 

 

 
Fig.17. Illustration of the frozen permeability for magnet loss considering 
harmonics. 

B. Method of Implementation and Validation of Results. 

In order to separate the loss associated with different 
harmonics using the concept of frozen permeability, a sequence 
of dedicated processes for 1/6th electrical period as illustrated 
in the flow chart of Fig.18 has to be performed. 

First, time-stepped 2D FEA is performed for the machine 
over 1/6 of an electrical cycle with all the significant low 
frequency current harmonics in the armature current. The size 
of the time-step should be sufficiently small to consider the 
highest frequency harmonics.  At each time step or each rotor 
position, relative permeability of each element in the stator and 
rotor cores are stored as spatial quantities. Thereafter, the 
magnetic properties for the stator and rotor cores are updated 
from the original B-H curves to the spatial quantities at every 
time step. Subsequently, 2D FE is performed with each 
armature harmonic content with the stored spatial quantities at 
every time step to obtain the eddy current source data to be used 
in the 3D imaging method. 

The 3D eddy current loss in the magnets of the 18-slot, 8-
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pole IPM machine is evaluated by applying the frozen 
permeability concept when it operates at 4500rpm and is 
excited with the fundamental current and the high frequency 
switching harmonics. The dominant switching harmonics 
usually occur at the integer multiple of the switching 
frequencies ranging from a few kHz to a few tens kHz and may 
also have magnitudes up to a few percent of the fundamental 
depending on the switching frequency and the control strategy 
employed. 20kHz and 10kHz switching frequency harmonics 
with each 5% amplitude (of the fundamental) together with the 
fundament over 1/6th electrical cycle as shown in Fig.19 is 
considered in predicting the total eddy current loss. The same 
amplitude is selected for the loss comparison in both cases 
(20kHz and 10kHz) to see the effect of eddy current reaction at 
multiples of switching frequencies. 

 

 
Fig.18. Flow chart showing the magnet loss evaluation at a specific harmonic 
employing frozen permeability. 
 

The variations of magnet loss associated with different 
harmonics and the total loss evaluated are compared with 3D 
FEA predictions in Fig.20. It is clear from the results that the 
loss associated with different harmonics add together to form 
the total magnet loss. Further, the results from the figure shows 
that the loss at each harmonic evaluated by employing frozen 
permeability is greater than the loss evaluated at the same 
harmonic frequency evaluated previously in Section V and VI 
when magnetic saturation under a given operating condition is 
not appropriately accounted. This is because with the presence 
of the fundamental current, the saturation level in the rotor core 
is much high, and hence its shielding effect to high frequency 
field harmonics is reduced. It should also be noted that while 
the eddy current loss associated with the fundamental 
component is quite low, the losses associated with the PWM 
frequency harmonics are much greater even the harmonic 
current magnitude is only 5% of the fundamental. The losses 
associated with high frequency current harmonics need to be 
accurately evaluated and reduced in order to ensure the rotor 
temperature is not excessive. 

 
Fig.19.Armature current considering all harmonics applied for 1/6th electrical 
cycle. 

 
Fig.20.Variations of magnet losses with number of axial segments evaluated at 
different harmonics employing frozen permeability (number of tangential 
segment = 1). 

VI.  CONCLUSIONS 

A method for predicting 3D eddy current loss in the rotor 
magnets of IPM machines has been developed based on the 
generalized image theory considering source variations from 
2D FEA.  The results obtained by accounting axial source 
variation in the imaging technique gave more accurate results 
for magnet loss at high frequencies when eddy current reaction 
is significant in IPM machine. The actual loss in the machine 
due to all the armature current harmonics is established by 
evaluating each harmonic loss separately by employing frozen 
permeability.  

The results obtained show insignificance of the tangential 
source component in eddy current loss. For loss evaluation at 
each harmonic employing frozen permeability it takes around 9 
hours to generate the flux density harmonics from the 2D FEA 
and less than 30 seconds to compute the total 3D eddy current 
loss for all the magnets in a typical PC. Hence on an average 
for evaluating the loss variation with number of axial segments 
up to 30, it takes around 18 minutes for each case, in contrast to 
more than 10 days usually required for one 3D FE analysis with 
no axial segmentation. The developed technique provides a 
computationally efficient tool for assessing the eddy current 
loss in the rotor magnets and for minimizing its impact on the 
machine performance. 
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