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ABSTRACT The herpes simplex virus 1 (HSV-1) capsid is a massive particle (~200 MDa; 1,250-Å diameter) with T�16 icosahe-
dral symmetry. It initially assembles as a procapsid with ~4,000 protein subunits of 11 different kinds. The procapsid undergoes
major changes in structure and composition as it matures, a process driven by proteolysis and expulsion of the internal scaffold-
ing protein. Assembly also relies on an external scaffolding protein, the triplex, an �2� heterotrimer that coordinates neighbor-
ing capsomers in the procapsid and becomes a stabilizing clamp in the mature capsid. To investigate the mechanisms that regu-
late its assembly, we developed a novel isolation procedure for the metastable procapsid and collected a large set of cryo-electron
microscopy data. In addition to procapsids, these preparations contain maturation intermediates, which were distinguished by
classifying the images and calculating a three-dimensional reconstruction for each class. Appraisal of the procapsid structure led
to a new model for assembly; in it, the protomer (assembly unit) consists of one triplex, surrounded by three major capsid pro-
tein (MCP) subunits. The model exploits the triplexes’ departure from 3-fold symmetry to explain the highly skewed MCP hex-
amers, the triplex orientations at each 3-fold site, and the T�16 architecture. These observations also yielded new insights into
maturation.

IMPORTANCE This paper addresses the molecular mechanisms that govern the self-assembly of large, structurally complex, mac-
romolecular particles, such as the capsids of double-stranded DNA viruses. Although they may consist of thousands of protein
subunits of many different kinds, their assembly is precise, ranking them among the largest entities in the biosphere whose
structures are uniquely defined to the atomic level. Assembly proceeds in two stages: formation of a precursor particle (procap-
sid) and maturation, during which major changes in structure and composition take place. Our analysis of the HSV procapsid by
cryo-electron microscopy suggests a hierarchical pathway in which multisubunit “protomers” are the building blocks of the pro-
capsid but their subunits are redistributed into different subcomplexes upon being incorporated into a nascent procapsid and
are redistributed again in maturation. Assembly is a highly virus-specific process, making it a potential target for antiviral inter-
vention.
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As with other herpesviruses, the virion of herpes simplex virus
1 (HSV-1) is composed of a nucleocapsid that is surrounded

by an amorphous layer of proteins called the tegument and en-
closed in an envelope studded with glycoproteins (1, 2). The cap-
sid is first assembled as a precursor particle or procapsid that un-
dergoes irreversible changes in structure and composition as it
matures. In this, as in other distinctive features, herpesvirus capsid
assembly resembles that of tailed double-stranded DNA (dsDNA)
bacteriophages, suggesting common evolutionary origins (3–7).

The HSV-1 procapsid has a spherical shell that consists of 150
hexamers and 11 pentamers of the major capsid protein (MCP),
320 triplexes, and a single dodecamer of the portal protein. It
overlies a thick-walled (~250-Å) inner shell (8, 9) made up of
~1,900 copies of the scaffolding protein (10) (see Fig. S1 [inset] in

the supplemental material). About 10% of the scaffolding sub-
units have the viral protease and a linker fused to their N terminus.
In maturation, the protease is activated and processes its polypro-
tein and the scaffolding protein. As DNA is packaged, the pro-
cessed scaffolding protein is expelled and the capsid morphology
converts from spherical to polyhedral (i.e., its facets flatten). Al-
though the protease is required if a procapsid is to mature, and the
portal and terminase complex (the DNA packaging motor) are
essential if DNA is to be packaged, four proteins suffice to produce
a correctly formed T�16 procapsid shell. These proteins are the
MCP, the two triplex subunits, and the scaffolding protein. Their
morphogenetic mechanism is the main focus of the present study.

Triplexes consist of two UL18 subunits (34 kDa) and one UL38
subunit (50 kDa), and they occupy all 3-fold positions (local and

RESEARCH ARTICLE crossmark

September/October 2015 Volume 6 Issue 5 e01525-15 ® mbio.asm.org 1

 
m

bio.asm
.org

 on June 20, 2016 - P
ublished by 

m
bio.asm

.org
D

ow
nloaded from

 

http://orcid.org/0000-0002-9084-2927
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1128/mBio.01525-15&domain=pdf&date_stamp=2015-10-6
mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


global) on the icosahedral surface lattice, where they coordinate
interactions between hexamers and pentamers of the MCP. These
capsomers are separated by 20-Å gaps (9, 11), but in maturation,
direct contacts are established between them as the contiguous
capsid “floor” is established. In the mature capsid, the triplexes
remain associated with the 3-fold lattice sites, where they now
serve as stabilizing clamps, similarly to gpD of phage lambda (12,
13) or gp.soc of phage T4 (14–16).

Recently, several herpesvirus capsid reconstructions have been
reported at resolutions below 10 Å (17–19). These results were
achieved by imaging mature, DNA-filled capsids inside intact vi-
rions. However, mature capsid structures provide little direct in-
formation on assembly, on account of the structural changes that
take place during maturation. Earlier reconstructions of the pro-
capsid and maturation intermediates have been limited to resolu-
tions of 20 to 30 Å (11, 20). In large part, this barrier has been
attributable to difficulty in isolating procapsids, which are ex-
tremely labile; moreover, they are metastable and tend to embark
on maturation, even in the absence of proteolytic activity (21, 22).
This gives rise to structural heterogeneity that limits the resolution
of cryo-electron microscopy (cryo-EM) reconstructions.

In the present study, we sought to achieve a more detailed
structural account of the procapsid and maturation intermedi-
ates. To this end, we developed a new isolation procedure and
exploited recent technical developments in cryo-EM to collect a
large data set of 12,000 micrographs (~100,000 particles) on a
microscope equipped with a “direct detector” camera and auto-
mated data collection software (see Materials and Methods). As
analysis proceeded, it became apparent that many of the particles
exhibited visible departures from icosahedral symmetry. The re-
maining particles were classified. In addition to the naive procap-
sid, four other states were sufficiently populated to yield recon-
structions at resolutions of 11 Å to 16 Å. In addition, cryo-electron
tomography was used to investigate the structure of the internal
scaffolding shell. These data have led to a new model of procapsid
assembly based on a protomer (assembly unit) consisting of one
triplex plus three MCP subunits. As assembly proceeds, the three
MCP subunits from a given protomer are incorporated into three
neighboring capsomers (each a hexamer or pentamer of the
MCP). The scaffolding shell guides the curvature of the growing
surface shell. This model rationalizes certain departures from
symmetry in the procapsid structure—viz., the intrinsic asymme-
try of the triplexes and the distortions of the MCP hexamers—and
assigns them roles in specifying the T�16 geometry of the pro-
capsid.

RESULTS
A gentle protocol for procapsid purification. Procapsids were
produced using the m100 virus mutant, which lacks the viral pro-
tease (23). Alternatively, the temperature-sensitive protease mu-
tant ts.Prot.A can be used (24). With circumspect handling, pro-
capsids can be extracted from infected cells, but they are extremely
labile and do not withstand any gradient purification. Previously,
in order to obtain adequate yields of procapsids, a monoclonal
antibody against the MCP was used to concentrate the particles
(24). However, this procedure results in aggregation in three di-
mensions and a low yield of particles suitably distributed on
cryo-EM grids. To tackle this problem, we developed a new puri-
fication protocol (see Materials and Methods); in brief, we opti-
mized a differential centrifugation procedure using a combination

of gentle pelleting and filtering to obtain a concentrated suspen-
sion of procapsids from nuclear lysates (see Materials and Meth-
ods). The sample was harvested at 12 to 14 h postinfection and
frozen immediately after purification, at about 18 to 20 h postin-
fection.

Five relatively long lived maturation intermediates. When
prepared for cryo-EM, these isolates gave monolayer distributions
of procapsids suitable for automated data collection. However,
many (40 to 50%) of the particles were visibly distorted (see Fig. S1
in the supplemental material). Discarding them left a total of
~50,000 particles, and these were subjected to iterative classifica-
tion. In this procedure, not only must different views be identified
but also different conformers, each represented by a current den-
sity map. In a given cycle, each particle is assigned to the reference
map with which it has the highest correlation. A new set of refer-
ence maps is then calculated, and the procedure is repeated until
convergence. We started with the 17 previously reported interme-
diates (11, 25) as reference maps. However, after three cycles of
classification and reconstruction, most classes were sparsely pop-
ulated, limiting these reconstructions to low resolution. Accord-
ingly, the number of classes was reduced to 10 and then further
reduced to five. In each class, the top 50% of particles, as ranked by
correlation coefficients, were used to calculate the reconstruction.
This strategy led to a distribution with 3,000 to 6,000 particles per
class and reconstructions with resolutions of 11 Å to 16 Å (Ta-
ble 1). It is likely that the number of distinct intermediates is
greater than five, but the density maps described here (Fig. 1)
represent relatively stable (i.e., long-lived) staging posts on the
maturation pathway. The sequential ordering of the five recon-
structions is based on the time course experiment previously re-
ported (11) in which the waxing and waning of the various classes
of procapsid were monitored. The improved resolution made it
possible to segment the maps into their molecular constituents
and to place the crystal structure of the HK97 capsid protein in the
MCP floor domains. This analysis yielded new information about
the movements of the capsid proteins during maturation (see be-
low).

Shifts in the positions and orientations of MCP subunits
during procapsid maturation. Maturation of the HSV-1 capsid is
very similar to that of dsDNA bacteriophages, including HK97,
T4, and P22, among others (reviewed in reference 26). All of these
viruses have capsid proteins based on the same distinctive fold,
termed the HK97 fold after the system in which it was discovered
(27). This fold is embellished with an N-terminal scaffolding do-
main in HK97, with insertion domains in T4 (28) and P22 (29)
and with a large (120-kDa) C-terminal appendage in HSV-1 (30)
(Fig. 1 to 3). In the HSV-1 MCP, the “floor” domain has the HK97
fold while the “tower” appendage, with its middle and tip do-
mains, protrudes outward (Fig. 2). A crystal structure has been
determined for the tip domain (604 amino acids [aa] out of 1,374
total) (31).

TABLE 1 Statistics for the five density maps

Map no. Resolution (Å) No. of particles

1 (procapsid) 14 3,881
2 16 6,286
3 15 4,175
4 12 5,096
5 (capsid) 11 3,530
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In the procapsid, the six MCP subunits per hexamer are dis-
tributed asymmetrically around its central axis. There are three
different kinds of hexamers, distinguished by their positions on
the icosahedral surface lattice—P (peripentonal), E (edge), and C

(central)—and by their structures (Fig. 4). P-hexamers have a
particularly distorted appearance (Fig. 1 to 3). With the current
density maps, it was possible to segment capsomers into individ-
ual subunits and show that, despite the asymmetry of a given hex-

FIG 1 Structures of five intermediates (1 to 5) in HSV-1 procapsid maturation. Map 1 represents the earliest procapsid captured, and map 5 shows an
almost-mature capsid. The capsids are viewed along a 2-fold axis. (Left) Rendering of the outer surface, color-coded radially from yellow to blue. The procapsid
is 1,250 Å in diameter. The blow-up at bottom right is centered on the P-hexamer, i.e., the hexamer closest to the vertex. (Middle) Central sections. The blow-ups
are centered on the pentamer (top) and the E-hexamer (edge hexamer) and P-hexamer (bottom). The E-hexamer is centered on a 2-fold axis at the middle of an
edge. The two arrows point to a region where substantial changes take place in the transcapsomer pore (left) and the initially empty region which is filled in by
“floor” density in the mature capsid. (Right) Concentric spherical layers of density inside the capsid correspond to regions occupied by different segments of the
scaffolding protein. (Right) Spherical sections at a radius of 600 Å, illustrating how the major departures from 6-fold symmetry in the earliest hexamers are
resolved (i.e., become symmetric) in the mature capsid.
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amer, its six MCP subunits are consistent in shape, and it is their
positioning, i.e., rigid body-like shifts and tilts relative to a 6-fold-
symmetric ring, that is responsible for the observed departures
from 6-fold symmetry (Fig. 2 and 3).

In state 1 (of 5), putatively the earliest procapsid, the majority
of intersubunit contacts within a capsomer are between adjacent
floor domains. During maturation, MCP subunits swivel so that
some contacts between neighboring floor domains within a hex-

amer are broken and some new interactions are engaged (Fig. 2
and 3). These rearrangements also result in formation of the con-
tiguous floor (Fig. 4C), in which adjacent capsomers are con-
nected. In contrast to the hexamers, the pentamers do not change
during maturation and the disposition of their floor domains re-
mains essentially the same throughout the transition. However,
pushed by reorganization of the surrounding hexamers, the pen-
tamers move radially, as the particle transforms into the angular
(polyhedral) form of the mature capsid (see Movie S1 in the sup-
plemental material).

In summary, several striking changes take place in the matur-
ing surface shell. In addition to formation of the floor, the hexam-
ers become 6-fold symmetric, the axial pores through the capsom-
ers narrow down, and the capsid angularizes. Movements of the
“drawbridge” domains constrict the pore (the drawbridge domain
is an outcrop of the middle domain [Fig. 2B, arrow]), and the
outermost “tip” domains move closer together, narrowing this
part of the pore (Fig. 1 and 2). Both of the latter changes take
place relatively late in maturation and are most apparent in
maps 4 and 5.

As the procapsid matures, the triplexes change their interac-
tions but not their shape. Despite the many maturation-related
behaviors that it shares with phages, there is no overall expansion
of the HSV-1 procapsid. In effect, this procapsid is preexpanded,
with the triplexes acting as spacers between capsomers (Fig. 4C).
Just as the increase in size of maturing phage capsids is primarily
due to rotations of the MCP subunits (32), those of the maturing
HSV-1 procapsid also undergo substantial rotations as the floor
domains move into the spaces underlying the triplexes (Fig. 4C).

There are six quasiequivalent triplexes per asymmetric unit of
the T�16 surface lattice, labeled Ta to Tf in the schematic insert in
Fig. 4A. Due to the imposition of icosahedral symmetry in the
reconstructions, the Tf triplex centered on the 3-fold axis is (arti-
factually) 3-fold symmetric. The other five triplexes exhibit a pro-
nounced directionality, i.e., departure from 3-fold symmetry, and
have defined orientations relative to the frame of reference given
by an icosahedral facet, marked with arrows in Fig. 4A (left panel).
An identical pattern of triplex directionality is observed in the
mature capsid (Fig. 4A, right panel). (Although, to our knowl-
edge, this pattern has not been previously described, it has also

FIG 2 Conformational changes in the P-hexamer during maturation. (A)
Image from map 1. (B) Image from map 5. Radial color coding goes from red
(inner surface) to blue (outer surface). The crystal structure of the tip domain
(PDB 1N07) fits well into both density maps, indicating that the tip and middle
domains rotate as a single rigid body during this transition. HK97 capsid
protein structures have been fitted into the floor domains. Prohead I (the
HK97 procapsid; PDB 3QPR) was used for map 1, and head II (mature capsid;
PDB 2FT1) was used for map 5. The middle panels show cutaway views down
the 6-fold axis and highlight the rotation and outward movement of the floor
domains. At bottom are side views of the MCP subunit, giving its domain
organization. The black arrow points to the “drawbridge” domain, an outcrop
of density from the middle domain. The asterisk points out a protrusion in the
tip domain, an MCP-MCP interaction region in a mature capsomer.

FIG 3 Rearrangement of the P-hexamer during maturation. The panels show
segmented hexamers from maps 1 to 5. (A) View from the outside. (B) View
from inside the capsid. (C) Side view. The radius-dependent color coding is as
in Fig. 2. The initial major departure from 6-fold symmetry in the external
protrusions (blue [A]) is less evident in the floor domains (red [B]).
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been observed independently by J. F. Conway [personal commu-
nication].) It follows that triplex directionality is specified during
procapsid assembly and does not change upon maturation. We
propose below (Discussion) an assembly model in which the di-
rectionality of the triplexes plays a key role.

At the current resolution, triplexes Ta to Te are closely similar
in structure (they can be superimposed pairwise with correlation
coefficients of �0.97). Moreover, they do not change perceptibly
as the procapsid matures (Fig. 4A [bottom row] and 4B). In over-
all morphology, the triplex resembles a “gorilla,” with two similar

“arms” that we assign to the two UL18 subunits and a “back” and
“head” that we assign to UL38 (Fig. 4B). Otherwise described, the
triplex has the form of an asymmetric tripod. We are not yet able
to delineate the connection between the two UL18 subunits,
which, on their own, have been shown to dimerize in vitro (33).
However, the UL18 subunits probably extend from the “arms”
into the “head” region and make contact with each other. This
assignment is consistent with previous triplex segmentations in
mature-state reconstructions of several different herpesviruses
(17–19). Moreover, the UL38 homologs are smaller in cytomega-

FIG 4 Structure and orientations of the triplexes in the procapsid and the mature capsid. (A) An icosahedral facet from map 1 is shown at left, and one from
map 5 is shown at right. The six quasiequivalent triplexes, Ta through Tf (nomenclature according to Heymann et al. [11]), segmented out from the respective
maps, are aligned in a row underneath. Morphologically, the triplex resembles a gorilla. In the upper panels, an arrow indicates the directionality of each triplex.
(B) Several views of the averaged procapsid triplex (left) and the mature capsid triplex (right). At the current resolutions, the various triplexes in each capsid are
close to isomorphous, so they could be averaged together without loss of information. Similarly, they change little during maturation. The averaged triplexes were
segmented into three regions that were assigned to two UL18 subunits (yellow and red) and one UL38 subunit (orange) (see text). (C) Monochrome view of the
same triangular facets as in panel A but with the triplexes excised, highlighting the gaps between adjacent capsomers in the procapsid and the extent of floor
reorganization during maturation.
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lovirus (CMV) and Kaposi’s sarcoma-associated herpesvirus
(KSHV) than in HSV-1 (~35 kDa versus ~50 kDa), and the triplex
density in those capsids lacks the “head” of the HSV-1 “gorilla,”
consistent with the assignment given here.

Although there is little variation in triplex structure, there are
substantial changes in their interactions with the surrounding
MCPs as the procapsid matures. Appraisal of the points of contact
between triplexes and MCPs reveals interaction areas in addition
to the four previously described (11) (Fig. 5). In the procapsid,
these are c1 to c3 (named consistently with Fig. 6 of reference 11)
between the triplex and the middle domain of neighboring MCPs.
During maturation, the c2 connection is severed due to the in-
creased separation of the MCPs, and a new connection, c4, is
formed next to c3 on the same MCP. In addition, as maturation
proceeds, the three subunits of a given triplex contact the floor
domains of the three surrounding MCPs, establishing connec-
tions c5 to c7 (Fig. 5).

A periodicity in the scaffolding shell. Formation of the pro-
capsid is also guided by coassembly of the outer shell with an inner
shell of scaffolding proteins. (Parenthetically, we note that bacte-
riophage �X174, a much smaller [T�1] particle, also has inner
and outer scaffolding proteins [34], but there is little reason to
suppose that they operate as in the HSV-1 system.) The protease,
located at the N-terminal end of the polyprotein, protrudes into
the cavity inside the inner shell (10). The inner shell is thick-walled
(~250 Å; we equate this dimension with the length of the scaffold-
ing protein), and it appears in the reconstructions as a set of con-
centric spherical shells (Fig. 1, middle column). The densest shell
peaks at a radius of about 280 Å, and this is likely to be the site of
predominant nearest-neighbor interactions. However, the shells
disclose no information about the in-plane packing of scaffolding
protein protomers.

To explore the possibility that offsets in register between the
outer and inner shells may be responsible for lateral (in-plane)
smearing of inner shell density, we addressed this problem by
cryo-electron tomography, which affords density maps of individ-
ual particles (1). Some 700 procapsids were extracted from 34
tomograms, their icosahedral orientations were determined, and
the maps were averaged. However, no substructure was observed
in the inner shell, other than the observed spherical stratification

(Fig. 6, top). Since these alignments were dominated by the MCP/
triplex shell (as in the cryo-EM reconstructions), we masked it out
and aligned the remaining inner shells relative to each other, with-
out applying symmetry. The top correlation-ranked 50% of these
reconstructions were combined to give a final rendering of the
inner shell (Fig. 6, bottom). As in the cryo-EM reconstructions,
the densest feature is a layer at a radius of ~250 Å, but again, there
is no structural differentiation within this layer. However, the re-
gion outside this layer is resolved into two strata: in the outer one,
at a radius of ~450 Å, an 80-Å in-plane repeat is resolved (arrows
in Fig. 6, bottom). The possible significance of this repeat is con-
sidered further in the Discussion.

DISCUSSION
Particle stability and conformational diversity. In this study, we
produced preparations of HSV-1 procapsids that made suitable
specimens for high-throughput cryo-EM. However, a substantial
fraction turned out to be distorted and could not be used for
reconstruction. These distortions may reflect the response of frag-
ile particles to physical stresses (e.g., surface tension), and/or they
may represent particles in which icosahedral symmetry is not
maintained throughout maturation but the transformation prop-
agates out from an initiation site or sites. (Despite the absence of
protease, structural transformation initiates spontaneously over a
period of hours to days in a stochastic process. It is likely that DNA
packaging in vivo causes capsid maturation to proceed more rap-
idly.) In our earlier work in which an antibody was used to con-
centrate the procapsids, there was a lower incidence of distorted
particles and late-stage intermediates (9, 24). In retrospect, it may
be that the antibody had a beneficial stabilizing effect on the pro-
capsids and may also have restrained them from embarking on
maturation.

In an earlier analysis, 5,000 procapsid images were divided into
17 classes (11). However, most of these classes were sparsely pop-
ulated and could yield only low-resolution reconstructions. In the
present analysis, we started with ~100,000 procapsids and the 17
previously reported models. As before, the exact number of dis-
tinct classes could not be rigorously determined. As a pragmatic
measure intended to maximize resolution, we reduced the num-

FIG 5 Contacts between the Tc triplex and surrounding MCPs. MCPs are in
gray, and the triplexes are segmented into the two UL18 subunits (yellow and
red) and one UL38 subunit (orange). The top views (A), side views (B), and
cutaway views (C) of the triplex with surrounding MCPs are shown for the
procapsid (map 1, top) and the nearly mature capsid (map 5, bottom). c1
through c7 denote intermolecular contacts (see text).

FIG 6 Tomographic reconstruction of the HSV-1 procapsid with and with-
out symmetrization. Left, central section of procapsid map obtained by aver-
aging and symmetrizing multiple tomograms. A schematic model of an elon-
gated scaffolding protein dimer is drawn. Right, central section through the
scaffolding core reconstruction obtained by averaging without applying sym-
metry. The arrows indicate 8-nm repeats in the outer part of the scaffolding
shell. Bars, 20 nm.
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ber of classes and increased the numbers of particles in them,
recognizing that this may concede some heterogeneity on a scale
too small to be evident from visual inspection. We finished up
with five classes and resolutions of 11 to 16 Å, approximately twice
as high as in previous work. In the following discussion, we as-
sume that state 1 represents the naive procapsid, state 5 represents
the nearly mature state, and states 2 to 4 represent relatively long-
lived intermediates, in exploring their implications for the assem-
bly mechanism and maturation dynamics.

A model for HSV-1 procapsid assembly. Assembly of an
HSV-1 procapsid entails the ordered aggregation of some 4,000
protein subunits (reviewed in reference 35). For a fully fledged
procapsid, these are of 11 different kinds, but just four gene prod-
ucts—the MCP, the two triplex subunits, and a scaffolding pro-
tein—suffice to produce a basic procapsid with a geometrically
correct T�16 shell. With complex assembly systems, an efficient
strategy is first to produce subassemblies (protomers), which then
assemble into higher-order structures. This modus operandi has
been demonstrated in the relatively simple case of the HK97 pro-
capsid (a T�7 particle), where the protomers are hexamers and
pentamers of the same protein, an MCP-scaffolding protein fu-
sion (36, 37). The proposition that a scenario of this kind applies
to the HSV-1 procapsid raises the following questions. (i) How
many different kinds of protomers are involved? (ii) How many
conformational variants of each protomer are there in the preas-
sembly pool? (iii) In what order are the protomers incorporated
into nascent particles? (In principle, the fewer the protomers, the
less the need for regulatory supervision.) While hexamers and
pentamers of the MCP are natural candidates, this model is un-
dermined by two considerations: the fact that these capsomers do
not make nearest-neighbor contacts in the procapsid (Fig. 4C)
and the extreme variations in structure exhibited by assembled
hexamers. On the other hand, several considerations suggest that
the triplexes play an important role: they are essential for correct
assembly (21, 22), they occupy strategic positions in the procapsid
surface lattice, and the quasiequivalent versions are all closely sim-
ilar in structure (Fig. 4A).

Drawing primarily on observed features of the procapsid, we
propose that the assembly unit (protomer) consists of a triplex
surrounded by three MCP subunits and that the T�16 procapsid
shell is built from 320 copies of this protomer (Fig. 7). To date,
such a protomer has not been isolated outside the context of a
capsid. Each icosahedral facet accommodates 16 protomers of six
quasiequivalent kinds: three each for Ta to Te and one for Tf. (We
name the protomers according to the triplexes that they contain.)
Despite little sequence similarity, we infer that there is enough
structural similarity between UL38 and UL18 that both proteins
can bind an MCP subunit (hence, three per triplex) but also suf-
ficient difference between them for the protomers to depart sig-
nificantly from 3-fold symmetry. Strikingly, four protomers (Ta,
Tb, Tc, and Td) are essentially superimposable (they align with
pairwise correlations of �0.95 [see Fig. S2 in the supplemental
material]). As the Te protomer includes an MCP that is part of the
2-fold-symmetrized E-hexamer, it is also compromised by the ap-
plication of icosahedral symmetry.

We envisage that procapsid assembly starts with five protomers
clustering with Ta directionality around a 5-fold axis (Fig. 7, first
row). The next step involves adding a ring of protomers oriented
so as to have Tc triplexes, as shown in Fig. 7 (second row, leftmost
panel). Due to its pseudo-3-fold nature, there are three different

settings in which a Tc protomer could be added. On examining the
procapsid structure, we noticed that one of these possibilities sup-
ports more MCP-MCP interactions between the two interacting
protomers (Fig. 8). We suppose that it may be selected on that
basis. Continuing, the rest of the asymmetric unit can be built up
in similar fashion (Fig. 7, second row, second to fifth panels). This
outgrowth to complete an asymmetric unit, starting from an ini-
tial pentamer of protomers, is illustrated schematically in Fig. 7,
third row. Further addition of appropriately oriented protomers
leads to a complete procapsid (Fig. 7, fourth row). The essential
features of this model are that it explains both the observed direc-
tionality pattern of the triplexes and the skewed/distorted nature
of MCP hexamers. Also noteworthy is that each of the three MCP
subunits in a given protomer becomes incorporated into a differ-
ent capsomer (hexamer or pentamer) in the nascent procapsid.

In the mature capsid, the four protomer-equivalents (a triplex
plus three MCPs) that can be distinguished without compromise
from imposed icosahedral symmetry are markedly different from
each other (see Fig. S2 in the supplemental material). These dif-
ferences come about when the protruding MCP towers (middle
plus tip domains) of a given protomer move away from their tri-
plex, and six or five of these protrusions (from different protom-
ers) cluster into hexameric or pentameric rings, respectively.

Generalization of the model to accommodate a scaffold and a
portal. Thus far, we have not considered the internal scaffold. It
has been observed that the inner (scaffold) and outer (MCP/tri-
plex) shells coassemble approximately in unison, i.e., incomplete
particles appear to have about the same amount of inner and outer
shell (24). This suggests that the scaffolding shell guides the cur-
vature of the growing procapsid via a network of interactions be-
tween the MCP floor domains and the underlying scaffolding sub-
units. That these interactions are weak is suggested by the
nonregistration of the inner and outer shells (Fig. 6 and related
Discussion). Transient oligomers have been shown to play a role
in the assembly of other capsids (38, 39). The HSV-1 procapsid
has 960 MCP subunits. The most recent value reported for the
copy number of the scaffolding proteins is 1,918 � 170 (10).
Given evidence that the scaffolding protein forms dimers (40),
this would be consistent with one dimer per MCP subunit. Thus,
one could imagine expanding the protomer by adding three scaf-
folding protein dimers, one to each MCP. (There are also indica-
tions that the scaffolding protein forms a complex with MCP at an
earlier stage of assembly in the cytoplasm and escorts it into the
nucleus [41].) We suspect that the ~80-Å repeat detected in the
scaffolding may reflect the average spacing between protomers at
that radial level in the inner shell of the procapsid.

In herpesviruses and dsDNA phages alike, the procapsid has a
dodecameric ring at the portal vertex. Although the HSV-1 portal
protein UL6 is not essential for assembly (hence, a procapsid lack-
ing a portal is possible), it is likely to be involved in initiating
procapsid assembly (42). In the absence of a specific nucleus, such
as the portal, several starting points of assembly are possible, but
some of these might lead to geometric barriers, resulting in a fail-
ure to incorporate the next protomer. The presence of portal
might serve a nucleus that provides a direction for growth, limit-
ing other nonproductive assemblies. Despite the absence of direct
experimental evidence, it is nevertheless noteworthy that simply
omitting one MCP subunit from each of five Ta protomers and
organizing these five reduced protomers around the portal ring
would afford a nucleation complex from which outgrowth of the
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procapsid surface lattice could then proceed as outlined above. In
this complex, the portal ring would essentially replace an MCP
pentamer (see Fig. S3 in the supplemental material).

MATERIALS AND METHODS
Propagation of mutant virus. Stocks of M100 virus (a gift of M. Gao,
Bristol-Myers Squibb) were generated by infecting monolayers of the
complementary cell line F3 (a gift of P. Desai, Johns Hopkins University).
F3 monolayers were grown to 75% confluency and infected at a multiplic-
ity of infection (MOI) of 0.1 PFU/cell. At 36 h postinfection, infected-cell
medium was clarified and mixed with polyethylene glycol 8000 (PEG
8000) and NaCl to give final concentrations of 7% and 2.3%, respectively.
After gentle overnight stirring at 4°C, the PEG precipitate was pelleted and
resuspended in small volumes of PBS, aliquoted, and stored frozen at
�80°C. The titers of these stocks were determined on both complemen-
tary F3 cells and noncomplementary Vero cells. Stocks having a titer ratio

of 104-fold or greater between the two cell types were used to produce
procapsids.

Procapsid production. One 75-cm2 flask of Vero cells was infected
with M100 stock at an MOI of 5 PFU/cell. Attachment was allowed to take
place for 45 min at room temperature. Unattached virus was then re-
moved by washing the monolayer with 10 ml of PBS and replacing it with
15 ml of overlay medium (minimum essential medium [MEM] supple-
mented with 1% fetal bovine serum [FBS] and penicillin-streptomycin
[Pen-Strep]). Infection was allowed to proceed for 12 to 14 hours at 37°C,
at which time the infected monolayer was scraped off and pelleted at
~200 � g in a clinical centrifuge for 5 min at room temperature. Beyond
this point, the entire procedure was conducted at room temperature, us-
ing phosphate-buffered saline (PBS) supplemented with complete pro-
tease inhibitor plus EDTA (Roche Diagnostics). The pellet was resus-
pended in 10 ml of PBS, repelleted, and then gently resuspended in 1.0 ml
of PBS and transferred to a 1.5-ml microcentrifuge tube. One hundred
milliliters of 10% Triton X-100 was added to the cell suspension, mixed by
inversion, and incubated for 20 min, promoting the release of procapsids
from infected cell nuclei. After nuclei were removed by centrifugation at
850 � g for 4 min, the supernatant was transferred to a 1.5-ml microcen-
trifuge tube. Procapsids were purified in four pelleting steps in an Eppen-
dorf microcentrifuge (model 5424), followed by use of a spin filter. The
first pelleting step was at 5,000 rpm for 4 min. After the supernatant was
transferred to a new tube, the tube containing the pellet was inverted,
allowed to drain, and then gently resuspended with 100 �l of PBS. The
supernatant from this step was recentrifuged at 6,000 rpm for 5 min: this
supernatant was transferred to a fresh tube, and the pellet was drained and
resuspended as in the previous step. This process was repeated two more
times for speeds of 8,000 rpm and 10,000 rpm. Pellets that appeared tur-
quoise were combined, sonicated in a bath sonicator (Branson; model
HD-50) for 1 s, and centrifuged at 845 � g for 3 min to remove aggregates.
This supernatant was centrifuged in a 300,000-molecular-weight (MW)-
cutoff Nanosep centrifugal filter (Pall) at 5,000 rpm until the volume was
reduced to 50 �l. Three hundred microliters of PBS were added to the spin
filter, and the sample was recentrifuged until the volume was reduced to
50 �l. This, the final procapsid preparation, was then processed for
cryo-EM within 18 to 20 hours postinfection.

Cryo-electron microscopy. Typically, a 3-�l drop of sample was ap-
plied to a glow-discharged Quantifoil holey grid which had been overlaid
with a thin layer of carbon, incubated for 40 s, and then blotted and
flash-frozen using a Leica EM GP PlungeFreezer. About 12,000 micro-
graphs were collected on a Titan Krios microscope operated at 300 kV at
the FEI Nanoport (Acht, Netherlands), using EPU automation software to
operate a Falcon II camera. Images were recorded at 2.3 Å/pixel. The final
set of particles was picked manually from 9,945 micrographs.

Image processing and reconstruction. Boxing, defocus determina-
tion, and computational processing were carried out using the Bsoft pack-
age (43). The computational selection and classification procedures uti-
lized were based on correlation coefficients calculated in reciprocal space
between fast Fourier transforms (FFTs) of the images and reference map
projections. Seventeen previously reported intermediates (11) were used
as initial reference maps. Thereafter, newly calculated reconstructions
were used as references for the next cycle. The particles were allowed to
undergo redistribution in successive cycles. After the first three iterations,
it was observed that only 10 out of 17 classes contained more than 300
particles. Accordingly, the other seven reference maps were omitted and

FIG 7 An assembly pathway for the HSV-1 procapsid. The top panel shows assembly of the procapsid asymmetric unit from protomers, each consisting of 3
MCPs surrounding a triplex. The final asymmetric unit consists of six protomers, each colored according to the respective triplex, as in Fig. 4. Ta, red; Tb, orange;
Tc, yellow; Td, green; Te, blue; Tf, magenta. The pathway shown starts with five protomers associating around a 5-fold axis. The orientations of the triplexes are
shown on the schematic (bottom row) with arrows, as in Fig. 4. The schematic illustrates the sequential addition of protomers, as shown in the surface renderings
(above). Upon addition of each protomer, two new MCP-MCP contacts are formed and highlighted as black outlines on the schematic. The colors in the
schematic correspond to the density colors shown as surface rendering. The lower panel shows the asymmetric unit, the icosahedral triangle, and the outer surface
of the complete procapsid. The sequence illustrated here is not exclusive; some other starting assemblies and sequences of protomer addition could also lead into
productive assembly pathways.

FIG 8 Directionality of triplex association. Two triplex-MCP protomers—Ta
and Tc—are shown, associating in three different ways. The Ta-Tc association,
observed in the density maps, is shown on the left; two alternative 3-fold-
related positions are shown in the middle and on the right. Middle row, cut-
away views, showing MCP floor domain associations. The arrows indicate
interactions made between the neighboring MCPs. The arrangement (at left)
best supports the formation of new MCP-MCP contacts. Bottom row, sche-
matic diagram of the three potential modes of interaction.
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particles from these classes were allowed to undergo redistribution among
the remaining 10 reference maps (classes). After 10 cycles of reconstruc-
tion and refinement, the resolutions of 5 out of 10 reconstructions had
significantly improved, whereas the resolutions of the other five classes
were still limited to 20 Å. Thus, the number of references was further
reduced to five, and the selection criteria allowed only 50% of the top-
scoring particles, as ranked by correlation coefficients, to be used in the
reconstructions. The resolutions of the five reconstructions (Table 1) were
calculated using the Fourier shell correlation criterion with a threshold
of 0.5.

Structure fitting and figure preparation. HK97 capsid protein struc-
tures as found in prohead I (PDB 3QPR) and head II (PDB 2FT1) were
fitted into maps 1 and 5, respectively, using UCSF Chimera (44). SEG-
GER, implemented in UCSF Chimera, was used for map segmentation.
Figures were prepared using UCSF Chimera.

Cryo-electron tomography. Grids prepared as described above were
imaged in an FEI Titan Krios microscope operated at 300 kV. Tilt series
were collected using FEI Tomography 4 operated in batch mode at
�29,000 magnification, giving a final pixel size of 0.96 nm after 2-fold
binning. In each tilt series, images were recorded at 1.5° increments over
an angular range of approximately �55° to �55°. The electron dose was
~1 e�/Å2 per image, for a cumulative dose of ~70 e�/Å2 per tilt series. Tilt
series target defocus ranged from �4 �m to �8 �m, corresponding to
first contrast transfer function zeros from (28 Å)�1 to (40 Å)�1. Tomo-
gram reconstruction was done using IMOD (45). Subtomogram align-
ment and averaging used Bsoft routines (43), modified as needed and
wrapped into Python scripts. The top 75% of subvolumes, ranked accord-
ing to cross-correlation coefficient, were used to calculate the final density
map of the scaffolding core. Although classification of the particles was
attempted, limited resolution and particle numbers made it difficult to
achieve a stable result, and the averaged structure shown represents a
superposition of all classes.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.01525-15/-/DCSupplemental.

Figure S1, PDF file, 0.7 MB.
Figure S2, PDF file, 0.1 MB.
Figure S3, PDF file, 0.2 MB.
Movie S1, MOV file, 7.9 MB.
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